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Classical Mechanics

Definition: A classical Hamiltonian H,(p, q) with n degrees of

freedom (n coordinates) is integrable if it has the maximum possible
number (n) of functionally independent Poisson-commuting integrals

{H;(p,q), fI](p, q)}=0; i,j=0,1...n

J

v'  Unambiguous separation of integrable from nonintegrable
(generic)

v Various properties that don’t have to be verified on a case by case
basis



Q3 What is quantum integrability?
How is it defined?
Example: Hubbard model

Think finite, N x N, matrix even with very large N, ; ring

( )

Given matrix H how do we
tell if it's integrable?

How do we generate (an ensemble
) of) integrable matrices?
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No way! Not even a definition! (See e.g. B.Sutherland, Beautiful
Models (2004), Caux & Mossel (2011), E.Y. & Shastry (2013) for review)

no natural notion of an integral of motion: for any H can find a full set

of H, such that /H, H,]=0
L] N
Alternatively, can

N n
H = g E,n){n|, Hj = |k)(k| considerpowersofH, Hy = E :anHO
1

n=1



Who cares? - rise of integrabilit
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“87Rb atoms ... do not noticeably equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like

collisional interactions is infegrable."



week ending

PRL 111, 057002 (2013) PHYSICAL REVIEW LETTERS 2 AUGUST 2013

Higgs Amplitude Mode in the BCS Superconductors Nb;., Ti,N Induced
by Terahertz Pulse Excitation ‘ A(t) ‘ | T T | |

(@) 7pump/7a=0.57

Ryusuke Matsunaga,1 Yuki 1. Hamada,' Kazumasa Makise,2 Yoshinori Uzawa,3

Hirotaka Terai,” Zhen Wang,2 and Ryo Shimano'

(b) sample WGP

OEprope(lgate=1p) (arb. units)

TA = h/Ag ~ 3ps — timescale on which |A(t)| evolves

[4(0)) = [noneq. state produced by the pulse)

Hpos = ) €iéj,¢ig — UZ Ernel Ei1e

1,0

A B cos(2As0t + )
= Hpcs|v) A(t)] = A + a T

Yuzbashyan, Tsyplyatyev, Altshuler, PRL (2006)
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Integrable systems follow Generalized Gibbs Ensemble?

p=2"te =P (O(1)), ., = TrpO
(in|H;|in) = Tr pH;

Does it work?

Sometimes yes, sometimes no — depends on the system, observable
and the the set of integrals

v Works for simple models, e.g. 1D hard-core bosons & Luttinger
liquids Rigol et. al. PRL (2007); Cazalilla PRL (2006)

v’ Fails for models with bound states, e.g. XXZ or attractive Lieb-Liniger
Pozsgay et. al. PRL (2014); Goldstein & Andrei, arXiv:1405.4224

v Fails for global observables except for uncorrelated free fermions
Gurarie, J. Stat. Mech. (2013)

v Does work for XXZ if new integrals are added
llievski et. al. PRL (2015)



Integrable systems follow Generalized Gibbs Ensemble?

p=2"te =P O@1), =Trp0
(in|H;|in) = Tr pH;

Does it work?

Sometimes yes, sometimes no — depends on the system, observable
and the the set of integrals

How do we determine if we have the ‘right” set of
integrals and the criteria for the validity of GGE?

Need to know what quantum integrability is! Otherwise,
GGE is a mysterious, essentially unfalsifiable conjecture.

Do Classical Mechanics first before going Quantum?!



Properties (??) of quantum integrable models

does it work?

v Exact solution via Bethe’s Ansatz: but any
matrix can be “exactly solved” det(H — \I) = 0

v'  Commuting integrals: any matrix has them

v Energy level crossings in violation of
Wigner-v. Neumann non-crossing rule: often,
but not always. Can have crossings without
integrability.

Example: Hubbard model
on aring

v Poisson level statistics: not always — e.g. BCS
model. Non-integrable models can be Poisson.

