
Emil	Yuzbashyan

What	is	quantum	integrability	and	who	cares?

Integrable Matrix Theory 
(Theory of integrable Hamiltonians 

with finite number of levels)

KITP	Program: Many-Body	Localization
KITP,	December	10,	2015



Definition: A	classical	Hamiltonian	H0(p , q ) with n degrees	of	
freedom	(n coordinates)	is	integrable	if	it	has	the	maximum	possible	
number	(n)	of	functionally	independent	Poisson-commuting	integrals
{Hi (p , q ) , Hj(p , q )}=0; i,j=0,1…n

ü Unambiguous	separation	of	integrable	from	nonintegrable
(generic)

ü Various	properties	that	don’t	have	to	be	verified	on	a	case	by	case	
basis

Classical Mechanics



Given matrix H how do we 
tell if it’s integrable?
How do we generate (an ensemble
of) integrable matrices?  

No way! Not even a definition!  (See e.g. B. Sutherland, Beautiful 
Models (2004), Caux & Mossel (2011), E.Y. & Shastry (2013) for review) 

no	natural	notion	of	an	integral	of	motion:	for	any	H can	find	a	full	set	
of Hk such	that	[H , Hk]=0

Alternatively,	can	
consider	powers	of	H0

Hk =
NX

n=1

anH
n
0

H =
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0 ⇥ 0 0 0
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Example:	Hubbard	model	
on	a	ring

H =
NX

1

En|n⇥�n|, Hk = |k⇥�k|

Q: What is quantum integrability?                      
How is it defined?  

Think	finite,	N x N,	matrix	even	with	very	large	N



Who cares? – rise of integrability
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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“87Rb	atoms …	do	not	noticeably	equilibrate	even	after	thousands	of	collisions.	Our	results	are	
probably	explainable	by	the	well-known	fact	that	a	homogeneous	1D	Bose	gas	with	point-like	
collisional	interactions	is	integrable.”
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All the curves in Fig. 3 are non-gaussian. For comparison, we have
created equilibrium 1D Bose gases with the same r.m.s. momentum
as the non-equilibrium distributions we study here. To do so, we start
with an equilibrium 3D Bose gas at an elevated temperature and
adiabatically turn on the 2D lattice. The resultant f(p ex) are nearly
perfectly gaussian. Thus, to the extent that an observed f(p ex) is not
gaussian, it has not thermalized.
Heating and loss affect the evolution of the distribution. We have

studied these processes by watching how f(p ex) evolves without any
grating pulses (see Supplementary Information). Some loss (20% or
less, depending on go) comes in the first couple of hundred milli-
seconds from three-body inelastic collisions. There is also 15% per
second loss to background gas collisions. Spontaneous emission
caused by the lattice light heats some atoms, and by leaving some
atoms in unlevitated magnetic sublevels, causes a 30% per second
loss. This last loss in turn causes most of the heating, as exiting atoms
transfer some of the momentum they pick up on their way out to
atoms that remain.
To account for loss and heating in the time evolution shown in

Fig. 3, we project how already dephased distributions would evolve

without thermalization. Specifically, we take f(p ex) at a time
to ¼ 15t, rescale it to account for loss during an observation time,
tobs, and convolve it with gaussian widths to capture the effect of the
independently measured heating during tobs (see Supplementary
Information). The blue curves in Fig. 4 were projected with a two-
component model that accurately reflects the measured heating, for
go (gd) ¼ 4 (18), 1 (3.2) and 0.62 (1.4), where the coupling strength
after dephasing, gd, is calculated using the reduced n1D that prevails
at to. The green curves are the result of a simpler single-component
projection. The similarity of the blue and green lines illustrates the
robustness of our projections (see Supplementary Information). The
red curves show the actual distributions after tobs.
The actual and projected curves overlap reasonably well, with

reduced x2 values of 1.2, 1.35 and 2.5 for Fig. 4a, b and c, respectively
(using the blue curves). In each case, the difference between the
projected and actual curves is far smaller than the difference between
either of them and a thermal distribution. To highlight the non-
gaussian shape of Fig. 4c, we have superimposed a gaussian with the
same atom number and r.m.s. width as the data. The slight discre-
pancies that exist between the actual and projected curves may result
from the ,25% loss of atoms during tobs, which reduces the inter-
action energy contribution to f(pex). By assuming that any deviation
between the projected and actual distributions is a step along the way
to thermalization, we conservatively determine a lower bound on the
thermalization time constant, t th (see Methods). t th is at least 390t,
1,910t and 200t for gd ¼ 18, 3.2 and 1.4, respectively. The data imply
that each atom continues to oscillate in the trap with the same peak
momentum it was given initially, as if there were no collisions.
Although collisions have no dynamical effect, we would like to

roughly keep track of how many have occurred. Each atom passes
N tube/2 atoms every half cycle. The probability of reflection, R, in a
pairwise collision of 1D bosons with centre of mass momentum 2"k
was calculated in ref. 22. In the limit where (2ka 1D)

