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We present an approach for calculating the electronic structure and transport properties of nanoscopic
conductors that takes into account the dynamical correlations of strongly interacting d or f electrons by
combining density-functional theory calculations with the dynamical mean-field theory. While the density-
functional calculation yields a static mean-field description of the weakly interacting electrons, the dynamical
mean-field theory explicitly takes into account the dynamical correlations of the strongly interacting d or f
electrons of transition metal atoms. As an example we calculate the electronic structure and conductance of Ni
nanocontacts between Cu electrodes. We find that the dynamical correlations of the Ni 3d electrons give rise to
quasiparticle resonances at the Fermi level in the spectral density. The quasiparticle resonances, in turn, lead to
Fano line shapes in the conductance characteristics of the nanocontacts similar to those measured in recent

experiments of magnetic nanocontacts.
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I. INTRODUCTION

State of the art for calculating the conductance and cur-
rent through atomic- and molecular-size conductors consists
in combining ab initio electronic-structure calculations on
the level of density-functional theory (DFT) with the
Landauer formalism or nonequilibrium Green’s function
technique.!? This methodology has been quite successful for
the theoretical description of, e.g., metallic nanocontacts’
predicting zero-bias conductances that are, in general, in
good agreement with experiments even in the case of nano-
contacts made from magnetic transition metals.*~

Recently, however, nanocontacts made from Fe, Co, or Ni
have been reported to display Kondo effect.!®!! This has
been inferred from the observation of Fano line shapes'? in
the low-voltage conductance characteristics similar to those
observed in recent scanning tunnel microscope experiments
with magnetic adatoms on metal surfaces.'3"'% The observa-
tion of the Kondo effect in Fe, Co, and Ni nanocontacts is
rather surprising since these materials are strong ferromag-
nets as bulk materials. The Kondo effect, however, is usually
at odds with ferromagnetism as it results from the screening
of a local magnetic moment by antiferromagnetic coupling to
the conduction electrons.'®!7

DFT-based transport calculations of nanoscopic conduc-
tors cannot capture truly many-body effects as the Kondo
effect that originate from the dynamic correlations of
strongly interacting electrons. Therefore it is necessary to
extend the existing methodology in order to account for dy-
namic electron correlations in transport experiments of nano-
scopic conductors. Recent approaches to include dynamic
electron correlations in the ab initio description of quantum
transport are based on the GW approximation (GWA) (Ref.
18) or the three-body scattering (3BS) formalism.!” While
the GWA is only suitable for weakly correlated systems due
to the perturbative treatment of the electron-electron interac-
tions, the 3BS is, in principle, capable of describing more
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strongly correlated systems as it goes beyond perturbation
theory. However, the 3BS does not provide a satisfactory
solution of the Anderson-impurity problem since the local
correlations are not taken into account properly. More re-
cently, ab initio electronic-structure methods on the level of
DFT or the GW approximation have been combined with
more sophisticated many-body techniques such as the one-
crossing approximation (OCA) or the numerical renormal-
ization group in order to account for the Kondo effect in
nanoscopic systems containing single magnetic atoms.?%-23

In this paper we develop an approach inspired by the suc-
cess of the dynamical mean-field theory (DMFT) in the treat-
ment of correlated solids,?*? to tackle the challenges of mo-
lecular electronics. DMFT is an approach based on the
locality of the self-energy and does not require Bloch peri-
odicity. It has been applied before to strongly spatially inho-
mogeneous systems such as alloys near an Anderson
transition,?®  surfaces’” and interfaces,”® multilayered
heterostructures,”® and cold atoms in a trap.3® Notice, how-
ever, that so far all these studies were restricted to model
Hamiltonians as, for example, the Hubbard model.

In order to incorporate realistic aspects of the electronic
structure we extend the DFT+DMFT philosophy?!? to the
case of nanoscopic conductors. Our molecular DMFT ap-
proach takes into account the local dynamical correlations of
the strongly interacting 3d or 4f shells of the magnetic atoms
within a nanoscopic conductor such as a molecule or nano-
contact which is coupled to semi-infinite electrodes while the
rest of the system is treated on a static mean-field level by
the local-density approximation (LDA). This approach can
also be viewed as an extension of the early work of one of
us*®* which ignored dynamical correlations of open atomic
shells. In the limiting case where the correlated region re-
duces to a single atom, our approach reduces to our previous
work which treated a single magnetic impurity in a metallic
nanocontact.’ When the device region contains several cor-
related atoms in close proximity, the molecular DMFT treat-
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FIG. 1. (Color online) (a) Molecular DMFT self-consistency
cycle applied to nanoscopic conductors. (b) Division of the system
into left (L) and right (R) electrodes, and the central device region
(D) that hosts the strongly correlated subspace (C) consisting of the

strongly correlated d orbitals of the magnetic atoms shown as red
(dark gray) circles.
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ment is essential since the effective bath of each correlated
atoms obeys a self-consistency condition which involves the
whole device region.

