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Textbooks: Superconductivity is a macroscopic quantum phenomenon

But... the theory of superconductivity is a mean-field theory

Mean-field approximation + Ehrenferst theorem imply the theory is classical
(will show this explicitly for superconductivity)

Superconductivity is a purely classical phenomenon in
contradiction to textbooks!



BCS theory of superconductivity

< ‘ Pairing in arbitrary single-particle potential, e.g., in a harmonic trap:
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BCS mean-field approximation
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BCS mean-field approximation
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for the BCS Hamiltonian: dt
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Spins decouple. Each spin-% moves in its own “magnetic field” field => the system

wavefunction is a product state U, (t) _ H (Uk‘w + Uk|T>)
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BCS mean-field approximation

Heisenberg equations of motion déj T oAl D A
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Take the quantum mechanical average d(3;)

with respect to system wavefunction dt 2(ejz — L) x (8;)

These are Hamilton’s equations for a classical angular momentum Hamiltonian
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Status of the BCS mean-field in equilibrium

BCS mean field is exact for the ground state and low lying excited states in the
thermodynamic limit N — oo

H Physical argument: Mean field is exact for models with infinite-range interactions.
Specifically, since £ is a sum of IV spin - > its quantum fluctuations are negligible as

long as (£) is macroscopically large. For the low-energy states (£) ~ N, but for highly
excited states (macroscopic # of excitations) (£) ~ 1 and mean field breaks down.

1 Rigorous proof: Richardson proved that mean field is exact for low-energy states
starting from Bethe’'s Ansatz solution of the BCS model [Richardson, J. Math. Phys. (1977)].

All observable equilibrium properties of superconductors (excitation spectrum,
Josephson effect, topological properties etc.) are low energy and can be obtained from
this classical spin Hamiltonian.

We conclude that equilibrium superconductivity is a purely classical phenomenon!



In the past 15 years, far from equilibrium superconductivity has been observed in cold
Fermi gases, cavity QED, and THz pumped superconducting films triggering a flood of
theory papers (about a paper a week nowadays)

All these papers do mean-field. But far from equilibrium highly excited states contribute
to the dynamics for which mean field is invalid. Does mean field break down far from

equilibrium or is it still valid?

We're interested in unitary evolution with the BCS Hamiltonian. A natural way to
initiate such an evolution, e.g., in ultracold atomic fermions, is to drive the system by
making the superconducting coupling vary in time: g = g(t)

Then, we need to solve for the dynamics . > A
of a time-dependent BCS Hamiltonian: H(t) = Z 2ex55 — 9(¢) Z Sj Sk



What do we need to do to determine if mean field is exact?

1) Solve the non-stationary Schrodinger equation for the quantum time-dependent BCS
Hamiltonian in the thermodynamic limit V — oo exactly
OU(t) .
—= = HY(t
2) Solve Hamilton’s equations for the classical version of the BCS Hamiltonian in N — oo
limit exactly and obtain W ;(¢) = H (ug|d) + vg|1)) using Sy = (8g)
d S} :
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3) Compare exact quantum W(¢)and exact mean-field ¥,,¢(f) wavefunctions

Unfortunately, solving for the time evolution of a macroscopically large number of
interacting quantum particles or spins with a time-dependent Hamiltonian is essentially
impossible both numerically and analytically even for an integrable model & & &



But...the BCS Hamiltonian turns out to be special! f:[k — 2B§ — Z

[ts integrals of motion are the Gaudin magnets: Fyy Ek — &,
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Gaudin magnets describe N-point correlation function ¥(eq,...,en, B) in SU(2) Wess-
Zumino-Witten CFT through N compatible equations of evolution type
A\ N Knizhnik & Zamolodchikov, Nucl. Phys. B (1984)
Knizhnik-Zamolodchikov equations: iua— = H, v
€k

Moreover, it turns out that the evolution of the correlation function with respect to B is
governed by the BCS Hamiltonian® & @ [Yuzbashyan, Ann. Phys. (2018)]

o .
v U
"an



71 . L1 e
(1) ios=HY,  H= ; 2k}, — o 2}; 5135,
J>

Let B = vt. Eq. (1) becomes the non-stationary Schrodinger equation for the BCS
Hamiltonian with superconducting interaction strength inversely proportional to time

1
t) = —
g(t) E

This is the time dependence that is native to ultracold atomic Fermi gases. BCS interaction
strength is inversely proportional to the detuning from the Feshbach resonance (deviation
of the external magnetic field from the resonance)
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Let B = vt. Eq. (1) becomes the non-stationary Schrodinger equation for the BCS
Hamiltonian with superconducting interaction strength inversely proportional to time