2 .. 1,
R ¼ (2ka1D)

22. For our confinement parameters, R ¼ 1/22. There-
fore, in the first full cycle, the number of 2"k collisions is N tube, with
r ¼ N tube/22 reflections. After dephasing within a tube, each atom
has as many collisions, but at centre of mass momenta that range
from 2"k to near 0. As the relative velocity decreases, R increases
quadratically (until it saturates), but the ability of a collision to
redistribute momentum is reduced roughly quadratically. Accord-
ingly, we use the r derived above to keep track of reflections even after
the atoms have dephased. For the conditions in Fig. 4a, b and c, the
average number of collisions that have occurred per atom during tobs
are 600, 2,750 and 6,250, respectively, and the average number of
reflections are 27, 125 and 285. Using the results from Fig. 4, we can
set lower limits on the number of reflections required for thermal-
ization of 710, 9,600 and 2,300 for gd ¼ 18, 3.2 and 1.4, respectively.
These limits are obviously much larger than the 2.7 collisions that
characterize thermalization in a 3D gas23.
To experimentally confirm the existence of collisions in this

system, despite their lack of consequence in one dimension, we
apply the grating pulses without ever having turned on the 2D optical
lattice, and so create non-equilibrium momentum distributions in
three dimensions. Two BECs with different centre of mass velocities
collide every half cycle. At the quarter cycle times, the two BECs are
well separated spatially. This implies that collisions occur well above
the Landau critical velocity, allowing particles to scatter out of the
macroscopically occupied states24. We observe thermalization in a
two-step process. Atoms first scatter into a spherical shell in velocity,
which corresponds to the outgoing s-wave. They then scatter into a
broad range of final states. Even though the 3D densities are nearly an
order of magnitude lower than in the 1D tubes, thermalization
occurs on a ,2t timescale.
The absence of damping in 1D Bose gases has several potential

applications. Atoms undergoing Bloch oscillations in quantum
degenerate gases are candidate force sensors25. Fermions have
emerged as better for this purpose than bosons, because the absence

Figure 4 | Projected versus actual f(pex) for various gd, the dephased
average peak coupling strength. The blue and green curves are f(p ex) for
to ¼ 15t, rescaled to account for loss and convolved with the known heating
during tobs. The blue curve’s heating model is more sophisticated than that
of the green curve, but the results are insensitive to the details. The red
curves are the actual distributions at to þ tobs. a, gd ¼ 18 and tobs ¼ 15t.
b, gd ¼ 3.2 and tobs ¼ 25t. c, gd ¼ 1.4 and tobs ¼ 25t. The dashed line in c
is a gaussian with the same number of atoms and r.m.s. width as the actual
distribution. To the extent that the actual distribution conforms to the
projected distribution rather than to a gaussian, the atoms have not
thermalized.
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Ultrafast responses of BCS superconductor Nb1-xTixN films in a nonadiabatic excitation regime were

investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation

with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response

in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS

gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the

order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast

manipulation of the superconducting order parameter by optical means.

DOI: 10.1103/PhysRevLett.111.057002 PACS numbers: 74.40.Gh, 74.25.Gz, 78.47.J!

With spontaneous breaking of continuous symmetry,
two types of collective excitations associated with the
order parameter emerge. One is the gapless phase mode
called as the Nambu-Goldstone mode, and the other is the
gapped amplitude mode also referred to as the Higgs mode
from the analogy to the Higgs boson in particle physics
[1,2], as schematically shown in Fig. 1(a). Recently, the
Higgs amplitude mode has been observed in strongly
interacting superfluid phases of bosonic ultracold atoms
in optical lattices by means of Bragg spectroscopy [3] and
lattice modulation [4]. The studies of the Higgs mode
realized on tabletop experiments would provide substantial
platforms for exploring the nature of symmetry-broken
states in quantum many-body physics. In condensed matter
systems, the amplitude mode has been widely observed in
charged density wave (CDW) systems by Raman or pump-
probe spectroscopy [5–8] and in an antiferromagnet by
neutron spectroscopy [9]. However, the observation of the
amplitude mode in fermionic condensates has been limited
to the specific cases of superconducting CDW compound
NbSe2 [10,11] andp-wave superfluid

3He [12,13]. Then, we
can pose a question as to whether the Higgs mode in a pure
metallic BCS superconductor (SC), which does not couple
to the radiation field, can be observed experimentally.

