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Homework 3, 620 Many body

November 20, 2023

Draw all connected topologically distinct (unlabeled) Feynman diagrams for the self-
energy up to the second order with expansion on the Hartree state. Exclude tadpoles,
which are accounted for by expanding on the Hartree state with redefined single particle
potential.

Assume that the system is translationally invariant, use momentum and frequency
basis to write complete expression for the value of these diagrams. Use the Coulomb
interaction v, and single-particle propagator GY (iw,) in your expressions.

Calculate the symmetry factors for the following Feynman diagrams, which contribute
to logZ expansion.
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Use the Kleinart’s trick to show that the following integral
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can be well approximated with the few lowest order terms in perturbation theory.
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The exact result of the integral is
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We start by expanding in powers of £ around arbitrary frequency €2, which gives
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For £ = 1 the original action has not been changed. £ here just keeps track of pertur-
bative order, and is set to 1 once the expansion is evaluated.
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Show that 1 (g, Q) = %, which does not have optimum in terms of parameter €2.

Show that at order &' the value of the integral is
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Show that the principal of minimal sensitivity requires Q? = %(1 ++/1+ 10g).

Show that I(g) at the first order can be approximated by

10(g) = 3g+1+1yT+10g )
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— Check numerically the difference between IV (g) — I°7(g).

Check analytically the leading order expansion at large g. Note that the exact

result has expansion 7¢*%¢* = 1.023¢g~'/4. What is the exponent and coefficient for
1M (g)?

The rest of the questions in this problem are optional.

It turns out that at order €2 there is no optimum. However, all odd terms have opti-
mum, and at order £ we again get a good approximation for I(g). Check numerically,
and analytically at large ¢, that the difference between I3 and I°**“ is smaller than
between ™) — %%t What is the coefficient a for 1®®)(g) = ag~'/* expansion at large
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The Uniform Electron Gas is translationally invariant homogeneous system of inter-
acting electrons, which is kept in-place by uniformly distributed positive background
charge. The action for the model is
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Here ¢, = % and v, = % is the Coulomb repulsion. The uniform density ng is equal

to the number of electrons per unit volume, i.e., ng = N./V for charge neutrality.
The density ng is usually expressed in terms of distance parameter r,, which is the
typical radius between two electrons, and is defined by 1/n® = 4773 /3. Furthermore,
the Coulomb repulsion and the single-particle energy can be conveniently expressed in
Rydberg units (13.6 eV= h?/(2ma}), ap Bohr radius), in which v, = 87 /¢? and ), = k?,
and all momentums are measured in 1/ay.

— Show that the Fermi momentum kp = (97/4)Y3/r,, where Er = k% in these
units.



— Show that the kinetic energy per density is Fri,/(Vng) = pin = gk’% O Ekin =
2.2009/72.

— Calculate the exchange (Fock) self-energy diagram and show it has the form
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Note that S(x) can be obtained by the following integral
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S(z) = 1/0 du ulog (7)
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— Derive the expression for the effective mass of the system, which is defined in the
following way
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Start from the definition of the Green’s function Gy (w) = 1/(w+ p — ex — Xk (w))
and Taylor’s expression of the self-energy

Eksz(w ~ 0) = Ek}:‘ (0) + aw 8k;

(k —kr) (9)
and define Z,- T=1-— 822—2(0) and take into account the validity of the Luttinger’s
theorem (the volume of the Fermi surface can not change by interaction). Show
that under these assumptions, the effective mass of the quasiparticle is
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— Use the exchange self-energy and show that within Hartee-Fock approximation the
effective mass is vanishing. Is there any quasiparticle left at the Fermi level in this
theory? What does that mean for the stability of the metal in this approximation?
What is the cause of (possible) instability?

— What is the form of the spectral function Ay(w) near k = kp and w = 07

— Calculate the contribution to the total energy of the exchange self-energy, which
is defined by

AEwt:g > Giliw,) S (i) (11)
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Show that AFyy/(ngV) = —0.91633/r, is Rydberg units.



Note that the correction to the kinetic energy, which goes as 1/r? is large when r, is
large, i.e., when the density is small (dilute limit).

Evaluate the higher order correction for self-energy of the RPA form, which is composed
of the following Feynman diagrams
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Show that the self-energy can be evaluated to
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Show that the Polarization function P,(i€2,,) on the real axis (i€2,, — Q+1i0) takes the
following form
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RPA contribution to the total energy is again

A =7 3 Ohlisn)Talis) (16)
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Show that within this RPA approximation the total energy takes the form
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The analytic expression for this total energy contribution can not expressed in a closed
form, however, an asymptotic expression for small r; has the form AFE;,; /ng ~ —0.142+
0.0622 log(rs), which signals that the total energy is not an analytic function of r, or
density, hence perturbation theory in powers of v, is bound to fail. Analytic solution
of this problem is still not available, and only numerical estimates by QMC can be
found in literature. Note that this total energy density is at the heart of the Density
Functional Theory.




