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We study the magnetic excitation spectra in the paramagnetic state of BaFe2As2 from the ab initio

perspective. Both the one-particle and the magnetic two-particle excitation spectra are determined within

the combination of the density functional theory and the dynamical mean-field theory method. This

method reproduces all the experimentally observed features in inelastic neutron scattering and relates

them to both the one-particle excitations and the collective modes. The magnetic excitation dispersion is

well accounted for by our theoretical calculation in the paramagnetic state without any broken symmetry;

hence, nematic order is not needed to explain the inelastic neutron scattering experimental data.
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Neutron scattering experiments provide strong con-
straints on the theory of iron pnictides. Both the localized
picture and the itinerant picture of the magnetic response
have had some successes in accounting for or even predict-
ing aspects of the experiments. Calculations based on a spin
model with frustrated exchange constants [1,2] or with
biquadratic interactions [3] described well the neutron scat-
tering experiments [4,5]. The itinerant magnetic model,
based on a random phase approximation form of the mag-
netic response [6–9], produces equally good descriptions of
the experimental data. Density functional theory (DFT)
calculations predicted the stripe nature of the ordering
pattern [10] and the anisotropic values of the exchange
constants in the magnetic phase [11]. The tight binding
calculations based on DFT bands also predicted the exis-
tence of a resonancemode in the superconducting state [12].

In spite of these successes, both itinerant and localized
models require significant extensions to fully describe the
experimental results. DFT fails to predict the observed
ordered moment [11]. Furthermore, adjusting parameters
such as the arsenic height to reproduce the ordered moment
leads to a peak in the density of states at the Fermi level [6]
instead of the pseudogap, which is observed experimen-
tally. The localized picture cannot describe the magnetic
order in the FeTe material without introducing additional
longer range exchange constants. Furthermore, fits of the
inelastic neutron scattering (INS) data require the use of
anisotropic exchange constants well above the magnetic
ordering temperature [13]. However, no clear phase tran-
sition to a nematic phase in this range has been detected.

In this Letter, we show that the combination of density
functional theory and dynamical mean-field theory
(DFTþ DMFT) provides a natural way to improve both
the localized and the itinerant picture and connects the
neutron response to structural material specific information
and to the results of other spectroscopies. The DFTþ
DMFT method has been previously used to compute the
local dynamical [14,15] and the uniform static magnetic

susceptibility [16] in Fe pnictides. The dynamic suscepti-
bility for all momenta and frequency, which requires cal-
culation of the two-particle vertex, is done here for the
first time.
We compute the one-particle Green’s function by using

the charge self-consistent full potential DFTþ DMFT
method, as implemented in Ref. [17], based on the
WIEN2K code [18]. We used continuous-time quantum

Monte Carlo calculations [19,20] as the quantum impurity
solver and the Coulomb interaction matrix as determined in
Ref. [21]. The dynamical magnetic susceptibility�ðq; !Þ is
computed from the ab initio perspective by extracting the
two-particle vertex functions of DFTþ DMFT solution
�irr
loc [22]. The polarization bubble �0 is computed from

the fully interacting one-particle Green’s function. The
full susceptibility is computed from�0 and the two-particle
irreducible vertex function �irr

loc, which is assumed to be

local in the same basis in which the DMFT self-energy is
local, implemented here by the projector to the muffin-tin
sphere [17]. In order to extract �irr

loc, we employ the Bethe-

Salpeter equation (see Fig. 1), which relates the local
two-particle Green’s function (�loc), sampled by
continuous-time quantum Monte Carlo calculations, with
both the local polarization function (�0

loc) and �
irr
loc:

�irr
loc�1�1 ;�2�2�3�3 ;�4�4

ði�; i�0Þi! ¼ 1

T
½ð�0

locÞ�1
i! � ��1

loc �: (1)

FIG. 1 (color online). The Feynman diagrams for the Bethe-
Salpeter equation. It relates the two-particle Green’s function (�)
with the polarization (�0) and the local irreducible vertex
function (�irr

loc). The nonlocal two-particle Green’s function is

obtained by replacing the local propagator by the nonlocal
propagator.
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�irr
loc depends on three Matsubara frequencies (i�, i�0, and

i!), and both the spin (�1–4) and the orbital (�1–4) indices,
which run over 3d states on the iron atom. T is the
temperature.