The amplitude mode in the BCS order parameter has
been anticipated to appear in a response to a fast perturba-
tion in nonadiabatic regime [14–23]. Depending on the
perturbation strength, the nonequilibrium dynamics would
exhibit a persistent oscillation, a transient oscillation
obeying a power-law decay, or a quantum quench of the
order parameter which cannot be described by the time-
dependent Ginzburg-Landau theory or the Boltzmann
equation [16,17]. A sudden switching of the pairing inter-
action by using Feshbach resonance in ultracold atoms [24]
is one promising way to realize such a nonequilibrium

state, while it still remains experimentally challenging.
An alternative way to induce the transient oscillation of
the order parameter has been proposed in conventional
metallic BCS SCs [19]. When a BCS ground state is non-
adiabatically excited by a short laser pulse, the coherence
between different quasiparticle (QP) states leads to the
oscillation of the order parameter. Such a nonadiabatic
excitation for BCS superconductivity requires a short
pump pulse with the duration !pump small enough com-
pared to the response time of the BCS state characterized
by the BCS gap ! as !! ¼ "=!!1. Here a near-visible
femtosecond optical pulse is not applicable, because the
huge excess energies of photoexcited hot electrons in the
order of electronvolts are transferred to the generation
of large amounts of high-frequency phonons (@!> 2!),
which in turn induce the Cooper pair breaking. This pro-
cess destroys the nonadiabatic excitation condition even
if one uses the laser pulse much shorter than !! [25,26].
Therefore, to ensure the nonadiabatic excitation, it is nec-
essary to use a short pump pulse with its photon energy
resonant to the BCS gap which is typically located in
terahertz (THz) frequency range [19]. With the recent
development of THz technology, such an intense and
monocyclelike THz pulse has become available [27], mak-
ing it possible to investigate the THz nonlinear response
in a variety of materials [28–32]. In an s-wave SC of NbN
film, the ultrafast pair breaking and the following QP
dynamics have been investigated by the intense THz
pump-THz probe (TPTP) spectroscopy [26]. Nonlinear
THz transmission experiments in NbN have also been
reported recently [33,34].
In this Letter, we investigated the coherent transient

dynamics of superconducting Nb1-xTixN films after the
THz pulse excitation in the nonadiabatic excitation regime.
The time-domain oscillation of the order parameter was

PRL 111, 057002 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

2 AUGUST 2013

0031-9007=13=111(5)=057002(5) 057002-1 ! 2013 American Physical Society

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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|�(t)|

⌧� = ~/�0 ⇡ 3ps – timescale on which |�(t)| evolves

| (0)i = |noneq. state produced by the pulsei

i
d|��
dt

= ĤBCS|��
Yuzbashyan, Tsyplyatyev, Altshuler, PRL (2006)

ĤBCS =
X

i,�

✏iĉ
†
i� ĉi� � u

X

i,j

ĉ†i"ĉ
†
i#ĉj#ĉj"

|�(t)| = �1 + a
cos(2�1t+ ↵)p

�1t



Does it work?

Sometimes	yes,	sometimes	no	– depends	on	the	system,	observable
and	the	the	set	of	integrals

Integrable	systems	follow	Generalized Gibbs	Ensemble?

üWorks	for	simple	models,	e.g.	1D	hard-core	bosons	&	Luttinger
liquids		Rigol et.	al.	PRL	(2007);	Cazalilla PRL	(2006)

ü Fails	for	models	with	bound	states,	e.g.	XXZ	or	attractive	Lieb-Liniger
Pozsgay et.	al.	PRL	(2014);	Goldstein	&	Andrei,	arXiv:1405.4224

ü Fails	for	global	observables	except	for	uncorrelated	free	fermions	
Gurarie,	J.	Stat.	Mech.	(2013)

üDoes	work	for	XXZ	if	new	integrals	are	added																																						
Ilievski et.	al.	PRL	(2015)

⇢ = Z�1e�
P

i �iHi

hin|Hi|ini = Tr ⇢Hi

hO(t)it!1 = Tr ⇢O



Does it work?