In the absence of a clear notion, have to verify every
property separately on a case by case basis



Properties of quantum integrable models: Exact Solution
Example: Hubbard model

H=1T Z (C;r-scj+1s C;'+1 Sst) UzﬁjTﬁjl

J,s=Tl
H depends linearly on tight-binding + onsite interactions,
one parameter u=U/T electrons on a ring

N=6 cites, 3 spin-up, M=3 spin-down

Exact Solution (Bethe’s Ansatz):
E.H. Lieb and FYWu (1969)
6ik; _ —sink; —iu/4 H Ao —Agtw/2 7 Ag—sink; —iu/4
i _dlA —sink; + iu/4’ Ao — A +iu/2 11A5—81nk —iu/4

a=1 j=

9 coupled nonlinear equations

6
—ZQCOSICJ', P:ij, |IP,S,S,,...)=...
=1 =1
’ : But cf. det(H — )\]) =3



Commuting integrals (conservation laws)
Example: Hubbard model

N N A
H = Hy(u) = Z (C}SCj+1s + c}L-HSch) + uzﬁjT'ﬁji Njoc — C;r-SCj S
j=1 s=t) =1
N N
Hi(u)=—i) Y (chio,Cis — cloCinzs) —iu Y | Y (1,055 — €l oCin1s) (Aypn,—s + - — 1)
J=1s=1] J=1s=1]
[I:IO (), Iﬁll (w)] =0 for all u B. S. Shastry, PRL (1986)

H,(uw), H;(w), H/(u),... - in principle, infinitely many integrals of motion can be found
from Shastry’s transfer matrix (but not all of them are nontrivial for finite N)

But any Hamiltonian has commuting integrals. So what’s special about Hubbard?

The Hamiltonian and the first integral are linear in a real parameter u.
Higher integrals are polynomial in u.



Properties of quantum integrable models: Level crossings

Example: Hubbard model

H =17 Z (C;r'scj—kls
3,5=T1

T .
Cj+15Cs

H depends linearly on one parameter u=U/T

)

U iy
j

Q: How do eigenvalues look like as functions of u?

For a typical H(u) energy levels with same quantum numbers (spin,

momentum etc.) never cross — noncrossing rule

Hund (1927), Neumann & Wigner (1929)



Properties of quantum integrable models: Level crossings
Example: Hubbard model

H=17T Z (C;'SijLls C;L'+1 Sst) UzﬁjTﬁjl
jrs=Tl J

H depends linearly on one parameter u=U/T

1.5 E
| H(u)=A+uB is a 14 x 14 Hermitian

10~_ . . .
matrix linear in real parameter u

0.5~ -

b * “The noncrossing rule is

] 0204 06 — 08 10

o5t . apparently violated in the
case of the 1d Hubbard
Hamiltonian for benzene
molecule [six sites]..”

1.0

15
Energies for a 14 x 14 block of 1d

Hubbard on six sites characterized by Heilmann and Lieb (1971)
a complete set of quantum numbers



Properties of quantum integrable models: Level crossings
Counterexample: BCS (Richardson) model

Hpcs = » 2687 —u» §;78f =) 25H
i X ij N i

E kinetic term + superconducting interactions

S;— Anderson pseudospins

Gaudin magnet integrable family

~ Szé
H —s —uE J
€; — €4

J#1 J

Energies for a 10 x 10 block of the BCS model for

10 levels characterized by a complete set of [HBCS (u), H, (u)] — ()
quantum numbers



Properties of quantum integrable models: Poisson statistics

Example: Hubbard model Poilblank et.al. Europhys. Lett. (1993)
1 =T T T | B ' J I .

a)

P (s)

0

0 1 2 s Z
Level spacing (s) distribution for Hubbard chain with 12
sites at % filling, total momentum P=n/6, spin $=0



Properties of quantum integrable models: Poisson statistics
Counterexample: BCS (Richardson) model

1.0

Poisson P(s)=e™
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Level spacing (s) distribution for the BCS model for
N=5000 levels and I Copper pair

See also Relano, Dukelsky et. al. PRE (2004)



Notion of Quantum Integrability: What are we looking for?

Definition: Quantum Hamiltonian H is
integrable if ...

Consequences:
Exact Solution

Generate (ensembles of) integrable models
Commuting integrals [H,, H]-]=0; i, j=0,1...
Energy level crossings?

Poisson level statistics and exceptions
Generalized Gibbs Ensemble for dynamics?

