
Supplementary Information: Exact double-counting in combining the Dynamical
Mean Field Theory and the Density Functional Theory

PACS numbers:

THE CORRELATION ENERGY FIT

The correlation energy of the electron gas, interacting with Yukawa potential, was calculated by G0W0 method,
and fitted with the following functional form

εcV λc =
εcλ=0

1 +
∑4
n=1 anr

n
s

(1)

Here εcλ=0 is the standard parametrization of the correlation energy of the electron gas.
For the coefficients an, we chose the following form:

log(1 + a1) =
λ(α0 + α1λ)

1 + α2λ2 + α3λ4 + α4λ6
(2)

log(1 + a2) =
λ2(β0 + β1λ)

1 + β2λ2 + β3λ4
(3)

log(1 + a3) =
λ3(γ0 + γ1λ)

1 + γ2λ2
(4)

log(1 + a4) = λ4(δ0 + δ1λ
2) (5)

The best fit, in the range rs ∈ [0, 10] and λ ∈ [0, 3], gives the following coefficients:

αi = [1.2238912, 7.3648662, 9.6044695,

−0.7501634, 0.0207808]× 10−1

βi = [5.839362, 11.969474, 10.156124, 1.594125]× 10−2

γi = [8.27519, 5.57133, 17.25079]× 10−3

δi = [5.29134419, 0.0449628225]× 10−4 (6)

NOTE ON DERIVATION OF THE EXACT DOUBLE-COUNTING

Most of the double-counting formulas were historically derived by approximating the Hubbard interaction term
(defined with the help of matrix elements Eq. 33) by some static approximation, either in the atomic limit, or, in
Hartree-Fock limit. Such static approximations were argued to be a good substitute for the LDA treatment of the
Hubbard interaction. Hence, the problem arrose, because it is not clear how to solve the Hubbard model (or any
lattice model) by LDA, so that the LDA approximation for the Hubbard term could be subtracted from dynamic
self-energy, computed by many body method.

Here we show that, if Luttinger-Ward functionals for the two approximate methods are written side-by side in the
same form, the intersection of the two is evident. In other words, we can either perform the DMFT approximation on
the LDA functional, or, the LDA approximation on the DMFT functional, and in both cases we arrive at the same
term, which is counted twice.

Let’s start with the lowest order term in the interaction, the Hartree term, because it can be explicitely written
down. The exact Hartree term takes the form

EH [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
(7)

In the DMFT approximation, the Hartree term is approximated by its local and screened counterpart:

EHDMFT [ρ] =
1

2

∫
drdr′(P̂ ρ(r))(P̂ ρ(r′))VDMFT (|r− r′|) (8)
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Notice that when this expression is written in orbital basis, it gives exactly the Hartree term, which appears in DMFT.
The LDA implementation includes the exact Hartree term Eq. 7, and the DMFT includes the approximation

Eq. 8. When the two Luttinger-Ward functionals are added in LDA+DMFT, we must subtract the entire DMFT
approximation for Hartree term Eq. 8, because this term was already accounted for by LDA exactly, hence no extra
DMFT term is needed to this order.

Next we consider the exchange term. The exact exchange takes the following form:

EX [ρ] = −1

2

∑
σ

∫
drdr′

ρσ(r, r′)ρσ(r′, r′)

|r− r′|
(9)

However, the LDA method does not take into account the exact exchange term, but it approximates it with the
following approximation

EXLDA = −1

2

∑
σ

∫
drdr′ρ0

σ(r, r′)ρ0
σ(r′, r)Vc(|r− r′|) (10)

where ρ0 is the charge density of the corresponding electron gas problem, namely,

ρ0
σ(r, r′) =

∫
d3k

(2π)3
eik(r−r′)f(

k2

2m
− EF ) (11)

where f is the fermi function (at T = 0) and EF = (2π2ρ)2/3/(2m) .
Notice that the LDA exchange is obtained from Eq. 9 by replacing the density ρσ(r, r′) of the solid by the simpler

density of the electron gas problem, ρ0
σ. The only place where the real solid and electron gas problem are linked, is

through the determination of the charge density, or equivalent, the determination of EF of the corresponding electron
gas problem.

