
Homework 3, 620 Many body

November 20, 2023

1) Draw all connected topologically distinct (unlabeled) Feynman diagrams for the self-
energy up to the second order with expansion on the Hartree state. Exclude tadpoles,
which are accounted for by expanding on the Hartree state with redefined single particle
potential.

Assume that the system is translationally invariant, use momentum and frequency
basis to write complete expression for the value of these diagrams. Use the Coulomb
interaction vq and single-particle propagator G0

k(iωn) in your expressions.

2) Calculate the symmetry factors for the following Feynman diagrams, which contribute
to logZ expansion.
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3) Use the Kleinart’s trick to show that the following integral

I(g) =

∫
dx√
2π
e−

1
2
x2− 1

4
gx4 (1)

can be well approximated with the few lowest order terms in perturbation theory.

The exact result of the integral is

Iexact(g) =
e

1
8g

2
√
πg
BesselK(

1

4
,

1

8g
)

We start by expanding in powers of ξ around arbitrary frequency Ω, which gives

I(g,Ω) =

∫
dx√
2π
e−

1
2

Ω2x2−ξ( 1
4
gx4− 1

2
x2(Ω2−1))

=

∫
dx√
2π
e−

1
2

Ω2x2
∞∑
n=0

(−ξ)n

n!
(
1

4
gx4 − 1

2
x2(Ω2 − 1))n (2)

For ξ = 1 the original action has not been changed. ξ here just keeps track of pertur-
bative order, and is set to 1 once the expansion is evaluated.
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– Show that I(0)(g,Ω) = 1
Ω

, which does not have optimum in terms of parameter Ω.

– Show that at order ξ1 the value of the integral is

I(1)(g,Ω) = −3

4

g

Ω2
− 1

2Ω3
+

3

2Ω
.

– Show that the principal of minimal sensitivity requires Ω2 = 1
2
(1±

√
1 + 10g).

– Show that I(g) at the first order can be approximated by

I(1)(g) =
3g + 1

2
+ 1

2

√
1 + 10g

(1
2
(1 +

√
1 + 10g))5/2

(3)

– Check numerically the difference between I(1)(g)− Iexact(g).

– Check analytically the leading order expansion at large g. Note that the exact
result has expansion Iexact = 1.023g−1/4. What is the exponent and coefficient for
I(1)(g)?

The rest of the questions in this problem are optional.

It turns out that at order ξ2 there is no optimum. However, all odd terms have opti-
mum, and at order ξ3 we again get a good approximation for I(g). Check numerically,
and analytically at large g, that the difference between I(3) and Iexact is smaller than
between I(1) − Iexact. What is the coefficient a for I(3)(g) = ag−1/4 expansion at large
g?

4) The Uniform Electron Gas is translationally invariant homogeneous system of inter-
acting electrons, which is kept in-place by uniformly distributed positive background
charge. The action for the model is

S[ψ] =
∑
k,σ

∫ β

0

dτ ψ†kσ(τ)(
∂

∂τ
− µ+ εk)ψkσ(τ)

+
1

2V

∑
σ,σ′k,k′,q 6=0

vq

∫ β

0

dτ ψ†k+q,σ(τ)ψ†k′−q,σ′(τ)ψk′,σ′(τ)ψk,σ(τ) (4)

Here εk = ~2k2
2m

and vq =
e20
ε0q2

is the Coulomb repulsion. The uniform density n0 is equal

to the number of electrons per unit volume, i.e., n0 = Ne/V for charge neutrality.
The density n0 is usually expressed in terms of distance parameter rs, which is the
typical radius between two electrons, and is defined by 1/n0 = 4πr3

s/3. Furthermore,
the Coulomb repulsion and the single-particle energy can be conveniently expressed in
Rydberg units (13.6 eV= ~2/(2ma2

0), a0 Bohr radius), in which vq = 8π/q2 and εk = k2,
and all momentums are measured in 1/a0.

– Show that the Fermi momentum kF = (9π/4)1/3/rs, where EF = k2
F in these

units.
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– Show that the kinetic energy per density is Ekin/(V n0) = εkin = 3
5
k2
F or εkin =

2.2099/r2
s .

