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The stationary functional of the density functional plus embedded dynamical mean field theory
formalism to perform free energy calculations and structural relaxations is implemented for the first time.
Here, the first order error in the density leads to a much smaller, second order error in the free energy. The
method is applied to several well-known correlated materials: metallic SrVO3, Mott insulating FeO, and
elemental cerium, to show that it predicts the lattice constants with good accuracy. In cerium, we show that
our method predicts the isostructural transition between the α and γ phases, and resolve the long-standing
controversy in the driving mechanism of this transition.
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Prediction of the crystal structures of solids by large
scale quantum mechanical simulations is one of the
fundamental problems of condensed matter physics, and
occupies a central place in materials design. The workhorse
of the field is the density functional theory (DFT) [1] at the
level of local density approximation (LDA) or generalized
gradient approximations (GGAs), which predict lattice
constants of weakly correlated materials typically within
∼1% relative error [2].
These errors of DFT in LDA or GGA implementations

are an order of magnitude larger in the so-called correlated
materials: For example, the lattice constant of δ-Pu is
underestimated by 11% [3] or nonmagnetic FeO by 7% [4].
While GGAs and hybrid functionals can sometimes
improve upon conventional LDA, these functionals many
times degrade the agreement between predicted and exper-
imentally determined bulk moduli and lattice constants, in
particular in materials containing heavy elements [2].
To account for the correlation effects, more sophisticated

many body methods have been developed. Among them,
one of the most successful algorithms is the dynamical
mean-field theory (DMFT) [13]. It replaces the problem of
describing correlation effects in a periodic lattice by a
strongly interacting impurity coupled to a self-consistent
bath [14]. To become material specific, DMFT was soon
developed into an electronic structure tool (DFTþ DMFT)
[15,16], which achieved great success in numerous corre-
lated materials (for a review see Ref. [17]). The DFTþ
DMFT method has mainly been used for the calculation
of spectroscopic quantities, and only a few dozen [18–38]
of studies managed to compute energetics of correlated
solids, and only a handful of them used exact solvers and
charge self-consistency [26,27,32,33,36,37]. This is not
only because of the very high computational cost, but also
because previous implementations of DFTþ DMFT were
not stationary, and hence it was hard to achieve the precision
of free energies needed for structure optimization and the
study of phase transitions in solids.

Herewe implemented theDFTþ DMFT functional in the
real space embedded DMFT approach [39], which delivers
stationary free energies at finite temperatures. This statio-
narity is crucial for practical implementation and precision
of computed energies, since the first order error in the
density ρ (or the Green’s function) leads only to the much
smaller second order error in the free energy, since the first
order variation vanishes, i.e., δF=δρ ¼ 0. This property is
also crucial in calculating the forces, as stationarity of the
functional ensures that onlyHellmann-Feynman forces need
to be computed for structural relaxation [40].
The DFTþ DMFT total energy is given by [17]

E ¼ TrðH0GÞ þ
1

2
TrðΣGÞ þ EH½ρ� þ Exc½ρ�

− ΦDC½nloc� þ Enuc-nuc ð1Þ

where H0 ¼ −∇2 þ δðr − r0ÞVextðrÞ, G is the electron
Green’s function, EH½ρ� and Exc½ρ� are Hartree and DFT
exchange correlation functionals, Vext is the electron-
nuclear potential, Enuc-nuc is the interaction energy of
nuclei, Σ is the DMFT self-energy, and ΦDC½nloc� is the
double-counting (DC) functional. [4] Here the Migdal-
Galitskii formula (MGF) is used Epot ¼ 1

