Homework 4, 620 Many body

December 12, 2022

1) The excitations spectra of the superconductor: Calculate the excitations spectra of
quasiparticles as well as the real electrons in the BCS state wave function.
In class we derived the BCS Hamiltonian

HES = v (f‘; iy ) Ui+ ek (1)
k

€k
in which the Wy spinor is

Ci.t
U = (CT ) (2)
_khL'

The Hamiltonian is diagonalized with a unitary transformation in the form

~ [cos(by) sin(bk)
the = (sin(@k) —cos(@k)) 3)

where

cos(fx) = \/%(1+€—k) (4)

sin(fy) = —\/%(1—5—“) (5)

and the quasiparticle spinors are

(I)k,T h Ck
(o) =03 o
The diagonal BCS Hamiltonian has the form

HPCS =3 " NP Pics — Ey (7)
k

with Ep = >, Ak — ek and A\ = /ei + A?



— Show that the quasiparticle Green’s function Gy = — (T7®k75(7')<1>;s(0)) has a
gap with the size A. What is the spectral function corresponding to this Green’s
function? Show that the corresponding densities of states has the form D(w) ~
Dy w/vw? — A% where Dy is density of states at the Fermi level of the normal
state.

— Compute the physical Green’s function (measured in ARPES)

Gis = — <TTCk,S(7—)CTk,s(0)> (8)

and its density of states. Show that the corresponding spectral function has the
form

Ay s(w) = cos® O (w — Ai) + sin® Oy 6(w + A 9)
Sketch the bands and their weight, and sketch the density of states.

2) In class we derived the BCS action, which takes the form

8 e (N+eA _
:/ dT/d?’r\I’T(r) (37 gt +ie¢ (NA >\I’(r)+80(10)
0

—AT %+M_2— 16¢

where sg = fo ded3 |Al2

Show that the action can also be expressed by
S = 59+ Trlog(—GQ) (11)
where

ol 1wy, + [ — M e, A
AT W — j+ (p+6A + ieq

Show that the transformation UG~'UT, where U is

o= () (13)

leads to the following change of the quantities

A — e A (14)
A — A+1V9 (15)
e
1.
6 = o0 (16)

and otherwise the same form of the action. Argue that since this corresponds to the
change of the EM gauge, the phase of A is arbitrary in BCS theory, and can always
be changed. Moreover, the phase can not be experimentally measurable quantity.
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In the absence of the EM field, derive the saddle point equations in field A, which are
often written as A = gG1o, and cam be expressed as

- S — 17
g~ VB Gwr N "
Show that the same equation can also be expressed as
1 1 1—2f(A
Lt Z f () (18)

g Vv " 2/\k

and with Dy being the density of the normal state at the Fermi level, it can also be
expressed as

1 F tanh(Va? + 2
%DO/dean(:lr—i—/@) (19)
0

9 N

g
where x = ¢/(2T') and kK = A/(2T).

Next, derive the critical temperature by taking the limit A — 0 (k — 0). Assuming

that wp/(27) > 1, break the integral into two parts [0, A], and [A, 5]. Here A > 1.

In the second part set tanh(z) = 1, as x is large. Using numerical integration (in
Mathematica or similar tool) verify that

A
lim dz tanh(z)
A—oo 0

— log(A) ~ log(2 x 1.13) (20)

Next, show that T is determined by

Wp

1
— ~log(2 x 1.13) +1
0g(2 x 1.13) + og(zTc

gDy

) (21)

and consequently
T, ~ 1.13wpe~1/(9P0)

Using Eq. [19| compute the size of the gap at T"= 0. Show that to the leading order in
A/wp the gap size is
A(T = 0) = 2wpe/(9P0) (22)

Finally, show that within BCS there is universal ration A(T = 0)/(27.) ~ 1/1.13 =~
0.88.

Starting from action Eq. [10| derive the effective action for small EM field A, ¢. Show
that for a constant and time independent phase, the action takes the form

2 B n )
Serr = Trlog(—Ga—o¢=0) + Tr(%) + 62/0 dT/dSI‘ [Do(gb(rﬂ'))2 + ﬁ [A(r,7)] }(23)

Note that using EM gauge transformation, we arrive at an equivalent action

Sr= o+ | L [@n oot <07+ 2 Awn) o] o
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Below we summarize the steps to derive this effective action.
We start by splitting G~ in Eq. into G4 ¢—0 = G° and terms linear and quadratic
in EM-fields, i.e,

G = (G =X - X,

where
, e
X1 = Z€¢U3+%W7A]+I (25)
et .,
XQ = %A 03 (26)

and o3, oy are Pauli matrices. Show that action can then be expressed as
S = 50+ Trlog(—G°) — Trlog(I — G°(X1 + X>)) (27)
1
~ Sp + Tr(G°X,) + Tr(G°X>) + §Tr(G°X1GOX1) +O(X?) (28)

where Sy = s¢ + Trlog(—G") (which vanishes at T,), and the second term, which is
linear in fields, while third and fourth are quadratic.