2l e s e



Classical integrability has it all

Definition: A classical Hamiltonian H,(p, q) with n

degrees of freedom (n coordinates) is integrable if it has the
maximum possible number (n) of functionally independent
Poisson-commuting integrals /{H;, H;/=0; i,j=0,1...n

Consequences:

1. Exact solution: the dynamics of H,(p, ¢ ) is exactly solvable by
quadratures (Liouville-Arnold theorem)

2. Poisson level statistics semi-classically /Berry & Tabor (1976)]
except when E(n;, n,, ...)isflatinn, n,, ..., i.e. decoupled
harmonic oscillators

3. Generalized Microcanonical Ensemble typically holds for
dynamics [Arnold, Math. Methods of CM, E.Y. ArXiv:1509.06351 |




Generalized Gibbs Ensemble DeMystified in Classical Mechanics

Dynamics is on “invariant torus” — n-dim portion of 2n-dim phase-space cut
out by integrals of motion H,(p,q,)=const, H,(p,q,) =const, ..., H, (p,q,)=const

There are n typically incommensurate frequencies w,, @,, ..., ®, (non-resonant

torus) o _
Lissajous figures

1:2

Sin wit

Sin CUQt 3:4

Theorem about averages (Arnold, Math. Methods of CM):
For a non-resonant torus and any “reasonable” observable O(p,q,)
time average = phase-space average over the torus

qlgnoo%/() O(t)dt:/O(gz))(szsp)n



Generalized Gibbs Ensemble DeMystified in Classical Mechanics

Theorem about averages (Arnold, Math. Methods of CM):
For a non-resonant torus and any “reasonable” observable O(p,q,)
time average = phase-space average over the torus

[0~ foror s

Going back to the original variables p & ¢ and using the fact that this is a
canonical transform can prove Generalized Microcanonical distribution

1 T E.Y, ArXiv:1509.06351
lim — / O (t) dt = / O(p, q)p(p, q)dpdq
0

T—so0o 1’

Works for any system size (any n)!

—1
p(p,q) =V H 0 (Hy(p,q) — ax) Exceptions: resonant tori

Additive integrals,
thermodynamic limit

See e.g. Ruelle, Stat. Mech.:
Hk XN (\ Rigorous Results (1999) p(pa Q) — eXp ( Z )\ka pa )

n — oo

Generalized (canonical) Gibbs

not always the case???




Can we develop a similar sound notion of integrability in Quantum
Mechanics - for N x N Hermitian matrices (Hamiltonians)?

Yuzbashyan, Altshuler, Shastry (2002) u — real parameter,

LV — N x N Hermitian matrices

Hints from Hubbard study, u=U/T: <:> H(U) =T +uV

Nontrivial integrals depend on a real parameter (interaction or external field) in a
certain fixed way. Always at least one linear integral. Same is the case
for other known parameter-dependent models

» 1d Hubbard, XXZ spin chain (# = anisotropy): integrals are polynomial in u

» Gaudin magnets (all integrable pairing models): u=hyperfine interaction,
Hamiltonian and all integrals are linear in u

N e 8 - §
=82 20 (), ()] = 0




Proposed solution: fix parameter dependence
Llet H (u) = T+ uV u-real parameter, T,V — N x N Hermitian matrices

Suppose we require a commuting partner also linear in u:
Hl(U) — T1 -+ uV1
H(u), Hi(u)] =0

%
V.Vl =0, [T,Vi]=[TW,V], [T,Ty]=0

These commutation relations severely constraint matrix elements of 7.
For a generic/typical H(u) — no commuting partners except itself and

identity. Now can separate generic (no partners) from special
(integrable).



Proposed solution: fix parameter dependence
Let H(u) — ' + uV u-real parameter, T,V — N x N Hermitian matrices

Suppose we require a commuting partner also linear in u:

Hl(U) — T1 -+ uV1
H(u), Hi(u)] =0

%
V.Vl =0, [T,Vi]=[TW,V], [T,Ty]=0

In the simplest 3 x 3 case — single algebraic constraint on matrix elements 7;;

Xing condition: 1y : Discriminant y |H(u0) _ )\[‘ — () also single
constraint
Moreover, xing condition = commutation condition, i.e.

Ho(u), Hy(u)] = 0 <= xings in 3 x 3 casel!