The DMFT approximates the exact exchange Eq. 9 by the following truncation of variables,

ρ→ P̂ ρ (12)

Vc → VDMFT (13)

hence the DMFT includes the following exchange term

EXDMFT = −1

2

∑
σ

∫
drdr′(P̂ ρσ(r, r′))(P̂ ρσ(r′, r))VDMFT (|r− r′|) (14)

To prove that, we recall the definition of the projector P̂ (defined in Eq. 30)

P̂ ρ(r, r′) =
∑

L1,L2∈DMFT

〈r|ΦL1
〉 〈ΦL1

|ρ(r, r′)|ΦL2
〉 〈ΦL2

|r′〉 (15)

where L1, L2 ∈ DMFT denotes the sum over the orbitals treated by DMFT. Inserting this definition into the above
Eq. 14, it is immediately evident that

EXDMFT = −1

2

∑
{Li}∈DMFT

∫
drdr′ΦL4(r) 〈ΦL4 |ρ|ΦL2〉Φ∗L2

(r′)ΦL3(r′) 〈ΦL3 |ρ|ΦL1〉Φ∗L1
(r)VDMFT (|r− r′|) (16)

In the integral we recognize the matrix elements of the screened Coulomb interaction (used in DMFT):

UL1,L2,L3,L4 =

∫
drdr′Φ∗L1

(r)Φ∗L2
(r′)VDMFT (|r− r′|)ΦL3(r′)ΦL4(r) (17)

and the DMFT density matrix, which is

nL1,L2
=

1

β

∑
iω

〈ΦL2
|G(iω, rr′)|ΦL1

〉 = 〈ΦL2
|ρ|ΦL1

〉 (18)



3

1/4ϕ[G]=
r3 r4

r1 r2

1/4ϕDMFT[G]=

L1

L4

L2

L3

L7

L6 L5

L8

VC VC UU

FIG. 1: The second order Feynman graph of the exact functional Φ[{G}] on the left, and the corresponding DMFT functional
ΦDMFT [{Glocal}] on the right.

Using these standard definitions, we immediately recognize

EXDMFT = −1

2

∑
{Li}inDMFT

UL1,L2,L3,L4
nL1,L3

nL2,L4
, (19)

which is the standard form for the DMFT exchange energy. This term is included when solving the DMFT quantum
impurity problem.

Now, having both LDA and DMFT functionals for exchange written in the same form, Eq. 10 and Eq. 14, it becomes
clear how to perform the LDA approximation on the DMFT functional, or, the DMFT approximation on the LDA
functional. This is the double-counting term.

In the DMFT approximation on top of LDA functional Eq. 10, we need to replace Vc with VDMFT and replace ρ in
the electron gas fermi level EF with ρlocal. When performing LDA approximation on the DMFT functional Eq. 14, we
replace real density P̂ ρ by ρ0 of electron gas, and determine the fermi level EF by the density of the solid P̂ ρ = ρlocal.
In both cases, we arrive at the exact intersection of the two methods (for exchange term):

EXDC = −1

2

∫
drdr′ρ0

σ(r, r′)ρ0
σ(r′, r′)VDMFT (|r− r′|) (20)

where

ρ0(r, r′) =

∫
d3k

(2π)3
eik(r−r′)f(

k2

2m
− EF ) (21)

and

EF = (2π2P̂ ρ)2/3/(2m) = (2π2P̂ ρlocal)
2/3/(2m).

We can continue the same derivation for the correlation term.
First we prove one of the central assumptions in the manuscript, namely, that performing the DMFT approximation

is equivalent to performing the following approximation on the exact Φ[G] functional: replacing G(r, r′) by P̂G(r, r′) =
Glocal(r, r

′) and Vc by VDMFT . The form of the functional does not change.
We can show this order by order in perturbation theory. We already showed it for the first order terms, namely,

the Hartree and the Fock term. We next show it also for the second order term, displayed in Fig. 1
The exact functional contribution at the second order is

Φ[{G}] =
1

4

∫ 4∏
i=1

dri

∫ β

0

dτVc(r3 − r1)Vc(r4 − r2)G(r1, r2, τ)G(r2, r1,−τ)G(r4, r3,−τ)G(r3, r4, τ) (22)

According to the above assumption, the corresponding DMFT contribution must take the form

ΦDMFT [{Glocal}] =
1

4

∫ 4∏
i=1

dri

∫ β

0

dτVDMFT (r3−r1)VDMFT (r4−r2)Glocal(r1, r2, τ)Glocal(r2, r1,−τ)Glocal(r4, r3,−τ)Glocal(r3, r4, τ)

(23)
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To prove that, we just insert definition for Glocal (Eq. 30) into the above equation, and obtain

ΦDMFT [{Glocal}] =
1

4

∫ 4∏
i=1

dri

∫ β

0

dτ
∑
{Li}

VDMFT (r3 − r1)VDMFT (r4 − r2)ΦL1(r1) 〈ΦL1 |G(τ)|ΦL2〉Φ∗L2
(r2)

×ΦL3
(r2) 〈ΦL3

|G(−τ)|ΦL4
〉Φ∗L4

(r1)