2
TrðΣGÞ to com-

pute the DMFT part of the potential energy.
Gordon Baym showed [41] that for a certain class of

approximations, which are derivable from a functional
expressed in terms of closed-loop Feynman diagrams,
the MGF can be used instead of a more complicated
expression for evaluating the Luttinger-Ward Functional
[42,43]. He called such approximations conserving. While
the DMFT is a conserving approximation in Baym’s sense,
LDA or GGA is not, as the Galitskii-Migdal formula
1
2
TrðVxcρÞ has to be replaced by the exchange-correlation

functional Exc½ρ�. As a result, the combination of DFTþ
DMFT in its charge self-consistent version is not conserv-
ing either, and consequently the MGF can give a different
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total energy than the Luttinger-Ward functional. Only the
evaluation of the latter is guaranteed to give stationary free
energies. We will give numerical evidence that evaluation
of the MGF in Eq. (1) gives different results than evaluation
of the Luttinger-Ward functional, which strongly suggests
that Eq. (1) gives nonstationary total energies.
The Luttinger-Ward functional of DFTþ DMFT has

been well known for several years [17], but it has never
been successfully implemented to compute the free energy
of solids. It has the following form:

Γ½G� ¼Tr logG−Tr½ðG−1
0 −G−1ÞG�þEH½ρ�

þExc½ρ�þΦDMFT½P̂G�−ΦDC½P̂ρ�þEnuc-nuc; ð2Þ

whereG−1
0 ðrr0;iωÞ¼½iωþμþ∇2−VextðrÞ�δðr−r0Þ,ΦDMFT½P̂G�

is the DMFT functional, which is the sum of all local
skeleton Feynman diagrams. The projected Green’s func-
tion P̂G≡Glocal ¼

P
LL0 jϕLihϕLjGjϕL0 hϕL0 j and the pro-

jected density P̂ρ≡ ρlocal are computed with projection to a
set of localized functions jϕi centered on the “correlated”
atom. The projection defines the local Green’s function
Glocal, the essential variable of the DMFT.
The variation of functional Γ½G� with respect to G

(δΓ½G�=δG) gives

G−1−G−1
0 þðVHþVxcÞδðr− r0Þδðτ− τ0Þ

þ P̂
δΦDMFT½Glocal�

δGlocal
− P̂

δΦDC½ρlocal�
δρlocal

δðr− r0Þδðτ− τ0Þ ¼ 0;

ð3Þ

which vanishes, since it is equal to the Dyson equation that
determines a self-consistent G; hence, the functional is
stationary.
The value of the functional Γ at the self-consistently

determined G delivers the free energy of the system [41].
We evaluate it by inserting G−1

0 − G−1 from Eq. (3) into
Eq. (2) to obtain

F ¼ Enuc-nuc − Tr½ðVH þ VxcÞρ� þ EH½ρ� þ Exc½ρ�
þ Tr logG − Tr logGloc þ Fimp

þ TrðVdcρlocÞ − ΦDC½ρloc� þ μN; ð4Þ

where we denoted Vdc ≡ δΦDC½ρlocal�=δρlocal and Fimp is
the free energy of the impurity problem, i.e., Fimp ¼
Tr logGloc − TrðΣGlocÞ þ ΦDMFT½Gloc� [4]. Here we also
use the fact that the solution of the auxiliary impurity
problem delivers the exact local Green’s function, i.e.,
Σ ¼ δΦDMFT½Glocal�=δGlocal, and we added μN because we
work at a constant electron number.
The crucial point is that the continuous time quantum

Monte Carlo (CTQMC) method [44,45] solves the quan-
tum impurity model (QIM) numerically exactly; hence, we

can compute very precisely the impurity internal energy as
well as the free energy Fimp of this model. As the impurity
configurations are visited with probability proportional to
their contribution to the partition function (Pk ¼ Zk=Z),
and since probability for kth order term Pk is easily
sampled by CTQMC algorithm, we can compute the value
of the partition function Z if we know the partition function
at any order of the perturbation theory k. The zeroth order
corresponds to the atomic state, hence, Z0 ¼ Zatom, which
can be directly computed from the knowledge of the atomic
energies. Hence as long as the probability for zeroth
perturbation order is above the QMC noise level
(≈10−5), which is always the case at sufficiently high
temperature, we can compute the impurity free energy from

Fimp ¼ −T½logðZatomÞ − logðP0Þ�: ð5Þ
This is because Z ¼ expð−Fimp=TÞ.
When the temperature is low, P0 becomes exponentially

small, and we can no longer determine Fimp to high enough
precision in this way. However, we can compute very
precisely the internal energy of the impurity at arbitrary
temperature. The internal energy of QIM Eimp is given by