Sometimes	yes,	sometimes	no	– depends	on	the	system,	observable
and	the	the	set	of	integrals

Integrable	systems	follow	Generalized Gibbs	Ensemble?

How do we determine if we have the “right” set of 
integrals and the criteria for the validity of GGE?

Need to know what quantum integrability is! Otherwise, 
GGE is a mysterious, essentially unfalsifiable conjecture.

Do Classical Mechanics first before going Quantum?!

⇢ = Z�1e�
P

i �iHi

hin|Hi|ini = Tr ⇢Hi

hO(t)it!1 = Tr ⇢O



Properties (??) of quantum integrable models

det(H � �I) = 0

In the absence of a clear notion, have to verify every 
property separately on a case by case basis

ü Exact	solution	via	Bethe’s	Ansatz: but	any	
matrix	can	be	“exactly	solved”

ü Commuting	integrals:	any	matrix	has	them

ü Energy	level	crossings	in	violation	of																																					
Wigner-v.	Neumann	non-crossing	rule:	often,	
but	not	always.	Can	have	crossings	without	
integrability.

ü Poisson	level	statistics:	not	always	– e.g.	BCS	
model.	Non-integrable	models	can	be	Poisson.

Example:	Hubbard	model	
on	a	ring



Properties	of	quantum	integrable	models:	Exact	Solution
Example: Hubbard	model

Ĥ = T
�

j,s=�⇥
(c†jscj+1 s + c†j+1 scjs) + U

�

j

n̂j�n̂j⇥

tight-binding	+	onsite	interactions,	
electrons	on	a	ring

H depends	linearly	on	
one	parameter u=U/T

N=6 cites,	3	spin-up,	M=3 spin-down

Exact	Solution	(Bethe’s	Ansatz):

e6ikj =
3Y

�=1

�� � sin kj � iu/4

�� � sin kj + iu/4
,

3Y

�=1

�� � �⇥ + iu/2

�� � �⇥ + iu/2
= �

6Y

j=1

�⇥ � sin kj � iu/4

�⇥ � sin kj � iu/4

9	coupled	nonlinear	equations

E = �
6X

j=1

2 cos kj , P =

6X

j=1

kj , |P, S, Sz, . . . ⇥ = . . .

E.H. Lieb and F.Y.Wu (1969)

det(H � �I) = 0But	cf.



Commuting	integrals	(conservation	laws)
Example: Hubbard	model

Ĥ1(u) = �i

NX

j=1

X

s=⇥⇤
(c†j+2scjs � c†jscj+2s)� iu

NX

j=1

X

s=⇥⇤
(c†j+1scjs � c†jscj+1s)(n̂j+1,�s + n̂j,�s � 1)

[

ˆH0(u), ˆH1(u)] = 0 for all u

n̂j� = c†jscj sĤ ⌘ Ĥ0(u) =
NX

j=1

X

s=�⇥
(c†jscj+1 s + c†j+1 scjs) + u

NX

j=1

n̂j�n̂j⇥

B. S. Shastry, PRL (1986)

H2(u), H3(u), H4(u),… - in	principle,	infinitely	many	integrals	of	motion	can	be	found	
from	Shastry’s transfer	matrix	(but	not	all	of	them	are	nontrivial	for	finite N)

But	any	Hamiltonian	has	commuting	integrals.	So	what’s	special	about	Hubbard?	

The	Hamiltonian	and	the	first	integral	are	linear	in	a	real	parameter	u.
Higher	integrals	are	polynomial	in	u.



Properties	of	quantum	integrable	models:	Level	crossings
Example: Hubbard	model

Ĥ = T
�

j,s=�⇥
(c†jscj+1 s + c†j+1 scjs) + U

�

j

n̂j�n̂j⇥

H depends	linearly	on	one	parameter u=U/T

For	a	typical H(u) energy	levels	with	same	quantum	numbers	(spin,	
momentum	etc.)	never	cross	– noncrossing rule		

Hund (1927),	Neumann	&	Wigner	(1929)

Q: How do eigenvalues look like as functions of u?