N x N Hamiltonians linear in a parameter separate into
two distinct classes = good notion of integrability

H(u) =T + vV wmd !\Io commEJtlng .partners linear in.u other than
itself and identity (typical) — nonintegrable,
ﬁ need N°/2 real parameters to specify H(u)

Nontrivial commuting partners H, (u)=T,+uV, exist —
integrable, turns out need less than 4/N parameters —
measure zero in the space of linear Hamiltonians

¢

Classification by the number n of commuting partners

n = N-1 (maximum possible) — type 1 integrable system
n = N-2 - type 2
n =N-3 —type 3

n=N-M- type M




Definition: A Hamiltonian operator H = Hy(u) = Ty + uVj
is integrable if it has n > 1 nontrivial linearly independent
commuting partners H;(u) = T; + uV;

|Hi(u),Hj(u)] =0 for all w and 7,5 =0,...,n —1
General member of the commuting family: h(u) = >, d;H;(u)

Known parameter-dependent integrable models fall under this definition:

» 1d Hubbard model: u=U/T, Hamiltonian and first integral are linearin u
> integrable XXZ spin chain: u = anisotropy, H,(u) and H,(u) are linear in u
» Gaudin magnets (all integrable pairing models): u=spin exchange,

Hamiltonian and all integrals are linearinu

A SZ ~ ~
i) =S50 S i),y (w)] = 0

— quantum spins ez — real parameters




What can we achieve with this notion of quantum
integrability? - quite a lot!!

Definition: Quantum Hamiltonian H, is
integrable if ...

Consequences:

Exact Solution

Generate (ensembles of) integrable models
Commuting integrals [H,, Hj]=0; i, j=0,1...
Energy level crossings?

Poisson level statistics and exceptions
Generalized Gibbs distribution for dynamics?

e



What can we achieve with this notion of quantum
integrability? - quite a lot!!

v' Construct (ensembles of) integrable models with any given number n of integrals!
V,Wl=0, [TV =[MN,V] [T.71=0

Simplest case: n=/N-1 (type 1 — max # of integrals — analog of classical integrability)



Simplest case: n=N-1 (type 1 — max # of integrals — analog of classical integrability)

= E +uly) (vl

Hermitian matrix £ Arbitrary vector |v)

.

N commuting N x N Hermitian matrices H;(u)

Every type-1 family contains a
“reduced” Hamiltonian A( )

General member of the commuting family: H Z d; H =T +uV
d. — d,,
o = o (222 (a0 —%ﬁuz%( )

ex - eigenvalues of F v, - components of |v) (2N arbitrary real parameters)

dr- eigenvalues of T' - another N arbitrary real numbers to fix a linear combi-
nation within the family. By construction [T, E| = 0.

Constructed all n = N-1, N-2, N-3 (types 1, 2, 3) and some for arbitrary other n



What can we achieve with this notion of quantum
integrability? - quite a lot!!

v' Exact solution through a single algebraic equation for all types (cf. Bethe Ansatz)

2 / 2 .
7j 1 UV 7319)
d N A) =
fze ; A—e; u T A—e A) ; A —€;

V4, €5 - given; solve for A

v" Number of level crossings as a function of the # () of commuting partners in
an integrable family

4 of xings = (N* —5N +2)/2+n -2k, k=1,2,...
Typically ~ N?/2 xings

But it’s also possible to have no xings

v' Yang-Baxter formulation

scattering matrix ¢.. _ (& — &)1 + 2911, Sz-ijkSij — S@ijkSik
Yo (g —a)+ 9 (F+A7)




Applications:1d Hubbard model (6 sites, 3 up/3 down spins

> Each block is characterized by a complete set of quantum #s (P, S~ S....)
» We determine the type of each block

# of nontrivial integrals = Size — Type

Momenta P = 7/6,57/6 Momenta P = w/3,27/3
Size of the black [Tts Type Size of the block |Its Type
8 X 8 Typeﬁ\> 12 x 12 Type 7
% 3 Type 14 11
16 x 1 @ 4 x 4 %
4 x 14 Type > 2 X e
X 3 Type 1- 16 x 16 Type 6

Results for Hubbard:
<» In most blocks - exact solution in terms of a single equation - vast
simplification over Bethe Ansatz (9 equations)

<* New symmetries in 1d Hubbard! # of nontrivial integrals linear in
u=U/T is 14-3-1=10. Only one such integral was identified before



Applications: BCS (Richardson) and Gaudin models

HBCS: E 25¢§f—ug ‘§z_§;_: E 287;H

()

Gaudin magnet integrable family [:[ _ S Y E

J71
One spin-flip sector J, = {max —1, min+1} is type-1 with v = 2s;.
Other sectors — other types.