Our work is similar in spirit to the recently presented
dynamical vertex approximation for nanoscopic systems
(nano-DI'A) by Valli et al.3* This approach can, in principle,
treat nonlocal self-energy effects. In a related work, Florens
introduced a nano-DMFT approach whereby a correlated
system is approximated by embedding it in a model geom-
etry having a treelike structure.’> However, both methods?*
have been implemented in the context of the Hubbard model
while we demonstrate that the existing molecular DMFT
technology can treat a realistic nanocontact.

This paper is organized as follows. In Sec. II we describe
the molecular DMFT method for nanoscopic conductors. In
Sec. III we apply the method to small Ni nanocontacts con-
nected to Cu nanowires and discuss the results. Finally, we
conclude this paper with a general discussion of the method
and of the results in Sec. IV.

II. METHOD

We consider a nanoscopic conductor bridging two semi-
infinite metal wires as shown schematically in Fig. 1(b). As
indicated, the nanoscopic conductor contains magnetic atoms
that give rise to dynamic electron correlations due to the
strongly interacting 3d electrons. The nanoscopic conductor
could be, for example, a molecule, a nanowire, a nanocluster,
or simply an atomic-size constriction in the metal wire.

In order to describe the dynamic correlations that arise
from the 3d shells of the magnetic atoms we adapt the
LDA+DMFT method to the case of nanoscopic conductors.
To this end it is convenient to divide the system into three
parts as shown in the upper right panel of Fig. 1. Two semi-
infinite metallic leads L and R, and the central device region
(D) which contains the nanoscopic conductor and the mag-
netic atoms with the strongly interacting 3d shells, as well as
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a sufficient part of the two metallic leads so that the elec-
tronic structure of the leads has relaxed to that of bulk (i.e.,
infinite) electrodes. The correlated subspace (C) that will be
described on the level of DMFT is thus given by the direct
sum of the 3d subspaces of all magnetic atoms (M) in the
device region.

The effective one-body Hamiltonians of the device region
and leads are obtained from DFT calculations on the level of
LDA. Here we use the supercell approach (see Appendix A)
to obtain the effective Kohn-Sham (KS) Hamiltonians of
each part of the system prior to the dynamical treatment of
the impurity d shell and the transport calculations. The elec-
tronic structure of the device region is calculated with the
CRYSTALO06 ab initio electronic-structure program for periodic
systems?® by defining a one-dimensional periodic system
consisting of the device region as the unit cell.

The device Hamiltonian Hp, is then obtained from the
converged KS Hamiltonian of the unit cell of the periodic
system. In the same way, the unit-cell Hamiltonians H}  and
hoppings Vi between unit cells of the left and right leads
can be extracted from calculations of infinite nanowires with
finite width since the electronic structure in the semi-infinite
leads has relaxed to that of an infinite nanowire.

The strong electron correlations of the 3d shells of the
magnetic atoms are captured by adding a Hubbard-type in-
teraction term to the one-body Hamiltonian within the corre-
lated subspace d of each of the magnetic atoms i

H([l/) = E U(oi: azﬁlﬁzd;ral(rld;rafrzdiﬂzo’zdiﬂl0'] 5 (1)
1,812,
71,03

N | —

where cAZlTM(ﬁiw) creates (annihilates) an electron with spin o

in the 3d orbital & on atom i. Ugiazﬁl p, are the matrix ele-
ments of the effective (i.e., screened) Coulomb interaction of
the 3d electrons which is smaller than the bare Coulomb
interaction due to the screening by the conduction electrons.
Here we take a model interaction taking into account only
the direct Coulomb repulsion U between electrons (i.e.,
U,pap=U) and the Hund’s rule coupling J (i.e., Uyppa=J
for a# B). For 3d transition-metal elements in bulk materials
the repulsion U is typically around 2-3 eV and J is around
0.9 eV.3” However, due to the lower coordination of the at-
oms in the contact region or molecule the screening of the
direct interaction should be somewhat reduced compared to
bulk. Here we take U=5 eV and J=0.9 eV as in our previ-
ous work.?°