Eimp ¼ Tr

��

Δþ εimp − ωn
dΔ
dωn

�

Gimp

�

þ Eimp-pot; ð6Þ

which follows directly from the thermodynamic average
of the QIM Hamiltonian. Here the hybridization Δ and
impurity levels εimp are determined from the local green’s
function by the standard DMFT self-consistency condition
G−1

local ¼ iωn − εimp − Σ − Δ. These quantities can be com-
puted very precisely by CTQMC calculations [4]; hence,
the impurity internal energy can be easily computed with
the precision of a fraction of a meV.
To compute the precise impurity free energy Fimp at

temperature T we first converge DFTþ DMFT equations to
high accuracy at this temperature T. Using converged
impurity hybridizationΔðiωnÞ atT, we raise the temperature
of the impurity (keeping Δ fixed) to T>, which is chosen
such that P0 becomes of the order of 10−5 or higher. This
allows us to compute FimpðT>Þ using Eq. (5). We can also
compute entropy at T> from S>¼½EimpðT>Þ−FimpðT>Þ�=
T>. Next, we evaluate the impurity internal energy for
several inverse temperatures β ¼ 1=T between 1=T and
1=T>, and then we use standard thermodynamic relations to
obtain entropy at lower temperature T by

SðTÞ ¼ S> −
EimpðT>Þ

T>
þ EimpðTÞ

T
−
Z

1=T

1=T>

Eimpð1=βÞdβ

ð7Þ

where β ¼ 1=T. This formula is obtained integrating by
parts the standard formula S ¼ R

cv=TdT and cv ¼ dE=dT.
We hence obtain Simp and Fimp ¼ Eimp − TSimp at T which
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can be inserted into Eq. (4). The rest of the terms in Eq. (4)
are relatively straightforward to evaluate; however, for a
high precision implementation one needs to combine the
terms that largely cancel and evaluate them together [4].
Previous implementations of free energy within DFTþ

DMFT [33,35,46] were based on (i) evaluating the total
energy Eq. (1) at a range of temperatures, and integrating
the resulting specific heat [46], and (ii) the coupling constant
integration [33,35], where the total energy of the solid is
needed for a range of the Coulomb repulsion’sU and is then
integrated over U. In both approaches, the self-consistent
DFTþ DMFT solution is needed for many values of the
parameters (either U or T) to evaluate F. In our method, a
singleDFTþ DMFT calculation for a solid is needed,which
makes themethodmuchmore efficient. Furthermore, current
implementation of the free energy is stationary; hence, higher
precision of F is achieved.
To test the implementation of the DFTþ DMFT func-

tional, we computed the volume dependence of the free
energy for three well studied correlated materials: a metallic
early transition metal oxide with perovskite structure
SrVO3, a Mott insulating transition metal oxide FeO in
its rock salt structure, and the lanthanide elemental metal,
cerium, in its face centered cubic structure, which under-
goes a first order isostructural transition.
Weused the implementationofDFTþ DMFTofRef. [39]

using the projector or embedding technique, which is based
on the Wien2K package[47], and LDA in combination with
nominal double counting [39,48,49]. More technical details
are given in the Supplemental Material [4].
In Fig. 1(a) we show the energy EðVÞ, and FðVÞ for

SrVO3 at T ¼ 230 K, computed with Eq. (1), and Eq. (4),
respectively. The minima of EðVÞ and FðEÞ are achieved at
55.71 Å3 and 55.51 Å3. The experimentally determined
volume is Vexp ¼ 56.53 Å3 [51]. The DFTþ DMFT hence
slightly underestimates the equilibrium volume (1.8%),
which gives 0.6% error in lattice constant. This is well
within the standard error of best DFT functionals for
weakly correlated materials.
The metallic nature of SrVO3, with moderate mass

enhancements m�=mband ≈ 2 [4], leads to very small
DMFT corrections in crystal structure [4]. Note that energy
minimization leads to slightly larger volume than free
energy minimization, contrary to expectations. This is
because energy is computed from nonstationary Eq. (1),
while free-energy is obtained from the stationary expres-
sion Eq. (4). The latter is hence more trustworthy, and
should be considered the best DFTþ DMFT result. This is
also clear from the pressure vs volume diagram in Fig. 1(b),
where −dF=dV agrees more favorably with the experiment
than −dE=dV obtained by the MGF.
In Fig. 1(c), we show the impurity entropy obtained by