S; -
)

General member of the commuting family: H Z d; H =T +uV
d - dm
[H(U)]kmzuvmm( . >a [H ()| m _dm_uz%< >

Set d; = ¢; and v; = 1 to get BCS, ﬁBCS = Au) = F + |v) (7|

Every type-1 family contains a “reduced” Hamiltonian



Integrable Matrix Theory (IMT) - ensemble theory of
quantum integrability

Two matrices [T, E] = 0 & vector |y) < type 1 H(u) =T + uV

Other types similarly given in terms of two commuting matrices and a
vector |p>

To generate an integrable matrix with any prescribed number of
integrals — generate 7, E and [y>



Integrable Matrix Theory (IMT) - ensemble theory of
quantum integrability

Two matrices [T, E] = 0 & vector |y) < type 1 H(u) =T + uV

Other types similarly given in terms of two commuting matrices and a
vector |p>

To generate an ensemble of integrable matrices with any prescribed
number of integrals — generate an ensemble of T, E and [y>
Type 1 in the shared eigenbasis of T & E:
d; —dp,

dy, — d,
[H (1)) km = wYkYm ( . ) o HWlnm = dn —u )73 ( .

di, € — eigenvalues of T, K. ~; — components of |v)

Q: What is the natural probability density function for
this ensemble? How do we generate most typical/random

integrable models? P(T, B, 7) 9

)



Two matrices [T, E] = 0 & vector |y) <= type 1 H(u) =T + uV

Q‘’ What is the natural probability density function for
this ensemble? How do we generate most typical/random

intfegrable models? P(T, L, ’Y) —

Similar to Random Matrix Theory, two ways to derive P(T, E, y)

1. Maximize the entropy of the distribution (least information, most unbiased
choice. Generalized Gibbs Ensemble follows from the same principle)

S|P] = —(In(P)) = —/P(T,E,v) In(P(T,E,v))dydT dE

(Tr T), (Tr T?), (Tr E), (Tr E?) = const  Integration over constrained
space: [T, E] =0, |y|=1

1. Statistical independence + rotational invariance of P(T, E, ). 1, E, y are given by
RMT results projected onto the constrained space /7, E] =0



Integrable Matrix Theory (IMT)

Both approaches yield the same answer, B =1,2 for Hermitian, real-symmetric

P(d,g,’y) < 0 (1 - |7’2) H |€z' — €j|5|di — dj|56_ >k 5i€— > ok ds
1<
di, e, — eigenvalues of T, . ~y — components of |)

T, E - random matrices with uncorrelated eigenvalues

1. Maximize the entropy of the distribution (least information, most unbiased
choice). Generalized Gibbs Ensemble follows from the same principle)

S|P] = —(In(P)) = —/P(T,E,v) In(P(T, E,v))dydT dE

(Tr T), (Tr T?), (Tr E), (Tr E?) = const  Integration over constrained
space: [T, E] =0, |y|=1

1. Statistical independence + rotational invariance of P(T, E, ). 1, E, y are given by
RMT results projected onto the constrained space /7, E] =0



Integrable Matrix Theory (IMT)

Both approaches yield the same answer, B =1,2 for Hermitian, real-symmetric

P(d,g,’y) < 0 (1 - |7’2) H |€z’ — €j|ﬁ|di — dj|56_ >k 5ie— > ok d
1<
dy, e, — eigenvalues of T', E. ~, — components of |7>

General member of the commuting family: H Z d; H =T +uV

Type 1 in the shared eigenbasis of T & E:

[H(u)]kmzmmm(ik_dm), H(Wlmm =dm —u Y _7) (gj_gm)

E— Em
jFm
Similar but more involved construction for other types, see arXiv:1511.02446