The Coulomb interaction within the correlated 3d sub-
spaces of the magnetic atoms has already been taken into
account on a static mean-field level in the effective KS
Hamiltonian of the device. Therefore the KS Hamiltonian
within each 3d subspace has to be corrected by a double-
counting correction term, i.e., Hg) EPg)HgSPS)— E;C) where
Pg) is the projection onto the 3d subspace of atom i.® Here
we use the standard expression®

1
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where N is the occupation of the 3d shell of atom i.
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The central quantity is the Green’s function of the device
region

Gp=[(0+mw)Sp—Hp+Hy —3c-3 -3, (3)

where ¢ is the electronic self-energy that describes the dy-
namic electron correlations of the electrons within the corre-
lated subspace C and H, is the double-counting correction
within the entire correlated subspace C, i.e., Hy. =2, Mch).
Sp is the overlap matrix taking into account the nonorthogo-
nality of basis set.*? u is the chemical potential, 3; and 3z
are the so-called lead self-energies*! which describe the cou-
pling of the device to the semi-infinite leads L and R, respec-
tively. These can be calculated from the effective one-body
Hamiltonians of the leads by iteratively solving the Dyson
equation for the lead self-energies, Eq. (Al).

The central assumption of DMFT is that the intersite cor-
relations, i.e., the correlations between electrons located on
different atoms can be neglected. In that case the electron-
correlation self-energy 3, becomes block diagonal, and each
block corresponds to the self-energy 2() of the correlated 3d
subspace of a magnetic atom i: 2(’ —P ECP(’) The self-
energies 2 and hence the overall self-energy 2 can now
be determmed by mapping onto a generalized Anderson-
impurity problem for each correlated subspace, described by
the following Green’s function:

glw)=[o+p-H) -30(0) -AD()], @)

where we have introduced the so-called hybridization func-
tion Ag) which describes the coupling of the correlated sub-
space with the rest of the system. The hybridization function
is determined by the DMFT self-consistency condition:

g/ (0) =PGp(w)P,). (5)
It follows that the hybridization function is given by

-[g(@)]" -2 ().  (6)

The Egs. (3)-(6) define the molecular DMFT self-
consistency cycle for the calculation of the self-energies 2(’)
One starts with the effective one-body Hamiltonian Hp ob—
tained from the LDA calculation and an initial guess for the
local correlation self-energies Efj) (usually zero). This allows
one to calculate the device Green’s function, Eq. (3), and
consequently the prOJectlon gd Thus one obtains the Hy-
bridization functlons A )(w) which together with the on-site
energy levels Hd and the Coulomb interaction U, J defines
the Anderson-impurity problem which can be solved by an
impurity solver, and one obtains a new self-energy Efj). The
DMEFT self-consistency cycle is illustrated in Fig. 1(a).

Solving the generalized Anderson-impurity problem is a
difficult task, and at present there is no universal impurity
solver that works efficiently and accurately in all parameter
regimes. Here we make use of impurity solvers based on an
expansion in the hybridization strength given by Af})(w)
around the atomic limit. The starting point is an exact diago-
nalization of the (isolated) impurity subspace, i.e., the 3d
shell of the magnetic atom given by the interacting Hamil-

AEP(w) = w+/.L—Hd
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tonian ﬂfj) +7:[5§). The hybridization of the impurity subspace
with the rest of the system [given by the hybridization func-
tion Aff)(w)] is then treated perturbatively.

The so-called noncrossing approximation*> (NCA) is a
self-consistent perturbation expansion to lowest order in the
hybridization strength. NCA only takes into account bubble
diagrams describing hopping processes where an electron or
hole hops into the impurity at some time and then out at a
later time (see Fig. 9 in Appendix B). The OCA (Refs. 43
and 44) improves on the NCA by taking into account second-
order diagrams where two additional electrons (holes) are
accommodated on the impurity at the same time as shown in
Fig. 9. OCA improves considerably many of the shortcom-
ings of NCA.#? It substantially improves the width of the
Kondo peak and hence the Kondo temperature which now
are only slightly underestimated. It also corrects the asym-
metry of the Kondo peak. For very low temperatures (T
<Tg), however, the height of the Kondo peak is still over-
estimated, and the Fermi-liquid behavior at zero temperature
is not recovered.*

Hence, OCA is a reasonable approximation for solving
the generalized impurity problem as long as the temperatures
are not too low (i.e., more than one order of magnitude be-
low Tk). In Appendix B we give a brief introduction to the
NCA and OCA impurity solvers. A detailed description of
the NCA and OCA methods can be found, e.g., in Refs. 17,
31, and 42-45.