Once the irreducible vertex �irr
loc is obtained, the

momentum-dependent two-particle Green’s function is
constructed again by using the Bethe-Salpeter equation
(Fig. 1) by replacing the local polarization function �0

loc

by the nonlocal one �0
q;i!:

��1�1 ;�2�2
�3�3 ;�4�4

ði�; i�0Þq;i! ¼ ½ð�0Þ�1
q;i! � T�irr

loc��1: (2)

Finally, the dynamic magnetic susceptibility �ðq; i!Þ is
obtained by closing the two-particle Green’s function with
the magnetic moment � ¼ �BðLþ 2SÞ vertex and sum-
ming over frequencies (i� and i�0), orbitals (�1–4), and
spins (�1–4) on the four external legs:

�ðq; i!Þ ¼ T
X

i�;i�0

X

�1�2
�3�4

X

�1�2
�3�4

�z
�1�1
�3�3

�z
�2�2
�4�4

��1�1 ;�2�2
�3�3 ;�4�4

ði�; i�0Þq;i!:

(3)

The resulting dynamical magnetic susceptibility is ob-
tained in Matsubara frequency (i!) space, and it needs to
be analytically continued to real frequencies [�ðq; !Þ]. For
the low frequency region, on which we concentrate here,
the vertex �irr

loc is analytically continued by a quasiparticle-

like approximation. We replace the frequency-dependent
vertex with a constant, i.e., �irr

loc�1�1 ;�2�2�3�3 ;�4�4

ði�; i�0Þi! �
�U�1�1 ;�2�2
�3�3 ;�4�4

, and require �ðq; i! ¼ 0Þ ¼ �ðq;! ¼ 0Þ. This
vertex �U, however, retains important spin and orbital
dependence.

Figure 2(a) shows the calculated constant energy plot of
the dynamical structure factor Sðq; !Þ in the paramagnetic
state of BaFe2As2. Our theoretical results are calculated in
the unfolded Brillouin zone of one Fe atom per unit cell,
because magnetic excitations are concentrated primarily
on Fe atoms; therefore, folding, which occurs due to the
two inequivalent arsenic atoms in the unit cell, is not
noticeable in the magnetic response [7]. For comparison,
we also reproduce in Fig. 2(b) the INS experimental data
from Ref. [13]. At low energy (around ! ¼ 50 meV), the
theoretical Sðq; !Þ is strongly peaked at the ordering wave
vector ðH;K; LÞ ¼ ð1; 0; 1Þ, and it forms a clear elliptical
shape elongated in the K direction. The elongation of the
ellipse increases with energy (! ¼ 75 meV), and around
! ¼ 125 meV the ellipse splits into two peaks, one peak
centered at ð1; 0:4; 1Þ and the other at ð1;�0:4; 1Þ. At even
higher energy (! � 150 meV), the magnetic spectra
broaden, and peaks from four equivalent wave vectors
merge into a circular shape centered at wave vector
ð1; 1; 1Þ. At even higher energy (230 meV, not shown in
the figure), the spectra broaden further, and the peak be-
comes centered at the point ð1; 1; 1Þ. These trends are all in
good quantitative agreement with INS data from Fig. 2(b).

Figure 3 displays a contour plot of the theoretical
Sðq; !Þ as a function of frequency ! and momentum q.
At low energies (!< 80 meV), Sðq; !Þ is mostly concen-
trated in the region near the ordering vector ð1; 0; 1Þ.
Consistent with the elongation of the ellipse along the K
direction in Fig. 2, the low energy (!< 80 meV) bright
spot in Fig. 3 is extended further towards the ð1; 1; 1Þ
direction but quite abruptly decreases in the ð0; 0; 1Þ direc-
tion. The magnetic spectra in the two directions ð1; 0; 1Þ !
ð0; 0; 1Þ and ð1; 0; 1Þ ! ð1; 1; 1Þ are clearly different even at
higher energy !> 100 meV. The peak position is moving
to higher energy along both paths, but it fades away very

FIG. 2 (color online). (a) The constant energy plot of the

theoretical dynamical structure factor Sðq; !Þ (¼ �00ðq;!Þ
1�e�@!=kBT ) at

different energies (50, 75, 125, and 150 meV) in the paramag-
netic state (T ¼ 386 K) of BaFe2As2 as a function of momentum
q ¼ ðH;K; LÞ. L is here fixed at 1. (b) The corresponding
inelastic neutron scattering data from Ref. [13].