Now can study ensembles of integrable matrices and obtain
integrable counterparts of RMT results as opposed to only
a spectral statistics of specific integrable models



Integrable Matrix Theory, Level Statistics (numerics)

Statistics are typically Poisson as long as the # of integrals (=size-
type) isn’t too small

Level spacing distribution for a 4000 x
4000 real symmetric integrable matrix
H(u)=T+uV at u=I



Integrable Matrix Theory, Level Statistics

|. Statistics are typically Poisson as long as the # of integrals (=size-
type) isn’t too small
Il. There are two exceptions to Poisson statistics
A. At u=0 the statistics is Wigner-Dyson. Can engineer any
statistics in H(u)=T+uV at isolated value of the coupling u=u,

T, E - random matrices with uncorrelated eigenvalues d;, €;

Can arbitrarily chose either 7 or V, but not both, i.e. can have a desired
statistics e.g. at u=0, but not at all u



Integrable Matrix Theory, Level Statistics (numerics)

|. Statistics are typically Poisson as long as the # of integrals (=size-

type) isn’t too small

Il. There are two exceptions to Poisson statistics
A. At u=0 the statistics is Wigner-Dyson. Can engineer any
statistics in H(u)=T+uV at isolated value of the coupling u=u,

T, E - random matrices with uncorrelated eigenvalues d;, €;

But it becomes Poisson already at (u — ug) o< 1/N

08
06!
04

02

1.0 ormae s

0.07””‘

N = 1000
N =2000
N = 4000

Brody parametet

&
1= s =~

Poisson

" @ as a function of log,, (u)
Brody distribution:
P(s,w) = as¥e "

P(s,1) = gse_%s2 - Wigner
P(s,0) = e~ ¢ - Poisson

w—+1

-2.5

-2.0

1ogN U

-15 -1.0

-0.5

0.0 0.5
N x N Type 1, # of integrals=N-1



Exceptions to Poisson Statistics in IMT

A. At u=0 the statistics is Wigner-Dyson. Can engineer any statistics
in H(u)=T+uV at isolated value of the coupling u=u,

T, F/ - random matrices with uncorrelated eigenvalues d;, €;

A. Statistics is non-Poisson when normally uncorrelated parameters
become correlated (atypical integrable models)

T = f(F), d; = f(&;) - non-Poisson with strong level repulsion,
e.g. BCS model has d; = ¢;

General member of the commuting family: H Z d; H =T +uV

Type 1 in the shared eigenbasis of T & E:

(H ()] km = WYsYm (fk_dm>, H(Wlnm =dm —u »_ 75 (gj_gm)

L — &€
m J£mM




Exceptions to Poisson Statistics in IMT

A. At u=0 the statistics is Wigner-Dyson. Can engineer any statistics
in H(u)=T+uV at isolated value of the coupling u=u,

T, F/ - random matrices with uncorrelated eigenvalues d;, €;
A. Statistics is non-Poisson when normally uncorrelated parameters

become correlated (atypical integrable models)
Reverts to Poisson at deviations § o< 1/N from such points

1.0

, Brody parameter o as a function of log,, (6 )
0.8+~ i

di=(1+dD;)e; D;— O(1) random number

0.6
04
02

00




Exceptions to Poisson Statistics in IMT

A. At u=0 the statistics is Wigner-Dyson. Can engineer any statistics
in H(u)=T+uV at isolated value of the coupling u=u,

T, F/ - random matrices with uncorrelated eigenvalues d;, €;
A. Statistics is non-Poisson when normally uncorrelated parameters

become correlated (atypical integrable models)
Reverts to Poisson at deviations § o< 1/N from such points

1.0¢

7 Brody parameter o as a function of log,, (6)
0.8 o |

(N, M) ]
T oo 2 d; = (1+6D;)e;

0.6

= = == = (500, 250)
= == (2000, 1000)

0.4
D; — O(1) random number

021

0.0

~

----------

I I I I I I I I I I | I I I I
-2.0 -1.5 -1.0 -0.5 0.0 0.5

NxN Tybe M, # of integrals =N - M, u=1




Integrable Matrix Ensembles are ergodic (numerics)