The current through a strongly interacting region can be
calculated exactly by the Meir-Wingreen formula.*® But in
order to apply the Meir-Wingreen result one has to solve the
impurity problem out of equilibrium which is a difficult task
that has only been accomplished very recently and only in
the context of model Hamiltonians.*’*® However, Meir and
Wingreen also showed that for low temperatures and small
bias voltages the Meir-Wingreen expression is well approxi-
mated by the much simpler Landauer formula®’

eV
(V)= 2h_eJ doT(w), (7)
0

where T(w) is the Landauer transmission function and where
we have assumed an asymmetric voltage drop V about the
device region. Thus the conductance is simply given by the
Landauer transmission function

4 267
Q(V)=5/(V)=7T(6V)- (®)

The latter can be calculated from the (equilibrium) device
Green’s function
T(w) = THT(0)Gh(0)TR(0)Gp(@)], )

where I'[ ) are the so-called coupling matrices which de-
scribe the coupling to the leads and can be calculated from
the lead self-energies by FL,Rzi(EL/R—EE/R).

III. RESULTS AND DISCUSSION

In the following we demonstrate the above developed mo-
lecular DMFT method for the two idealized Ni nanocontacts
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FIG. 2. (Color online) (a) Ni dimer between the tips of two Cu
nanowires grown in the 001 direction of bulk Cu. (b) Ni nanocon-
tact consisting of ten atoms between two Cu 001 nanowires. Ni
atoms are shown in light gray (light gray) and Cu atoms are shown
in red (dark gray).

with Cu nanowires as electrodes shown in Fig. 2. Ni nano-
contacts have been a subject of intense research in the last
decade as prospective ingredients for nanoscale spintronics
devices.*30>! Here we consider the paramagnetic phase,
i.e., the self-energies and the Green’s functions are spin de-
generate. Breaking of the spin symmetry by an external mag-
netic field or by spin-polarized electrodes is not taken into
account.

A. Ni dimer between Cu nanowires

First, we consider a dimer of Ni atoms between two semi-
infinite Cu nanowire electrodes as shown in Fig. 2(a). The
nanowires are grown in the 001 direction of bulk Cu. The
distance between the two Ni tip atoms is 2.4 A, all other
distances are those of bulk Cu. For the sake of simplicity, we
have not relaxed the atomic positions. Due to the highly
idealized geometry both Ni atoms are equivalent. Hence in
each step of the molecular DMFT self-consistency we only
have to solve the impurity problem once.

In spite of the highly symmetric situation the Ni 3d orbit-
als split into four different symmetry groups. As can be seen
from Fig. 3(a) which shows the hybridization function in the
first step of the self-consistent DMFT procedure [where the
self-energy 3,(w) is zero], the hybridization functions are
quite different for each of the four symmetry groups. This
situation is different from that of the corresponding bulk sys-
tems where the hybridization functions for each correlated
orbital are usually very similar due to the highly isotropic
closed-packed crystal structures. In the geometry considered
here, the doubly degenerate 3d,, and 3d,, orbitals have the
strongest hybridization around the Fermi level with the rest
of the system. Also the 3d;,2_,2 orbital has an appreciable
hybridization. The hybridization of the 3d,, and 3d,2_,2> or-
bitals on the other hand are smaller by at least one order of
magnitude.

Figure 3(b) shows the hybridization function after self-
consistency has been reached in the DMFT calculation. Now
the converged self-energy 3 ,(w) is nonzero in general. We
can see that the DMFT self-consistency has a considerable
effect on the hybridization function for most of the Ni 3d
orbitals. For example, the hybridization of the degenerate
3d,, and 3d,, orbitals around the Fermi level is strongly in-
creased. Moreover a sharp peak appears right at the Fermi
level. Additional features also arise in the hybridization func-
tions of the other 3d orbitals. The additional features in the
3d-hybridization functions of one Ni atom stem from the
corresponding features (induced by the on-site interactions)
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FIG. 3. (Color online) Imaginary part of hybridization functions
for different Ni 3d orbitals in the dimer geometry shown in Fig.
2(a), (a) in the first step and (b) in the last step of the self-consistent
molecular DMFT calculation at low temperature (7=12 K).

in the 3d-spectral density of the other Ni atom.

