
Homework 2, 620 Many body

October 26, 2023

1) Problem 4.5.5 in A&S: Using the frequency summation technique compute the following
correlation functions:

χs(q, iΩ) = − 1

β

∑
p,iωn

G0(p, iωn)G0(−p + q,−iωn + iΩ) (1)

χc(q, iΩ) = − 1

β

∑
p,iωn

G0(p, iωn)G0(p + q, iωn + iΩ) (2)

where

G0(q, iωn) =
1

iωn − εp
(3)

and iΩ, iωn are bosonic, fermionic Matsubara frequencies, respectively.

2) Problem 4.5.6 in A&S: Pauli paramagnetic susceptibility occurs due to the coupling of
the magnetic field to the spin of the conduction electrons. The corresponding Hamil-
tonian is:

H = H0[c†, c]− µ0
~B
∑
k,s,s′

c†k,s~σs,s′ck,s′ (4)

where H0 is the non-interacting electron Hamiltonian with dispersion εk.

Calculate the free energy of the system (in the presence of the magnetic field) and
show that the magnetic susceptibility (χ = ∂2F/∂B2 at B = 0) at low temperature is
µ0
2
ρ(EF ), where ρ(EF ) is the density of electronic states at the Fermi level.

3) Problem 4.5.7 in A& S: Electron-phonon coupling.

In the first few lectures we showed how we can obtain the phonon dispersion in a
material. The quantum solution in terms of independent harmonic oscillators has the
usual form

Hph =
∑
q,ν

ωq,ν a
†
q,νaq,ν (5)

where q is momentum in the 1BZ, and ν is a phonon branch. The Fourier transform
of the oscillation amplitude is

uνq,α,j =
1√
N

∑
Rn

uνn,α,je
−iqRn (6)

1



Here α is the Wickoff position in the unit cell, j is x, y, z and Rn is the lattice vector
to unit cell at Rn = n1~a1 +n2~a2 +n3~a3, and N is the number of unit cells in the solid.

The solution of the Quantum Harmonic Oscilator (QHO) gives the relation between
operators aq,p and the position operator, which is in this case given by

uνq,α,j =
1√

2Mαωq,ν

ενα,j(q)(aq,ν + a†−q,ν) (7)

Here ενα,j(q) (or ~ενα(q)) is the phonon polarization, and Mα is the ionic mas at Wickoff
position α.

When solving the phonon problem, we wrote the following equation

[He +
∑
i,j

Ve−i(rj −Ri) +
∑
i 6=j

Vi−i(Ri −Rj)] |ψelectron〉 = Eelectron[{R}] |ψelectron〉 (8)

which gives the solution of the electron problem in the static lattice approximation
(Born-Oppenheimer), where Ri are lattice vectors of ions, He is the electron Hamilto-
nian, and Ve−i and Vi−i are electron-ion and ion-ion Coulomb repulsions, respectively.

Due to ionic vibrations, the displacement of ions creates an additional term in the
Hamiltonian, which according to the above equation, should be proportional to

He−i =

∫
d3r

∑
n,α

[Ve−i(r−Rnα − ~unα)− Ve−i(r−Rnα)]ρelectron(r) (9)

where Rnα is position of an ion at Wickoff position α and unit cell n.

– Using above equations, shows that for small phonon-displacement u, the electron-
phonon coupling should have the form

He−i =
∑

α,j,q,ν,σ,i1,i2,k

c†i1,k+q,σci2,k,σ(aq,ν + a†−q,ν)
gk,qi1,i2,α,ν√
2Mαωq,ν

(10)

where the electron field operator is expanded in Bloch basis

ψσ(r) =
∑
k,i

ψk,i(r)ck,i,σ (11)

and the matrix elements g are given by

gk,qi1,i2,α,ν
=

1√
N

∑
j

ενα,j(q) 〈ψk+q,i1|
∑
n

eiqRn
∂Ve−i(r−Rnα)

∂Rnα,j

|ψk,i2〉 (12)

Explain why the above integration 〈ψk+q,i1|...|ψk,i2〉 can be carried over a single
unit cell, or over the entire solid.

– Now use the following approximations to simplify the above Hamiltonian
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∗ We have only one type of atom in the unit cell, i.e., Mα = M .

∗ We consider only one Bloch band, i.e., ci1k = ck in our model.

∗ We consider the longitudinal phonon with ωq,ν = ωq and approximate form

gk,qi1,i2,α,ν
≈ δi1,i2 iqν γ. (13)

Show that He−i is

He−i = γ
∑
ν,q,σ,k

c†k+q,σck,σ(aq,ν + a†−q,ν)
iqν√
2Mωq

(14)

– Introduce Grassmann field ψqσ for the coherent states of the electrons ckσ and
complex fields Φq,j for phonon operators aq,j, and show that the action of the
electron-phonon problem has the form

S =

∫ β

0

dτ
∑
k,σ

ψ†kσ(∂τ + εk)ψkσ +

∫ β

0

dτ
∑
q,ν

Φ†q,ν(∂τ + ωq)Φq,ν (15)

+γ

∫ β

0

∑
ν,q,σ,k

ψ†k+q,σψk,σ(Φq,ν + Φ†−q,ν)
iqν√
2Mωq

(16)

– Introduce fields in Matsubara space (ψkσ(τ) → ψkσ,n and Φq,ν(τ) → Φq,ν,m)
to transform the action S to the diagonal form. Next, use the functional field
integral technique to integrate out the phonon fields, and obtain the effective
electron action of the form

Seff =
∑
k,σ,n

ψ†kσ,n(−iωn + εk)ψkσ,n −
γ2

2M β

∑
q,n

q2

ω2
q + Ω2

n

nq,nn−q,−n (17)

where the electron charge density is

nq,n =
∑
k,σ,m

ψ†k+q,σ,m+nψk,σ,m (18)

Notice that at small frequency Ωm → 0 this interaction is attractive, which is the
necessary condition for the conventional superconductivity to occur.

Explain why ions with small mass (like hydrides with Hydrogen) could a”chieve
high-Tc with conventional superconductivity. Somewhat counterintuitive is the
requirement that the phonon frequency should be large (and not small), as naively
suggested by the dimensional analysis. Comment why you think high phonon
frequency might still be beneficial to superconductivity?

Finally a word of caution: In ab-initio calculations Ve−i should be the Kohn-Sham
potential, rather than the bare Coulomb potential. This is because at low energy
electrons feel the screened Coulomb repulsion as the electrons are very fast and
adjust to the current position of phonons. The alternative formula, first derived
by Bardeen, uses dynamically screened bare Coulomb repulsion Ve−i = ε−1(ω)VC ,
instead of VKS. The latter formula has received very little attention to date,
because of difficulty of computing precise ε−1r,r′(ω).
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4) Show that the quantum impurity problem with the Hamiltonian

H =
∑
s,k

εkc
†
k,sck,s + Vkc

†
k,sds + V ∗k d

†
sck,s + εd(nd↑ + nd↓) + Und↑nd↓ (19)

can be written in terms of action of the following form

S =

∫ β

0

dτ

[∑
s

ψ†s(τ)(
∂

∂τ
+ εd)ψs(τ) + Und↑nd↓

]
+
∑
s

∫ β

0

∫ β

0

dτdτ ′ψ†s(τ)∆(τ − τ ′)ψs(τ ′)(20)

Here nds = ψ†sψs, while above nds = d†sds.

What is ∆?
Hint: integrate out the fermions ck,s.
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