Next show that the form of GV is
P 1
G(r)m p'n/ — Op,p’ Onm’ (iwn[ - <% - ,U> o3+ A 01) (29)

where the inverse is in the 2 x 2 space only, while G is diagonal in frequency& mo-
mentum space. We will use (p,n) = p for short notation. Similarly, show that X;
1s

e
—(p1+ p2)Ap2—p1 (30)

. e .
(Xl)pLPZ = (ie¢p o3 + %[Va A]+I)p1,p2 = 1€Pp,—p, 03 — om

Show that
e
G0X1 Z Tr2><2 an) [26¢q 003 — mpAq:o]).
"Jn P

Argue that the second term vanishes when inversion symmetry is present, as it is odd
in p (with G}, even function). The first term than becomes niedq—own—o (n is total
density), which describes the electron density in uniform electric field, which should
cancel with the action between negative ions and the external field.

Next show that

(G0X2 ZTI’QXQ zwn)Aq 00'3 = —RZA A,q

is standard diamagnetic term, which will be used later.



Finally, we address the term 1 Tr(G°X;G"X;). We find

§T1“(G0X1G0X1 Z TI'2><2 pl Xl)pl P2Gp2 (Xl)Pz Pl) (31)

pl P2

_ZTrQXQ p q/2 (X1)p- q/2p+q/2Gp+q/2(X1>p+‘Z/2p ‘1/2) (32)

=3 Z Troxo <Gg_q/2 <ie¢q03 - EpAq> Gg+q/2 <i6¢—q03 - %PA—q>> (33)

2

e
D) Z <_€2¢q¢ alT2x2 (Gp Q/2U3Gp+q/2a3) ﬁ(pAq)(pqu)TQX? (Gp q/2Gp+q/2))(34)

In the last line we dropped the cross-terms, which are odd in p and vanish.

For any rotationally invariant function R(p?), the following identity is satisfied

3 (pAG)PA - AEY) = Agh_o Y 2 R(p). (39

P

We are interested in slowly varying fields (small ¢), hence p & ¢/2 ~ p. We therefore
arrive at

2

1 e p?
§TI'(G0X1GOX1) = 5 Z <—¢q¢_qTI'2><2 (G20'3G20'3) + AqA._qWTI‘QXQ (GgGS))(?)ES)

p.q

Next, show that

(iwn)? + A2 — 2A2
Traxs (Go3Ghos) =2 (on)? n )y (37)
n p
iwn)? + A7
Trass (€260) = 2\ 2o (38)
((fw0n)? = 25)

Next, carry out the frequency summations, and show that

(iwn) +)\2 2A? A2 A2 A2
BZ P T GRS 0 = g~ oy (89

+/\2

52 (fen) ):mp) (40)

Here f'(Ap) = df (A\p)/dAp and we took only the leading terms at low temperature.

Combining all we learned so far, we get

1Tr(GOX G'X1)=¢"> (g A +AA il "(Ap) (41)
2 1= Ay =¢ {253 “a3,27) e

9,p
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Next we combine this result with the diamagnetic term, derived before, and we obtain

1 n . p
Tr(G'X,) + §Tr(G0X1G0 =e Zgqu) (2A3> +AA_4 (2m + wf (Ap)>(42)
Next we show that
2)\3 /d D(e e —|—A2)3/2 ~ Dy (43)
FQp) = =BfAp)f(=Xp) (44)
hence S.pp = Tr(GYX,) + 1 Tr(G°X,G°X) becomes
Seff — ¢? Z ¢q¢_qD0 + AqA_q ( —-p Z 32 /\p)> (45)
q

Finally, we will prove that

O e

where ng is superfluid density.

We see that
TR TR TCRTICOI (47)
— o= 8y [ A=DE S+ O F(-A) (48)
~ % d=Bf(A) f(—N.) (49)

Note that here we used D(w) = 2} d(w — €p), where 2 is due to spin. This is
essential because n contains the spin degeneracy as well. It is straightforward to prove

that uDg = —n in our approximation, because
»?
Dozz;a(u—%)zc\/ﬁ (50)
=2 O(n-— ﬁ) = (2/3)p*%. (51)
" > a 2m a

We thus conclude that

v (1 [ AN Ve A (52)

2m



At low temperature f(v/e? + A?) = 0, hence ny = n and all electrons contribute to the
superfluid density. Above T, we have

/ deBf(e)f(—e) = 1

and therefore ngy = 0 as expected. We interpret that ng is the fraction of electrons that
are parred up in superfluid, i.e., superfluid density, as promised.

We just proved that

s
Y

Seff = 2 Z ¢q¢—qD0 + AqA_qu

q

(53)

which is equivalent to Eq. [23]