In Fig. 4 we show the temperature dependence of the
Ni 3d spectrum calculated with molecular DMFT and com-
pare them to the spectrum calculated with LSDA. The
DMFT spectra are somewhat smother than the LSDA spectra
due to the finite lifetime broadening of the single-particle
states by the electron-electron interactions. Most importantly,
the molecular DMFT spectrum shows a strong temperature
dependence which cannot be captured by a static mean-field

6

LSDA-T
5 | LSDA-L
1450 K ——

Ag(w) (1/6V)
w

o (eV)

FIG. 4. (Color online) Ni 3d-spectral function for the Ni dimer
between Cu nanowires shown in Fig. 2(a) calculated with molecular
DMFT at two different temperatures on one hand and calculated
with LSDA on the other hand.
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FIG. 5. (Color online) (a) Spectral function of Ni 3d,, and 3d,,
orbitals near the Fermi level for different temperatures. (b) Corre-
lated transmission function calculated with molecular DMFT at dif-
ferent temperatures compared to LSDA transmission function near
the Fermi level.

treatment like LSDA. For example, at low temperatures a
small peak forms right at the Fermi level in the molecular
DMEFT spectrum. This is a quasiparticle peak that originates
from the two degenerate 3d,, and 3d,, orbitals as can be seen
from Fig. 5(a). Strictly speaking, it is not a Kondo peak since
the occupation of the two orbitals is around 3.65 and hence
these orbitals are in the so-called mixed-valence regime
where in addition to the spin fluctuations also charge fluctua-
tions take place (see, e.g., the book by Hewson'” for a de-
tailed discussion). However, we would like to emphasize
here that the corresponding magnetic moment is nevertheless
screened by the conduction electrons.

We can find the weight Z and the linewidth I' of the qua-
siparticle by fitting the peak to a Lorentzian. Figure 5(a)
suggests that the 3d,,, 3d,, spectral functions near the Fermi
level can be fitted to a weighted Lorentzian plus a linear
function

A (o) b z T2 (10)
=aw+b+——F——.

@)= aw mw?+1%/4

We find a very tiny quasiparticle weight Z of less than 0.1%

and a width I" corresponding to a temperature of about 130

K. This is the critical temperature below which the quasipar-

ticle can be observed (and which in the case of Kondo effect

is called Kondo temperature). Note that the width of the
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TABLE 1. Orbital occupations n, (at low temperature) and ef-
fective energy levels €;= €;+Re A4(0) of the 3d orbitals of the Ni
tip atoms in the case of the Ni dimer geometry and the Ni nanocon-
tact consisting of ten Ni atoms. €, denotes the KS energy levels
before double-counting correction.

Ni dimer Ni;( nanocontact
€ €
ng (eV) ng (CV)
3z22-r? 1.8801 -5.2188 1.9336 —5.4886
Xz, yz2 3.6468 -5.1296 3.7395 -5.3954
x2—y? 1.9174 -4.8121 1.0096 —-5.1749
xy 0.9943 —4.7410 1.9578 -5.2706

quasiparticle is somewhat enhanced by the DMFT self-
consistency compared to the case without DMFT (not
shown).

The quasiparticle peak leads to a corresponding Fano fea-
ture in the transmission function as can be seen in Fig. 5(b)
which shows the transmission function for small energies
around the Fermi level. Hence our calculations show that the
low-bias conductance of the Ni dimer between Cu electrodes
features a Fano line shape due to a quasiparticle peak in the
Ni 3d spectral function at low temperatures.

Table I lists the individual occupations of all Ni 3d orbit-
als and the corresponding effective energy levels that are
obtained from the KS energy levels plus the real part of the
hybridization function at zero frequency. We can see that all
orbitals apart from the d,, orbital have mixed valences and
are almost full. The d,, orbital on the other hand is basically
half filled. Hence this orbital would be a candidate for a true
Kondo effect, i.e., screening of the magnetic moment by spin
fluctuations only. However, the hybridization of this orbital
is very low, as can be seen from Fig. 3. Hence the Kondo
temperature for this orbital is very low so that the orbital
does not enter the Kondo regime at the temperatures consid-
ered here but is in the local moment regime.

B. Ni nanocontact between Cu electrodes

Now we turn to the slightly more complicated case of the
Ni nanocontact consisting of ten atoms between two Cu
nanowires as shown in Fig. 2(b). As before the nanowires are
grown in the 001 direction of bulk Cu. The distance between
the two Ni tip atoms is 2.4 A while all other distances are
those of bulk Cu. As before the two Ni tip atoms are both
equivalent. On the other hand, the eight outer atoms of the Ni
nanocontact are not equivalent with the tip atoms but are
equivalent among themselves. Hence we have to solve two
different impurity problems in each step of the molecular
DMEFT self-consistency cycle.