– Calculate the exchange (Fock) self-energy diagram and show it has the form

Σx
k = −2kF

π
S

(
k

kF

)
(5)

where

S(x) = 1 +
1− y2

2y
log

∣∣∣∣1 + y

1− y

∣∣∣∣ (6)

Note that S(x) can be obtained by the following integral

S(x) =
1

x

∫ 1

0

du u log

∣∣∣∣u+ x

u− x

∣∣∣∣ (7)

– Derive the expression for the effective mass of the system, which is defined in the
following way

Gk≈kF (ω ≈ 0) =
Zk

ω − k2−k2F
2m∗

(8)

Start from the definition of the Green’s function Gk(ω) = 1/(ω+µ− εk−Σk(ω))
and Taylor’s expression of the self-energy

Σk≈kF (ω ≈ 0) = ΣkF (0) +
∂ΣkF (0)

∂ω
ω +

∂ΣkF (0)

∂k
(k − kF ) (9)

and define Z−1
k = 1− ∂ΣkF

(0)

∂ω
and take into account the validity of the Luttinger’s

theorem (the volume of the Fermi surface can not change by interaction). Show
that under these assumptions, the effective mass of the quasiparticle is

m

m∗
= Zk

(
1 +

m

kF

∂ΣkF (0)

∂k

)
(10)

– Use the exchange self-energy and show that within Hartee-Fock approximation the
effective mass is vanishing. Is there any quasiparticle left at the Fermi level in this
theory? What does that mean for the stability of the metal in this approximation?
What is the cause of (possible) instability?

– What is the form of the spectral function Ak(ω) near k = kF and ω = 0?

– Calculate the contribution to the total energy of the exchange self-energy, which
is defined by

∆Etot =
T

2

∑
k,σ,iωn

Gk(iωn)Σk(iωn) (11)

Show that ∆Etot/(n0V ) = −0.91633/rs is Rydberg units.
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Note that the correction to the kinetic energy, which goes as 1/r2
s is large when rs is

large, i.e., when the density is small (dilute limit).

• Evaluate the higher order correction for self-energy of the RPA form, which is composed
of the following Feynman diagrams
Erelate Feyrom diagons of the form.
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Show that the self-energy can be evaluated to

Σk(iωn) = − 1

β

∑
q,iΩm

v2
qG

0
k+q(iωn + iΩm)

Pq(iΩm)

1− vqPq(iΩm)
(12)

where

Pq(iΩm) =
1

β

∑
iωn,k,s

G0
k(iωn)G0

k+q(iωn + iΩm) (13)

• Show that the Polarization function Pq(iΩm) on the real axis (iΩm → Ω+ iδ) takes the
following form

Pq(Ω + iδ) = − kF
4π2

(
P
(

Ω

k2
F

+ iδ,
q

kF

)
+ P

(
− Ω

k2
F

− iδ, q
kF

))
(14)

where

P(x, y) =
1

2
−
[

(x+ y2)2 − 4y2

8y3

] [
log
(
x+ y2 + 2y

)
− log

(
x+ y2 − 2y

)]
(15)

• RPA contribution to the total energy is again

∆Etot =
T

2

∑
k,s,iωn

G0
k(iωn)Σk(iωn) (16)

Show that within this RPA approximation the total energy takes the form

∆Etot = −V
2

∫
d3q

(2π)3

∫
dΩ

π
n(Ω)Im

{
v2
qPq(Ω + iδ)2

1− vqPq(Ω + iδ)

}
(17)

The analytic expression for this total energy contribution can not expressed in a closed
form, however, an asymptotic expression for small rs has the form ∆Etot/n0 ≈ −0.142+
0.0622 log(rs), which signals that the total energy is not an analytic function of rs or
density, hence perturbation theory in powers of vq is bound to fail. Analytic solution
of this problem is still not available, and only numerical estimates by QMC can be
found in literature. Note that this total energy density is at the heart of the Density
Functional Theory.
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