At large NV, spectral statistics is independent of the region R of the spectrum and
coincides with the ensemble distribution of j* spacing

lim py_;(s)

N — 00
\

J™ spacing across the entire ensemble

1.0R

as}tx
™ 0.6 -
E L
0-4f
02+
T T S S S (O Y N R SR 0'07\\\\\\\\\\\\\\\\\\\\\\\\\\'\'\‘\\\..\\.\‘
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
S S
Single N x N Type 1 matrix, Single N x N Type 10000 matrix,

N =20000, u=1, # of integrals = 19999 N =20000, u=1, # of integrals = 10000



Integrable Matrix Ensembles are ergodic (numerics)

At large NV, spectral statistics is independent of the region R of the spectrum and
coincides with the ensemble distribution of j* spacing

lim Pz’,N,R(S)
N—>}7

i matrix (member) of the ensemble

1.0 10}
0.8] 2 0st '\,
D N=10,j=3 Y .
N N=10.7=5 R U N =300,M =150, j =150
w 061 -=- ﬁ_so :118 0.6 2\ N =300, M = 150, j = 20
2 . -
0.4
02
0'07\ T T T T S Y
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
S s
(s) - distribution of j*® ' (s) - distribution of 5 ‘
pN;(s istribution of j** spacing pN,i(s istribution of j** spacing

in ~ 10° type 1 N x N matrices in ~ 10* type M N x N matrices



Q: How many nontrivial integrals should a system have so
that its level statistics is Poisson? (numerics)

k
# of nontrivial integrals = Size — Type H(u) _ Z din,;(u), E<N-M
i=1

N = 2000

17 08¢
106 - = = = M =1000
M = 1980
1 o4l [ ] M = 1997
1 02
oo r —— A\

5 10 15 20

Brody parameter w as a function of k£ for N x N type M matrices.
Fit: aexp(—bk/InN). b= (1.13,1.04;0.99, 1.03) for M = (250, 480; 1000, 1980)

w=1- GOE, w =0 — Poisson

# of integrals needed o< In N (log of Hilbert space dim)?



Type 1 and short-range impurity problem
Every type-1 family contains a A

“reduced” Hamiltonian (U) — E T U|’}/> <7‘

= Hpcg in 1 Cooper pair sector,
GOE (exception from typical Poisson)

Type 1 H(u): # of integrals =N-1 (max # — analog of classical integrability)



Type 1 and short-range impurity problem
Every type-1 family contains a A(U) — F € U|’7> <’Y‘

“reduced” Hamiltonian . _
= Hpcs in 1 Cooper pair sector,

GOE (exception from typical Poisson)

A

Also, = Hip,p short-range impurity, ud(r), in a quantum dot

Aleiner & Matveev, PRL (1998) Z %'2 _ l e; - eigenvalues of £
Bogomolny et. al. PRL (2000) - )\m — €5 u )\m - eigenvalues of A(u)
P({Am,e:}) = ..., P{\n}) = GOE? At least P(s) o s”
N
General member of the commuting family: H(u) = Z d;H;(u) =T +uV
i=1
Eigenvalues of H(u): E 3 N4 GO
1igenvalues o u): Ly = U , Qg
> )\m — &

Q: Can we determine the statistics of eigenvalues of H(u)
analytically?



Type 1: Second "Hamiltoniazation” & Localization
Every type-1 family contains a A( ) — F € ’UJ|’}/> <’7‘

“reduced” Hamiltonian

All members of a commuting family have the same eigenstates — can consider any

one of them
Alu) — Z Aij(u )e! e

Alu) — ﬁ(u) — ngi +u Z%’yjcgcj
i ij

Infinite range hopping in the Hilbert space between the eigenstates
of u=0 or generally u=u,Hamiltonian

.'.