In Fig. 6, we show the 3d spectral function of (a) the base
atoms and (b) the tip atoms of the Ni nanocontact calculated
on one hand with molecular DMFT at different temperatures
and on the other hand with DFT on the level of the LDA. We
see that in both cases the molecular DMFT spectral densities
are quite different from the LSDA ones. Both LSDA spectra
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FIG. 6. (Color online) (a) 3d-spectral function of a Ni atom at
the base of one of the pyramids of the Ni nanocontact between Cu
nanowires shown in Fig. 2(b) calculated on one hand with molecu-
lar DMFT at two different temperatures and with LSDA on the
other hand. (b) Same as (a) but for the tip atoms of the Ni
nanocontact.

feature a strong peak above the Fermi level for the minority
electrons that is absent in the molecular DMFT spectra.
Moreover, near the Fermi level, the molecular DMFT spec-
trum of the tip atoms is strongly temperature dependent due
to the formation of a quasiparticle peak at the Fermi level in
the degenerate 3d,, and 3d,, levels for low temperatures.
Figure 7(a) shows a closeup of the formation of the quasi-
particle peak in the spectral density of the 3d,, and 3d,,
levels. Fitting to a Lorentzian plus linear function, Eq. (10),
we now find a slightly increased quasiparticle weight Z of
0.2% and also a somewhat increased width I" corresponding
to a critical temperature of 220 K as compared to the case of
the Ni dimer. The increased width I' and quasiparticle weight
Z is due to the increased imaginary part of the hybridization
function (not shown) of the tip atoms near the Fermi level
which stems from the 3d spectral density of the base atoms
of the Ni pyramid. In the dimer case, the base atoms of the
pyramids are Cu atoms where the 3d spectral density near
the Fermi level is negligible.

The occupation of the degenerate 3d,, and 3d,, orbitals is
3.73. Hence these orbitals are in the mixed-valence regime
rather than the Kondo regime as in the case of the Ni dimer.
Therefore the quasiparticle peak is strictly speaking not a
Kondo peak. However, as was said before, the magnetic mo-
ment of these orbitals is nevertheless screened in the mixed-
valence regime by the spin and charge fluctuations.
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FIG. 7. (Color online) (a) Spectral function of 3d,, and 3d,,
orbitals of Ni tip atoms near the Fermi level for different tempera-
tures. (b) Correlated transmission function at different temperatures
compared to LSDA transmission function for energies around the
Fermi level.

Figure 7(b) shows the transmission function near the
Fermi level calculated on one hand with the molecular
DMFT method at different temperatures and on the other and
with DFT on the level of the LDA. As in the case of the
dimer, the formation of the quasiparticle peak in the 3d,, and
3d,, orbitals at low temperatures leads to a temperature-
dependent Fano line shape in the molecular DMFT transmis-
sion function. The LSDA transmission function on the other
hand does not show such a behavior. On the contrary, it is
rather flat and featureless at this energy scale. Also note that
the LSDA transmission is considerably higher than the cor-
related transmission calculated with molecular DMFT. This
is due to the correlations shifting a considerable part of the
spectral weight of the 3d orbitals away from the Fermi level.
Consequently, the overall contribution of the 3d orbitals to
the transmission is higher in the case of the LSDA calcula-
tion than in the molecular DMFT calculation.

The transmission as calculated with the molecular DMFT
approach, although lower than the LSDA one, is still com-
patible with the broad peak roughly between 1 and 1.7
X Gy in the experimentally measured conductance histo-
grams of Ni nanocontacts.’

In Table I the orbital occupations and effective energy
levels of individual Ni 3d orbitals of a tip atom of the Ni
nanocontact are shown. The most striking difference with the
Ni dimer (shown in the same table) is that now the do_y2
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orbital is the highest energy orbital with half filling instead
of the d,, orbital. This is a consequence of the different
environment of the tip atom in the ten-atom nanocontact
geometry compared to the dimer geometry. The presence of
the 3d orbitals of the Ni atoms at the base of each pyramid
near the Fermi levels change the hybridization functions of
the tip atoms accordingly. Note that here the DMFT self-
consistency is essential since without the self-consistency the
hybridization functions would be very similar to the dimer
case.

IV. SUMMARY AND CONCLUSIONS

We have developed a method for calculating the elec-
tronic structure and transport properties of nanoscopic con-
ductors that explicitly takes into account local dynamical
correlations originating from strong electron-electron inter-
actions. Our method extends the established DFT-based ab
initio transport methodology for nanoscopic conductors to
include dynamic electron correlations originating from the
strongly interacting 3d electrons of the transition-metal at-
oms. This is achieved by combining the DFT electronic-
structure calculations of the nanoscopic conductor with a
DMEFT description of the strongly interacting 3d electrons in
the device region. We thus obtain the correlated Green’s
function of the nanoscopic conductor which allows to calcu-
late the electronic structure and the corresponding conduc-
tance in the low-bias voltage regime.