FIG. 3 (color online). Sðq; !Þ along the special path in the
Brillouin zone marked by a red arrow in the inset on the right.
The inset shows the body-centered tetragonal (black line) and the
unfolded (blue line) Brillouin zone. Black dots with error bars
correspond to INS data from Ref. [13]. The white dashed line
shows the isotropic Heisenberg spin wave dispersion.
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quickly along the first path, such that the signal practically
disappears at ð0:5; 0; 1Þ. Along the second path ð1; 0; 1Þ !
ð1; 1; 1Þ, there remains a well-defined excitation peak for
which the energy is increasing and at ð1; 1; 1Þ reaches the
maximum value of � 230 meV. Continuing the path from
ð1; 1; 1Þ towards ð0; 0; 1Þ, the peak energy decreases again,
and it fades away around ð0:5; 0:5; 1Þ. The black dots dis-
play INS data with error bars from Ref. [13]. Notice a very
good agreement between theory and experiment.

The white dashed line in Fig. 3 represents the spin wave
dispersion obtained for the isotropic Heisenberg model
using nearest neighbor J1 and next nearest neighbor J2
exchange constants and performing the best fit to INS data.
This fit was performed in Ref. [13]. The magnetic excita-
tion spectra of an isotropic Heisenberg model show a local
minimum at the wave vector q ¼ ð1; 1; 1Þ, which is incon-
sistent with our theory and with the experiment. To better
fit the experimental data with a Heisenberg-like model,
very anisotropic exchange constants need to be assumed
[13], which raised speculations about the possible exis-
tence of a nematic phase well above the structural transi-
tion of BaFe2As2. Since the DFTþ DMFT results can
account for all the features of the measured magnetic
spectra without invoking any rotationally symmetry break-
ing, the presence of nematicity in the paramagnetic te-
tragonal state at high temperature is unlikely, as also
pointed out by Ref. [7].

In Fig. 4(a), we show constant frequency cuts in the K
direction [from ð1;�1; 1Þ through ð1; 0; 0Þ to ð1; 1; 1Þ] of
Sðq; !Þ displayed in Fig. 3. For comparison, we also show
the corresponding INS measurements from Ref. [13] as red
circles in Figs. 4(b) and 4(c). At! ¼ 20 meV, the spectrum

has a sharp peak centered at the ordering vector ð1; 0; 1Þ. At
! ¼ 50 meV, the spectrum still displays a peak at ð1; 0; 1Þ,
but the intensity is significantly reduced. With increasing
frequency !, the peak position in Sðq; !Þ moves in the
direction of ð1; 1; 1Þ and at 128 meV peaks around
ð1; 0:4; 1Þ. The shift of the peak is accompanied with sub-
stantial reduction of intensity at ordering wave vector
ð1; 0; 1Þ. At even higher energy of 250 meV, only a very
weak peak remains, and it is centered at the wave vector
ð1; 1; 1Þ. The position of peaks as well as their frequency
dependence is in very good agreement with INS experi-
ments of Ref. [13] displayed in Figs. 4(b) and 4(c).
Figure 5(a) resolves the dynamical magnetic suscepti-

bility � of Eq. (3) in the orbital space �� ¼
T
P

i�;i�0
P

�

P
�1�2
�3�4

�z
�1�3

�z
�2�4

���1 ;��2
��3 ;��4

ði�; i�0Þ such that

� ¼ P
���. At the magnetic ordering vector q ¼

ð1; 0; 1Þ, �00
� increases sharply with frequency near ! ¼ 0

for all orbitals and is strongly suppressed above 100 meV,
reaching the maximum around 20 meV. At this wave
vector, the dominant contributions at low energy come
from the dxy and the dyz orbitals. The magnetic suscepti-

bility at q ¼ ð0; 1; 1Þ in Fig. 5(a) shows the same trend as
orbitally resolved spectra at q ¼ ð1; 0; 1Þ except that dxz
and dyz switch their roles due to the C4 symmetry of the Fe

square lattice.
These dominant orbital contributions to � are also rea-

sonably captured in the polarization bubble �0 (not shown
here); hence, these excitations could be understood in terms
of the Fermi surface nesting. The orbital resolved Fermi
surface is displayed in Fig. 5(b) at both the� plane and theZ
plane. Most of the weight in �0 comes from the diagonal
terms, i.e., �0