Eq. (7) for two representative volumes. In this itinerant
system with very large hybridization, we do not notice a
temperature scale at which the t2g shell is degenerate

[log(6)] nor the scale of the lowest order Kramers doublet
[log(2)], but we notice the Fermi liquid scale in the steep
downturn of SðTÞ at T ≈ 350 K.
Figure 2(a) shows EðVÞ and FðVÞ for paramagnetic Mott

insulating FeO at 300 K, above its antiferromagnetic
ordering temperature. The equilibrium volume of E and
F is 20.28 Å3 and 20.24 Å3, while the experimental
volume is 20.342 Å3. The lattice constant is thus under-
estimated for only 0.10% and 0.16%, respectively. In
comparison, all standard DFT functionals severally under-
estimate the FeO lattice constant, for example PBE-sol,
PBE, and LDA for 5.2%, 5.0%, and 7.7%, respectively.
In Fig. 2(b) we show the PðVÞ diagram and its excellent

agreement with experiment. Figure 2(c) shows impurity
entropy SimpðTÞ for a few volumes. In contrast to metallic
SrVO3, here we clearly see an extended plateau of
SimpðTÞ ¼ logð6ÞkB around 1000 K, which signals com-
plete degeneracy of the t2g shell, and its slight decrease at
300 K in proximity to the AFM state.
The isostructural transitions of cerium attracted a lot of

experimental and theoretical effort, but its theoretical
understanding is still controversial. On the basis of the
DFTþ DMFT calculation McMahan et al. [19] proposed
that the total energy exhibits a double-minimum shape,
concomitant with the appearance of the quasiparticle peak

FIG. 1 (color online). (a) EðVÞ and FðVÞ for SrVO3 at T ¼
230 K from Eqs. (1) and (4), respectively. Entropy term TSimpðVÞ
is very small. (b) Theoretical and experimental [50] pðVÞ. Good
agreement between theoretical −dF=dV and experiment is found.
(c) Impurity entropy Eq. (7) for representative volumes. To obtain
Simp, temperature is varied in the impurity problem only, and not
in the DFTþ DMFT problem of the solid.
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at a temperature as high as 1500 K, signaling the first order
transition. Using a different implementation of the same
method, Amadon et al. [35,54] proposed that the transition
is entropy driven, and that the total energy is featureless
with the minimum corresponding to the low volume α
phase. Only the addition of the entropy term moves the
minimum to the larger volume of the γ phase. In this picture
the transition at low temperatures, where the entropy
becomes small and cannot drive the transition, is intrinsi-
cally absent. Yet another proposal was recently put forward
on the basis of LDAþ Gutzwiller calculations [55,56], in
which the transition is present even at zero temperature, but
the transition occurs at negative pressure. The transition is
thus detectable even in the total energy, in the absence of
entropy, and becomes second order at T ¼ 0. In the same
method, the finite temperature transition is first order, and
the double-minimum shape of free energy becomes most
pronounced at a very high temperature (1500 K) [56].
Our DFTþ DMFT results for Ce are plotted in Fig. 3.

The total energy curve at 400 K clearly shows a region of
very flat shape in the region between the α-γ volume.
Indeed the derivative of the energy −dE=dV displayed in
Fig. 3(c) shows a clear region of zero slope around 1 GPa.
This is consistent with results of Lanata et al. [55] finding a
very similar zero slope of −dE=dV at zero temperature, but