We have demonstrated the method for two model systems,
namely, Ni nanocontacts consisting of several atoms and
connected to Cu leads. We find that the dynamic correlations
of the strongly interacting Ni3d electrons give rise to
strongly temperature-dependent spectra due to the formation
of a quasiparticle peak at low temperatures. The quasiparticle
peak gives rise to a temperature-dependent Fano-type line
shape in the low-bias conductance characteristics similar to
those measured in recent experiments with ferromagnetic
nanocontacts.!! Moreover, the critical temperatures of 120
and 220 K for the formation of the quasiparticle peak is in
quite good agreement with the broad distribution of Kondo
temperatures around the average temperature of 250 K ex-
tracted from the Fano line shapes in the low-bias conduc-
tance measurements of Ni nanocontacts in that same experi-
ment. Note that a quasiparticle peak at the Fermi level can, in
principle, also be obtained in the GW approximation.>> How-
ever, in order to capture the quasiatomic features character-
istic of the strong-correlation regime such as Hubbard bands
or satellites together with the concomitant renormalization of
the quasiparticle, a nonperturbative treatment of the local
part of the Coulomb interaction such as the molecular DMFT
method presented here is necessary.

The quasiparticle peak obtained here, is strictly speaking,
not a Kondo peak since the system is in the so-called mixed-
valence regime where charge fluctuations take place in addi-
tion to the spin fluctuations that lead to the Kondo effect.
This hints at the possibility that the origin of the Fano line
shapes in the low-bias conductance of Ni nanocontacts mea-
sured experimentally need not always be the Kondo effect.
However, we would like to stress that also in the mixed-
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valence regime the magnetic moment of the corresponding
orbitals would be screened. But to draw further conclusions
in that matter, more realistic calculations are necessary tak-
ing into account the ferromagnetic leads and sampling over
different contact geometries.

We have illustrated the molecular DMFT method for the
case of simple nanocontacts containing several transition-
metal atoms but the molecular DMFT approach is very gen-
eral and can be applied to many systems of great theoretical
and practical interest. For example, it can be used to treat
large molecules in which one can isolate small clusters of
correlated elements as, for example, in the fuel-cell materials
of Tard et al.>

The molecular DMFT method allows to explicitly incor-
porate strong-dynamical correlations within the established
DFT-based transport methodology for nanoscopic conduc-
tors. Our calculations show that dynamical correlations origi-
nating from the strongly interacting shells of magnetic atoms
can alter the electronic structure and transport properties of
nanoscopic conductors significantly.
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APPENDIX A: DETAILS OF THE SUPERCELL
APPROACH

In order to generate the effective one-body Hamiltonians
of the device and leads the supercell approach is used. The
electronic structure of the device region is calculated with
the CRYSTALO6 ab initio®® electronic-structure program for
periodic systems by defining a one-dimensional periodic sys-
tem consisting of the device region as the unit cell, as shown
in Fig. 8(a). It is crucial that the device part D contains a
sufficient part of the nanowire electrodes so that the two
leads L and R are far enough away from the scattering re-
gion, and the electronic structure in the leads has relaxed to
that of a bulk (i.e., infinite) nanowire. In that case the elec-
tronic structure of the periodic system build from a periodic
repetition of the device region is the same as the electronic
structure of the device between two semi-infinite nanowires
as can be seen from Fig. 8. Thus the device Hamiltonian Hp
can be obtained from the converged KS Hamiltonian of the
unit cell of the periodic system.

In the same way the unit-cell Hamiltonians Hg/R and hop-
pings Vi between unit cells of the left and right leads are
extracted from periodic calculations of infinite nanowires of
finite width [see Figs. 8(b) and 8(c)]. Again it is crucial that
the device region contains enough bulk electrode material so
that the electronic structure in the electrodes is that of bulk
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FIG. 8. (Color online) Illustration of the supercell approach to
calculate the electronic structure of the device and of the leads. (a)
One-dimensional periodic system to calculate the electronic struc-
ture of the device region. [(b) and (c)] Infinite nanowires to calcu-
late the electronic structure of the left (L) and right (R) semi-infinite
leads. (d) Sketch of the setup of the physical system. The device
region (D) is suspended between two semi-infinite leads L and R.

nanowires. The lead self-energies %, 3 which describe the
coupling of the device region D to the semi-infinite nano-
wires L and R in the situation depicted in Fig. 8(d) can now
be calculated by the following Dyson equation:

3 r(0) = (Vg - oS ) X [0S] g —H &
-3 r(@)]! (VL/R - wSL/R)’

where Sg,R and S;r are the overlap matrices taking into
account the nonorthogonality of the basis set within the unit
cell and between unit cells, respectively.