×ΦL5
(r4) 〈ΦL5

|G(−τ)|ΦL6
〉Φ∗L6

(r3)

×ΦL7
(r3) 〈ΦL7

|G(τ)|ΦL8
〉Φ∗L8

(r4) (24)

which is equal to

ΦDMFT [{Glocal}] =
1

4

∫ β

0

dτ
∑
{Li}

∫
dr1dr3Φ∗L4

(r1)Φ∗L6
(r3)VDMFT (r3 − r1)ΦL7

(r3)ΦL1
(r1)

×
∫
dr2dr4Φ∗L2

(r2)Φ∗L8
(r4)VDMFT (r4 − r2)ΦL5

(r4)ΦL3
(r2)

×〈ΦL1 |G(τ)|ΦL2〉 〈ΦL3 |G(−τ)|ΦL4〉
× 〈ΦL5 |G(−τ)|ΦL6〉 〈ΦL7 |G(τ)|ΦL8〉 (25)

Using the definition of the screened Coulomb repulsion Eq. 17, and the definition for the DMFT Green’s function, we
obtain

ΦDMFT [{Glocal}] =
1

4

∫ β

0

dτ
∑
{Li}

UL4,L6,L7,L1
UL2,L8,L5,L3

GlocalL1,L2
(τ)GlocalL3,L4

(−τ)GlocalL5,L6
(−τ)GlocalL7,L8

(τ), (26)

which is just the Feynman diagram that appears in the DMFT impurity problem. It is clear from this derivation that
we can do the same procedure for any Feynman diagram of any complex topology, hence, we can also perform the
substitution directly in the functional. This proves the central assumption of the paper, namely, what is the DMFT
approximation. This proof already appeared in Ref. [1], but for completness, we repeated it here.

On the other hand, the LDA approximation to the exact functional Φ[G] amounts to mapping the system, point
by point in 3D space, to the electron gas problem

Φ[{G}]→ ECVc [ρ] =

∫
drECel−gas(ρ(r);Vc) (27)

where ECel−gas(ρ
0;Vc) is the correlation energy of the electron gas problem, interacting with the Coulomb interaction

Vc, at the density ρ0.
Finally, we perform the DMFT approximation on the LDA correlation functional, which amounts to replacing ρ by

P̂ ρ and Vc by VDMFT , and we obtain

ΦDC [{G}]→
∫
drECel−gas(P̂ ρ(r);VDMFT ), (28)

hence we need to solve the electron gas problem at each point in space, where the charge P̂ ρ interacts with screened
interaction VDMFT . We can symbolically write this term as ECVDMFT [P̂ ρ]. In this derivation we performed DMFT ap-
proximation on the LDA functional. We could equally well perform the LDA approximation on the DMFT functional,
and get the same result.

To summarize, the double-counting term, which we derived, takes the following form

ΦDFT+DMFT
DC [ρ] = EHVDMFT [P̂ ρ] + EXCVDMFT [P̂ ρ]. (29)

THE DMFT PROJECTOR

The DMFT local Green’s function is obtained from the total Green’s function of the solid by a projection, defined
by

Glocal(r, r
′) =

∑
L,L′

〈r|φL〉 〈φL|G |φL′〉 〈φL′ |r′〉 (30)
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FIG. 2: The radial wave functions ul(r), which are used to build the DMFT projector and the local Green’s function. We show
both the large and the small component of the solution of the Dirac equation.

where the quasi-localized wave functions 〈r|φL〉 = ul(r)
r YL(r) are the solution of the Dirac equation inside the muffin-

tin sphere in the scalar relativistic approximation. The linearization energy Eν is here chosen at the Fermi level
Eν = EF , to have very precise wave function in the vicinity of the Fermi level.

The extremization of the DMFT functional leads to the Dyson equation (Equation 2 of the main text), in which
the embedding operator is usually needed [3]. In the real space representation of the DMFT, however, the embedding
operator is replaced by the projection operator itself. To show this, we take the functional derivative of the DMFT
term

Σ(r′, r) =
δΦ[Glocal]

δG(r, r′)
=

∫
dr1dr2

δGlocal(r1, r2)

δG(r, r′)

δΦ[Glocal]

δGlocal(r1, r2)
=
∑
L,L′

〈r′|φL〉 〈φL|
δΦ[Glocal]

δGlocal
|φL′〉 〈φL′ |r〉 = P̂

δΦ[Glocal]

δGlocal
(31)

hence Σ = P̂ δΦ[Glocal]
δGlocal

instead of Σ = Ê δΦ[Glocal]
δGlocal

, as is in the orbital/band representation. In this derivation we used
the following identify

δGlocal(r1, r2)

δG(r, r′)
=
∑
L,L′

φL(r1)φ∗L(r)φL′(r′)φ∗L′(r2) (32)

derived directly from Eq. 30.
In Figure 2 we plot the radial part of the wave functions ul(r) used to build the projector for SrVO3, LaVO3 and

Cerium. In transition metal oxides we project to the 3d orbitals of Vanadium, and in Cerium metal we projected to
Ce-4f orbitals.