�;�; hence, the Fermi surfaces with the same

color in Fig. 5(b) but separated by the wave vector ð1; 0; 1Þ
give a dominant contribution. The intraorbital dyz low en-

ergy spectra come mostly from the transitions between the
green parts of the hole pocket at � and the green parts of the
electron pocket at A, marked with green squares (h) in
Fig. 5(b). Since the electron pocket at A is elongated in the
H direction, the nesting condition occurs mostly in the
perpendicular K direction; hence, the elliptical excitations
at low energy in Fig. 2 are elongated in theK but not in theH
direction. The intraorbital dxy transitions are pronounced

between the electron pocket atM0 and the hole pocket at R,
as well as between the electron pocket at A0 and the hole
pocket atX (markedwith red�). This large spin response at
ð1; 0; 1Þ gives rise to the low energy peak in Fig. 3.
We note that the particle-hole response, encoded in

polarization bubble �0, is especially large when nesting
occurs between an electron pocket and a hole pocket,
because the nesting condition extends to the finite fre-
quency, and is not cut off by the Fermi functions.
The low energy magnetic excitations at wave vectors

q ¼ ð0; 0; 1Þ and q ¼ ð1; 1; 1Þ can come only from
electron-electron or hole-hole transitions; hence, both

FIG. 4 (color online). (a) The wave vector K dependence (H ¼
1, L ¼ 1) of Sðq; !Þ at several frequencies. (b) The correspond-
ing INS data at ! ¼ 19 and (c) 128 meV reproduced from
Ref. [13]. The red circles correspond to the paramagnetic state
at T ¼ 150 K and the blue diamonds to the magnetic state
at T ¼ 7 K.
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responses are quite small, as seen in Fig. 5(a). While the
magnetic response at q ¼ ð0; 0; 1Þ is small but finite, the
spin response at q ¼ ð1; 1; 1Þ is almost gapped. This is
because the hole-hole transitions from � to R or electron-
electron transitions from M to A0 do not involve any intra-
orbital transitions and, hence, are even smaller than
transitions at the wave vector ð0; 0; 1Þ.
At finite energy transfer, the spin excitations come from

electronic states away from the Fermi energy and cannot be
easily identified in the Fermi surface plot. Hence, it is more
intriguing to find the dominant contribution to the peak at
! � 230 meV and q ¼ ð1; 1; 1Þ. This peak gives rise to the
230 meVexcitations at ð1; 1; 1Þ in Fig. 3. A large contribu-
tion to this finite frequency excitation comes from a region
near the two electron pockets at M and A0 marked with a
black dashed line in Fig. 5(b). We display in Fig. 5(c) the
one-electron spectral function across these dashed lines in
the Brillouin zone to show an important particle-hole tran-
sition from the electrons above the Fermi level at the M
point and the flat band at �200 meV around the A0 point,
both of dxy character.We note that, due to large off-diagonal

terms in the two-particle vertex �, all orbital contributions
to � develop a peak at the same energy, although only the
dxy orbital displays a pronounced peak in �0.

Figure 5(d) displays the one-electron spectral function in
a path through the Brillouin zone, corresponding to one Fe
atom per unit cell [23]. Within DFTþ DMFT the quasi-
particle bands are renormalized by a factor of 2–3 com-
pared to the corresponding DFT bands (white dashed
lines). The green arrow marks the dxy band, which contrib-

utes to the peak in Sðq; !Þ near 230 meVand q ¼ ð1; 1; 1Þ.
In the DFT calculation, this dxy intraorbital transition is

also present but occurs at a much higher energy of the order
of 400–600 meV, marked by blue arrows. The overestima-
tion of the peak energy at q ¼ ð1; 1; 1Þ was reported in the
local spin density approximation calculation of Ref. [6].
In this Letter, we have extended the DFTþ DMFT

methodology to compute the two particle responses in a
realistic multiorbital DFTþ DMFT setting. With the same
parameters which were used to successfully describe the
optical spectra and the magnetic moments of this material
[24], we obtained a coherent description of the experimen-
tal neutron scattering results. Our theory ties the magnetic
response to the fermiology of the model and quantifies the
departure from both purely itinerant and localized pictures.
This research was supported by the National Science

Foundation through Grants No. TG-DMR100048,
No. NSF-DMR 0746395 (H. P. and K.H.), and No. NSF-
DMR 0906943 (G.K.).
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