By this procedure we have connected the device region D
with two semi-infinite nanowires that have the electronic
structure of bulk, i.e., infinite nanowires. The supercell ap-
proach and the so-called partitioning technique used here to
obtain the Green’s function of a part of a system are dis-
cussed in more detail in the literature (see, e.g., Refs. 1, 2,
33, and 54).

(A1)

APPENDIX B: THE NCA AND OCA IMPURITY SOLVERS

The general multiorbital Anderson-impurity model can be
written in the following form:

H Z € de +_ 2 Uaﬁyad dﬁdydé"'E (Vkvozck Anz

aﬁyﬁ kva

+ VZVdazékV) + E EkVéZV6kV’ (B 1)

kv
where in order to keep the notation simple we have com-
bined the spin and orbital degrees of freedom into one index
for each impurity level a and each band v.
The NCA and the OCA both solve the Anderson-impurity
model by expansion in the hybridization strength around the
atomic limit. The starting point is an exact diagonalization of

FIG. 9. Diagrams for pseudoparticle self-energies in the NCA
(first row) and OCA (second and following rows) for some
pseudoparticle m.

the impurity subspace (for example, the 3d shell of a mag-
netic atom) including the Hubbard-type interaction term

Hy= Z €adid, + = E Uaﬁyadfdﬁdvdﬁ

a,By&
(B2)

where |m) are the many-body eigenstates of 7:([1 and E,, the
respective eigenenergies.

One now introduces auxiliary fields a,, [called
pseudoparticles (PPs)] such that each impurity state is repre-
sented by a corresponding pseudoparticle

al [PPV) = |m), (B3)

where |PPV) is the pseudoparticle vacuum. The complete-
ness of the impurity eigenstates imposes the following con-
straint:

0= E“A

(B4)

The physical electron operators 32 can now be expressed by
the PP operators:

dly= 2 (F*),di

n,m

(B5)

where (F®7),,,=(n|d}/m) are the matrix elements of the
impurity-electron creation operator. For later convenience we
also define the corresponding matrix elements of the

impurity-electron destruction operator as: (F?),,, = (n|d|m).
The anticommutation rules for the physical electron opera-
tors then require that the PP d,, is a boson (fermion) if the
corresponding state |m) contains an even (odd) number of
electrons.
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In the PP representation we can now rewrite the Hamil-
tonian of the generalized Anderson-impurity model as fol-
lows:

H=2 Epdldn+ 2 €10+ M0 = 1)
m kv

+ 2 Vil il (F),md, + Hee.], (B6)

mn

kva

where we have included the constraint Q=1 into the Hamil-
tonian. The corresponding Lagrange multiplier N can be in-
terpreted as a (negative) chemical potential for the PPs.

In the PP picture, the hybridization with the bath electrons
given by the last term in Eq. (B6) becomes now the interac-
tion for the PPs. Because of the fermionic and bosonic com-
mutation rules for the PPs, one can now develop a diagram-
matic perturbation expansion in the PP interaction. The PP
propagators can be written as

PHYSICAL REVIEW B 82, 195115 (2010)

Gm(w) = [w_)\_Em_Em(w)]_lv (B7)

where 2, is the PP self-energy describing the dynamic inter-
action of the PP m with the other PPs.

The NCA consists in taking into account the diagrams
shown in the first row of Fig. 9 for some PP m. The NCA
diagrams describe processes where a single electron (hole)
jumps from the bath to the impurity and back thereby tem-
porarily creating a PP with N+1 (N-1) electrons. The NCA
equations correspond to a self-consistent perturbation expan-
sion to lowest order in the hybridization function A (w)
= Ek,,,V;V,aVk,,,a. Since the fermionic self-energies depend on
the dressed bosonic propagators, and vice versa, the NCA
equations have to be solved self-consistently. Once the NCA
equations are solved the physical quantities can be calculated
from the PP self-energies.

The OCA takes into account second-order diagrams
where two bath electron lines cross as shown in the last four
rows of Fig. 9. The self-energies for the PPs again depend on
the full propagators of other PPs and hence the OCA equa-
tions also have to be solved self-consistently. Further details
of the NCA and OCA impurity solver can be found, e.g., in
Refs. 17, 31, and 42-45].
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