1
t) = —
g(t) E

A natural problem is to start in the ground state at t = 0™ (infinite interaction strength),

P(t=0") =

N A
Stot — §7Stot> )

Evolve tot = +ooand determine the asymptotic wavefunction ¥(t — +o0) =777

We will use this many-body Landau-Zener-type problem to test the accuracy of the mean-
field approximation far from equilibrium



Exact quantum and exact classical solutions

General formal solution of Knizhnik-Zamolodchikov equations in terms of an M-fold

contour integral over off-shell BA states weighted by exponentiated Yang-Yang action
[Babujian, ]. Phys. A (1993); Babujian & Kitaev, ]. Math. Phys. (1998); Fioretto, Caux & Gritsev, New ]. Phys.

(2014)] @

1
Solution of the non-stationary Schrédinger equation for the BCS Hamiltonian with g (t) -

Yuzbashyan, Ann. Phys. (2018)

Att — +o00 the integral localizes to the stationary points of the Yang-Yang action (Bethe
roots). Sum over stationary points and take the thermodynamic limit N — ©0. Do this for

1
spins of magnitude S = > (quantum solution) and for § — ©0 (classical solution) and

compare [Zabalo, Wu, Pixley & Yuzbashyan, Phys. Rev. B (2022)].



1) Exact quantum solution:

U(t — +o0) = C’Z e Me H e 2% 7o [{a}) = M)
{a} e

[{a}) - the state where energy levels {a} = {a1, a2, ... anr} are doubly occupied and
the remaining levels are empty, M - number of Cooper pairs
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This is the exact answer for any /V single-particle levels €1, . . . , € y and arbitrary
number M of fermion pairs




2) Exact classical (mean-field) solution:
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Similar probabilities, but the total particle # is not fixed and phases are different
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2
PO—>{nk} = ‘C’{nk}| — LZ transition probabilities

In our case, for both quantum & classical solutions: PO—>{nk} — Ne v (E—p)ny

Independence of LZ transition probabilities of the parameters of the model (€k) is a
characteristic feature of time-dependent integrability

The asymptotic state is nonthermal but conforms to emergent Generalized Gibbs Ensemble

A _ > ™
PGGE = € 2.1 Br with Ok = ;(k — i)  (Only N parameters vs. 2V)



3) Mean field is exact for local observables in the thermodynamic limit!

Consider the most general product of 17 operators with nonzero expectation value:

A

) = ékl . 6kn ki,...,k, —-ndistinct energy levels

O is pair creation §Z = éLTéL , or annihilation §, = CxCkt or level occupancy N} operator

We say that () islocal if and only if % 3 () when N — o0

Averages of local operators in the exact asymptotic state coincide with their expectation
values in the mean-field wavefunction in the thermodynamic limit:
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Corrections to mean field are of Moreover, we know all <Cchk¢>mf — UkUg,
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4) Classical description (mean field) breaks down for global measures both in
and out of equilibrium

Example #1: Entanglement. The mean-field wavefunction is unentangled (a product
state), while the exact ground state and asymptotic wavefunctions are entangled

Wit = H (uk + vkél];Télii) |0) — Entanglement entropy Sepy = 0

In contrast, in exact quantum dynamics starting
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4) Classical description (mean field) breaks down for global measures both in
and out of equilibrium

Example #2: Loschmidt echo (return amplitude): Z(t) — <\IJZ‘ e—“ﬁ” |\I/Z>

Classical (mean-field) analysis: Numerous singularities (DQPTs) in Z(¢) for quench

dynamics of s-wave BCS superconductors and none for p-wave.
Rylands, Yuzbashyan, Gurarie, Zabalo, Galitski, Ann. Phys. (2021).

Quantum analysis: no singularities for s-wave and periodic singularities for the
topological p-wave superconductor, for the evolution starting from a quantum critical

point separating the topological and non-topological phases.
Gaur, Gurarie, Yuzbashyan, arXiv:2207.08131

Reason: mean field fails because it determines the bulk of the time-dependent system
wavefunction, while the Loschmidt is determined by the exponentially small tails of the
wavefunction


https://arxiv.org/abs/2207.08131

Conclusion (beyond superconductivity): Mean-field theories are able to capture
the order parameter and other local observables, but the entanglement and

many-particle structure of the quantum state are out of reach both in and out of
equilibrium.

The success of mean-field theories to date thus secretly relied on the order

|II

parameter being a “classical” object (local operator in our case).

Aidan Zabalo Angkun Wu Jed Pixley

Zabalo, Wu, Pixley & Yuzbashyan, Phys. Rev. B 106, 104513 (2022).