; cc +cjcq) — 20 — 2,
H(w) = Hi(u _nﬁusz j : )5-7 i
i v

[H;(u), Hj(u)] = Z e:H;(u) + const



Type 1: Second "Hamiltoniazation” & Localization

[:[(u) — Zgzﬁz —+ UZ")/i’}/jC;eru <0
() 1]

i, - random (arbitrary)

Source:
Wikipedia

Complete graph, (N-1)-simplex

2 N

N
- 1
Exact solution: Z Vi — ) = Z

=1

Participation ratio: PRy =

All states are localized except the ground state. Ground
state delocalizes at |u /6~ 1/log(N)

0 — average level spacing between ¢;



Source:
Wikipedia

i, - random (arbitrary)

Complete graph, (N-1)-simplex £
)

Excited states localized at any u [see also Ossipov (2013)]

Ground state extended for |u| >> 1/log(/V). Delocalization of the ground state at
lu /6 ~ 1/10g(N) corresponds to the superconducting transition in Hgg

Can explicitly determine exact PR in N — oo limit when ¢;,; are distributed
with a smooth density, i.e. neglecting mesoscopic fluctuations in the DoS

e.g. for ¢; € [-W/2,W /2] with p(e;) = const and v; = 1

, 3+3f%(em) 6 1. 20+W
Excited states: P = = —— + —1 1 <P <
xcited states: PR T +3/2(e,)] f(x) 7ru+7r Do <PR,, <3
3N
Ground state: PR, s, = x N

1 4 2cosh(d/u)



H(u) = Z gif; + u Z fych};cj
i, - random (arbitrary)

Mesoscopic fluctuations:

[ ]
200~ 3 3
2
A .
A 1l ' 1l \ :
100 500 1000 100 500 1000
20+
10 * ° .. ° o L4 o o
:o” ° .. ’..“. O .."o ..‘:. ¢ ’ .. .o
el AYITs z"’.’.. S, .." PR
‘3. *f % ¢ Booool® oD ° 2 %% ° . .303 ‘e’e
o o W ¢ ?..".o oo o0, o % LR 0;’..’ * o o320 © .
:: .:0.’{0‘:: '}\,.‘.‘”J::&.'::‘t’:‘ :3.;‘:{;”‘" 5.‘.‘ "\v. 3 g‘..:'."s,‘ ¢
°2e0 ..‘. ’. &s one 0..:.....- iz .:.0.. o .§ t 30 ooc.‘.‘...o . &
1 fp‘dﬁ:y’ e .‘&‘ 3:"0"‘ ’0.’0. ‘.O. :.;“’o?{.?‘w Ne : Jz\“”

0 100 . 500
Eigenstate

PR for u = —.004, N = 10°. ¢;,v; are independent

Source:
Wikipedia

Excited states:

PRY*™ ~ aln N
due to clustering in ¢;

random numbers uniformly distributed in interval (—1, 1)



What can we achieve with this notion of quantum
integrability? - quite a lot!!

Definition: Quantum Hamiltonian H, is
integrable if ...

Consequences:

Exact Solution

Generate (ensembles of) integrable models
Commuting integrals [H,, Hj]=0; i, j=0,1...
Energy level crossings?

Poisson level statistics and exceptions
Generalized Gibbs Ensemble for dynamics?

R e s



Proof of Generalized Gibbs Ensemble for Type 1

p= 7 tem 2 Pilli (O(t))t—0o = Tr pO?
(in|H;|in) = Tr pH,

Type 1 H(u): # of integrals =N-1 (max # — analog of classical integrability)

t—)oo

Z|cm\20mm in) = Zcm|)\m> (diagonal ensemble)

# of integrals = N — 1 = # of parameters §; = # of independent |c,,|,
i.e. enough integrals to reproduce all |c;,|

Can determine (; such that (O(t)); oo = Tr pO
Specifically, 5; = Z A2

ln]cm\Q

_ 5@)

As in Classical Mechanics integrals fully constrain the motion apart from
linear in time phases (angle variables) that cancel out upon time-averaging.
In both cases integrals completely fix infinite time averages.



Proof of Generalized Gibbs Ensemble for Type 1

P = 7 le <O(t)>t—>oo = It ,OO 7
(in|H;|in) = Tr pH,

H o (1) — a member of the commuting family

N
General member of the commuting family: H(u) = Z diH;(u) =T +uV
i=1

For quantum quenches, u; — u¢, in type 1 Heg(u) # SH (u)

The system effectively thermalizes with a different Hamiltonian (related to
the localization of eigenstates H(u,) in the eigenspace of H(u;) seen above)

In a nonintegrable system expect Heg = SH (u),
e.g. if we take T and V to be random matrices, Heg = 0 X H(u)
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