is inconsistent with Ref. [35], which finds no feature in the
total energy. It is also inconsistent with McMahan et al.
[19], showing a clear double-peak in the total energy.
On the other hand, the addition of entropy substantially
increases the region of soft volume, as suggested by
Amadon et al. [54]. Indeed the change of the entropy
between the two phases is of the order of 0.9kB, which is
consistent with experimental estimations of 30 meV at
400 K [58]. The physical mechanism behind this large
entropy change and unusual volume dependence of energy
is in the very fast variation of coherence temperature, as
suggested in Refs. [19,54], and conjectured in the Kondo
volume collapse theory [59]. The phase transition in our
calculation occurs around 1.6 GPa, which is not far from
the experimentally determined critical pressure of 1.25 GPa
at T ¼ 400 K. The free energy barrier in our calculation is
however extremely small, and no clear double peak of
FðVÞ or negative slope of −dF=dV can be detected within
our 1 meV precision of energies. This is similar to the
results of Ref. [56] at 400 K, but different from Ref. [19].
While the start of the transition region in the α phase is in
good agreement with experiment, the γ-phase volume is
underestimated in our calculation. We believe that the
addition of phonon entropy is needed to further increase the
transition region, and establish a larger free energy barrier
between the two phases. Experimentally, above 460 K the
α-γ phase transition ends with the finite temperature critical
point. Our calculation at the high temperature of 900 K
shows that the signature of the phase transition in FðVÞ and

FIG. 2 (color online). (a) EðVÞ and FðVÞ for FeO from Eqs. (1)
and (4), respectively. Entropy term TSimpðVÞ is large but almost
constant. (b) Theoretical and experimental pðVÞ. Filled and
empty circles are from Refs. [52] and [53], respectively. (c) Impu-
rity entropy Eq. (7) for representative volumes. The degeneracy
of the t2g shell above 1000 K is apparent.

FIG. 3 (color online). (a) EðVÞ and FðVÞ for elemental cerium
from Eqs. (1) and (4), respectively. Data are presented for
T ¼ 400 and 900 K. (b) Entropy SimpðVÞ is large and changes
dramatically across the transition. (c) Theoretical and experi-
mental [57] pðVÞ diagram.
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EðVÞ disappears, which is different than predicted by the
Gutzwiller method [56], where the largest free energy
barrier is found at these elevated temperatures, but quali-
tatively consistent with Ref. [19].
In summary, we successfully implemented the stationary

formula for the free energy of the DFTþ DMFT method.
On the example of SrVO3, FeO, and Ce metal, we
demonstrated that the method successfully predicts lattice
volumes in correlated solids, which are difficult for
standard DFT functionals. We also resolved controversy
in the mechanism of the α-γ transition in cerium.

This workwas supported by the Simons foundation under
project “Many Electron Problem,” and by NSF-DMR
1405303. T. B. was supported by the Rutgers Center for
Materials Theory. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the US Department of Energy under Contract
No.DE-AC05-00OR22725.We are grateful toN. Lanata for
pointing out the need to include N ¼ 3 and N ¼ 4 valence
states in alpha-Ce for the precise total energy. We are also
grateful to G. Kotliar for numerous fruitful discussions.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills,

and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
[3] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature

(London) 410, 793 (2001).
[4] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.115.256402 for techni-
cal details of the calculations, comparison of the results with
standard functionals, and comments on the mass renorm-
alization in SrVO3, which includes Refs. [5–12].

[5] K. Ohta, R. E. Cohen, K. Hirose, K. Haule, K. Shimizu, and
Y. Ohishi, Phys. Rev. Lett. 108, 026403 (2012).

[6] A. McMahan, C. Huscroft, R. Scalettar, and E. Pollock,
J. Comput.-Aided Mater. Des. 5, 131 (1998).

[7] M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B
26, 4571 (1982).

[8] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[9] S. Skornyakov, A. Poteryaev, and V. Anisimov, Phys. Solid
State 57, 1431 (2015).

[10] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

[11] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,
G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke,
Phys. Rev. Lett. 100, 136406 (2008).

[12] M. Takizawa et al., Phys. Rev. B 80, 235104 (2009).
[13] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[14] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[15] V. I.Anisimov,A. I. Poteryaev,M. A.Korotin,A. O.Anokhin,

and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997).
[16] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57,

6884 (1998).

[17] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[18] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature
(London) 410, 793 (2001).