The projector, when written in Kohn-Sham basis, is orthonormalized locally, so that the resulting local Green’s
function has correct normalization, i.e., limiω→∞Glocal(iω) = 1

iω + · · · .
Notice that we do not remove the rest of the states from consideration, as is customary done when low energy

Hubbard models are build. We just treat the above defined ”correlated” states dynamically, and the rest of the states
statically within LDA, hence we allow strong hybridization between ”correlated” states and the itinerant states.



6

SCREENED COULOMB REPULSION OF YUKAWA FORM

It is noted in the manuscript that there is a unique relationship between the inverse screening length λ and the
Hubbard interaction U . Moreover, for constant screening length λ, Hund’s coupling as well as higher order Slater
integrals, are uniquely determined either from U ≡ F 0 or from λ. Here we derive the precise relationship between
Slater integrals and screening λ.

The matrix elements of the screened Coulomb repulsion (of Yukawa form) in the orbital basis defined above are

Um1m2m3m4 =

∫
d3r

∫
d3r′

(
ul(r)

r

)2(
ul(r

′)

r′

)2

Y ∗lm1
(r̂)Ylm4(r̂)Y ∗lm2

(r̂′)Ylm3(r̂′)
e−λ|r−r

′|

|r− r′|
(33)

There exist a well known expansion of Yukawa interaction in terms of spheric harmonics Ykm, which reads

e−λ|r−r
′|

|r− r′|
= 4π

∑
k

Ik+1/2(r<)Kk+1/2(r>)
√
r< r>

∑
m

Y ∗km(r̂)Ykm(r̂′) (34)

Here r< = min(r, r′), r> = max(r, r′), I and K are modified Bessel function of the first and second kind. Inserting
this expression into Eq. 33, we get

Um1m2m3m4
=
∑
k

4π

2k + 1
〈Ylm1

|Ykm1−m4
|Ylm4

〉 〈Ylm2
|Y ∗km3−m2

|Ylm3
〉

×(2k + 1)

∫ ∞
0

dr

∫ ∞
0

dr′u2
l (r)u

2
l (r
′)
Ik+1/2(λr<)Kk+1/2(λr>)

√
r< r>

. (35)

Hence, the screened Coulomb interaction has the Slater form with the Slater integrals being

F k = (2k + 1)

∫ ∞
0

dr

∫ ∞
0

dr′u2
l (r)u

2
l (r
′)
Ik+1/2(λr<)Kk+1/2(λr>)

√
r< r>

. (36)

This is a product of two one-dimensional integrals and is very easy to efficiently implement.
It is clear from Eq. 36 that λ uniquely determines all F k’s, and furthermore, even one Slater integral (F 0) uniquely

determines λ. This is because F k are monotonic functions of λ and take the value of bare F k at λ = 0 and vanish at
large λ. Hence given F 0, the screening length λ is uniquely determined, and hence other higher order F k are uniquely
determined as well.

Unfortunately, the screening in solids can not be predicted to very high accuracy yet, hence, instead of computing
U we rather fixed it to U = 10 eV (a good approximation for most of transition metal oxides - see Ref.[2]). In this
case, we can calculate parameter λ, and Hund’s interaction J . For the two materials studied here, we got

SrVO3:

U(λ = 0) = 21.5 eV, J(λ = 0) = 1.23 eV
U(λ = 0.676/rB) = 10 eV, J(λ = 0.676/rB) = 1.13 eV

(37)

LaVO3:

U(λ = 0) = 22.3 eV J(λ = 0) = 1.27 eV
U(λ = 0.734/rB) = 10 eV J(λ = 0.734/rB) = 1.16 eV

(38)

Ce:

U(λ = 0) = 23.6 eV J(λ = 0) = 0.923 eV
U(λ = 1.512/rB) = 6 eV J(λ = 1.512/rB) = 0.719 eV

(39)

As is clear from these results, the Hubbard interaction in transition metal oxides is reduced from unscreened value
for roughly factor of two, while the Hund’s term is reduced for approximately 10%. In Cerium, U is screened twice
as much, while J is screened for roughly 20%. This small screening of Hund’s term, as compared to Hubbard term,
is well known from studies of multiplets in lanthanides and actinides.
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