[19] K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev.
Lett. 87, 276404 (2001).

[20] A. K. McMahan, K. Held, and R. T. Scalettar, Phys. Rev. B
67, 075108 (2003).

[21] B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan,
Phys. Rev. Lett. 96, 066402 (2006).

[22] S. Y. Savrasov, K. Haule, and G. Kotliar, Phys. Rev. Lett. 96,
036404 (2006).

[23] L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges,
Phys. Rev. B 76, 235101 (2007).

[24] I. Leonov, N. Binggeli, D. Korotin, V. I. Anisimov, N. Stojić,
and D. Vollhardt, Phys. Rev. Lett. 101, 096405 (2008).

[25] I. Di Marco, J. Minár, S. Chadov, M. I. Katsnelson, H. Ebert,
and A. I. Lichtenstein, Phys. Rev. B 79, 115111 (2009).

[26] M. Aichhorn, L. Pourovskii, and A. Georges, Phys. Rev. B
84, 054529 (2011).

[27] G. Lee et al., Phys. Rev. Lett. 109, 177001 (2012).
[28] B. Amadon, J. Phys. Condens. Matter 24, 075604 (2012).
[29] I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt,

Phys. Rev. B 85, 020401 (2012).
[30] M. S. Litsarev, I. Di Marco, P. Thunström, and O. Eriksson,

Phys. Rev. B 86, 115116 (2012).
[31] O. Grns, I. D. Marco, P. Thunstrm, L. Nordstrm, O.

Eriksson, T. Bjrkman, and J. Wills, Comput. Mater. Sci.
55, 295 (2012).

[32] D. Grieger, C. Piefke, O. E. Peil, and F. Lechermann, Phys.
Rev. B 86, 155121 (2012).

[33] L. V. Pourovskii, T. Miyake, S. I. Simak, A. V. Ruban, L.
Dubrovinsky, and I. A. Abrikosov, Phys. Rev. B 87, 115130
(2013).

[34] I. Leonov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett.
112, 146401 (2014).

[35] J. Bieder and B. Amadon, Phys. Rev. B 89, 195132 (2014).
[36] S. Mandal, R. E. Cohen, and K. Haule, Phys. Rev. B 89,

220502 (2014).
[37] H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 89,

245133 (2014).
[38] H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 90,

235103 (2014).
[39] K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107

(2010).
[40] Note that Pulay forces appear when the incomplete basis set

is used.
[41] G. Baym, Phys. Rev. 127, 1391 (1962).
[42] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
[43] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[44] K. Haule, Phys. Rev. B 75, 155113 (2007).
[45] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.

Millis, Phys. Rev. Lett. 97, 076405 (2006).
[46] K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev.

Lett. 87, 276404 (2001).
[47] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and

J. Luitz, WIEN2K, An Augmented Plane Wave+Local
Orbitals Program for Calculating Crystal Properties
(Karlheinz Schwarz, Techn. Universität Wien, Austria,
2001).

PRL 115, 256402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 DECEMBER 2015

256402-5

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.256402
http://dx.doi.org/10.1103/PhysRevLett.108.026403
http://dx.doi.org/10.1023/A:1008698422183
http://dx.doi.org/10.1103/PhysRevB.26.4571
http://dx.doi.org/10.1103/PhysRevB.26.4571
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1134/S1063783415070288
http://dx.doi.org/10.1134/S1063783415070288
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.80.235104
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevB.67.075108
http://dx.doi.org/10.1103/PhysRevB.67.075108
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.96.036404
http://dx.doi.org/10.1103/PhysRevLett.96.036404
http://dx.doi.org/10.1103/PhysRevB.76.235101
http://dx.doi.org/10.1103/PhysRevLett.101.096405
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.84.054529
http://dx.doi.org/10.1103/PhysRevB.84.054529
http://dx.doi.org/10.1103/PhysRevLett.109.177001
http://dx.doi.org/10.1088/0953-8984/24/7/075604
http://dx.doi.org/10.1103/PhysRevB.85.020401
http://dx.doi.org/10.1103/PhysRevB.86.115116
http://dx.doi.org/10.1016/j.commatsci.2011.11.032
http://dx.doi.org/10.1016/j.commatsci.2011.11.032
http://dx.doi.org/10.1103/PhysRevB.86.155121
http://dx.doi.org/10.1103/PhysRevB.86.155121
http://dx.doi.org/10.1103/PhysRevB.87.115130
http://dx.doi.org/10.1103/PhysRevB.87.115130
http://dx.doi.org/10.1103/PhysRevLett.112.146401
http://dx.doi.org/10.1103/PhysRevLett.112.146401
http://dx.doi.org/10.1103/PhysRevB.89.195132
http://dx.doi.org/10.1103/PhysRevB.89.220502
http://dx.doi.org/10.1103/PhysRevB.89.220502
http://dx.doi.org/10.1103/PhysRevB.89.245133
http://dx.doi.org/10.1103/PhysRevB.89.245133
http://dx.doi.org/10.1103/PhysRevB.90.235103
http://dx.doi.org/10.1103/PhysRevB.90.235103
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRevB.75.155113
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404


[48] K. Haule, T. Birol, and G. Kotliar, Phys. Rev. B 90, 075136
(2014).

[49] K. Haule, Phys. Rev. Lett. 115, 196403 (2015).
[50] R. Hrubiak, Ph.D. thesis, Florida International University,

2012, http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?
article=1802&context=etd.

[51] J. B. Goodenough and M. Longo, SpringerMaterials, The
Landolt-Börnstein Database, 4a (1970), http://dx.doi.org/10
.1007/10201420_50.

[52] T. Yagi, T. Suzuki, and S.-I. Akimoto, J. Geophys. Res.:
Solid Earth 90, 8784 (1985).

[53] R. L. Clendenen and H. G. Drickamer, J. Chem. Phys. 44,
4223 (1966).

[54] B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan,
Phys. Rev. Lett. 96, 066402 (2006).

[55] N.Lanatà,Y.-X.Yao,C.-Z.Wang,K.-M.Ho, J. Schmalian,K.
Haule, and G. Kotliar, Phys. Rev. Lett. 111, 196801 (2013).

[56] N. Lanatà, Y.-X. Yao, C.-Z. Wang, K.-M. Ho, and G.
Kotliar, Phys. Rev. B 90, 161104 (2014).

[57] M. J. Lipp, D. Jackson, H. Cynn, C. Aracne, W. J. Evans,
and A. K. McMahan, Phys. Rev. Lett. 101, 165703 (2008).

[58] F. Decremps, L. Belhadi, D. L. Farber, K. T. Moore, F.
Occelli, M. Gauthier, A. Polian, D. Antonangeli, C. M.
Aracne-Ruddle, and B. Amadon, Phys. Rev. Lett. 106,
065701 (2011).

[59] J. W. Allen and L. Z. Liu, Phys. Rev. B 46, 5047 (1992).

PRL 115, 256402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 DECEMBER 2015

256402-6

http://dx.doi.org/10.1103/PhysRevB.90.075136
http://dx.doi.org/10.1103/PhysRevB.90.075136
http://dx.doi.org/10.1103/PhysRevLett.115.196403
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1802&amp;context=etd
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1802&amp;context=etd
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1802&amp;context=etd
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1802&amp;context=etd
http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1802&amp;context=etd
http://dx.doi.org/10.1007/10201420_50
http://dx.doi.org/10.1007/10201420_50
http://dx.doi.org/10.1007/10201420_50
http://dx.doi.org/10.1007/10201420_50
http://dx.doi.org/10.1029/JB090iB10p08784
http://dx.doi.org/10.1029/JB090iB10p08784
http://dx.doi.org/10.1063/1.1726610
http://dx.doi.org/10.1063/1.1726610
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.111.196801
http://dx.doi.org/10.1103/PhysRevB.90.161104
http://dx.doi.org/10.1103/PhysRevLett.101.165703
http://dx.doi.org/10.1103/PhysRevLett.106.065701
http://dx.doi.org/10.1103/PhysRevLett.106.065701
http://dx.doi.org/10.1103/PhysRevB.46.5047