Properties	of	quantum	integrable	models:	Level	crossings
Example: Hubbard	model

Ĥ = T
�

j,s=�⇥
(c†jscj+1 s + c†j+1 scjs) + U

�

j

n̂j�n̂j⇥

Energies	for	a	14	x	14	block	of	1d	
Hubbard	on	six	sites	characterized	by	
a	complete	set	of	quantum	numbers		

“The noncrossing rule is 
apparently violated in the 
case of the 1d Hubbard 
Hamiltonian for benzene 
molecule [six sites]…”

Heilmann and Lieb (1971)

H(u)=A+uB is	a	14 x 14 Hermitian	
matrix	linear	in	real	parameter	u

H depends	linearly	on	one	parameter u=U/T



ĤBCS =
X

i

2"iŝ
z
i � u

X

i,j

ŝ�i ŝ
+
j =

X

i

2"iĤi

Properties	of	quantum	integrable	models:	Level	crossings
Counterexample:	BCS	(Richardson)	model

Energies	for	a	10	x	10	block	of	the	BCS	model	for	
10	levels	characterized	by	a	complete	set	of	
quantum	numbers		

[ĤBCS(u), Ĥi(u)] = 0

kinetic	term	+	superconducting	interactions

ˆsi– Anderson pseudospins

E

u

Gaudin	magnet	integrable	family

Ĥi(u) = ŝzi � u
X

j 6=i

ŝi · ŝj
�i � �j

[Ĥi(u), Ĥj(u)] = 0
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0 1 2 s 3  

Fig. 3. - Hubbard chain of 12 sites at one-quarter filling, total momentum k = x/6 and total spin S = 0 
with parameters a)  U = 4 and V = 0, an integrable case; and b)  U = 4 and V = 4. 

interested in empirical methods of establishing integrability by looking at level statistics the 
stronger observation is the observed agreement with GOE. If, instead of the infinite number 
of subspaces of the integrable point there were a finite number of new conservation laws at a 
special point (for example at the supersymmetric point in higher dimension) we would find a 
law intermediate between the GOE and Poisson. In practice, however, this would appear 
more Poisson than GOE. In particular, a finite superposition of spectra, each with GOE 
statistics, has a non-zero probability density at zero repulsion P(0) # 0 [4] and rapidly 
approaches Poisson. Had we not known the integrability of the t- J model, we could probably 
have concluded little more than the existence of degenerate multiplets. 

In conclusion, random matrix theory, remarkably enough, works also for the N-body 
problem in quantum statistical mechanics. Even though classically, the symmetries are 
identical in the integrable or non-integrable Hamiltonians, complete integrability in the 
quantum case leads to Poisson statistics whereas the Wigner distribution for level repulsion 
occurs otherwise. While Poisson statistics may not be a characteristic of integrability, a 
Wigner distribution is probably a good test for the absence of integrability. 

* * *  
The computer simulations were done on the CRAY-2 of Centre de Calcul Vectoriel pour la 

Recherche (CCVR), Palaiseau, France. Support from CCVR is greatly appreciated. We 
would like to thank T. Hsu and A. D'AURIAC for sending us an unpublished account of 
calculations in general agreement with the numerical results (but with different boundary 
conditions) presented here. The computer programs for the Heisenberg and Hubbard models 
were adapted from those developed by T. Z. and H. J. SCHULTZ and F. M. and X. ZOTOS, 
respectively, to whom we are most grateful. We should like to thank C. SIRE and M. 
CAFFAREL for useful discussions. 
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Properties	of	quantum	integrable	models:	Poisson	statistics
Example: Hubbard	model

Poisson	P(s)=e-s

GOE

Level	spacing	(s)	distribution	for	Hubbard	chain	with	12	
sites	at	¼	filling,	total	momentum P=p/6,	spin	S=0

Poilblank et.al. Europhys. Lett. (1993)



Level	spacing	(s)	distribution	for	the	BCS	model	for	
N=5000 levels	and	1 Copper	pair	

Properties	of	quantum	integrable	models:	 Poisson	statistics
Counterexample:	BCS	(Richardson)	model

Poisson	P(s)=e-s

GOE

P
(s
)

s

See	also	Relano,	Dukelsky et.	al.	PRE	(2004)



Notion	of	Quantum	Integrability:	What	are	we	looking	for?

Definition: Quantum Hamiltonian H0 is 
integrable if… 

Consequences:
1. Exact	Solution
2. Generate (ensembles of)	integrable	models
3. Commuting	integrals [Hi , Hj]=0; i, j=0,1…
4. Energy	level	crossings?
5. Poisson	level	statistics	and	exceptions
6. Generalized	Gibbs	Ensemble	for	dynamics?



Classical integrability has it all  

Definition: A	classical	Hamiltonian	H0(p , q ) with n
degrees	of	freedom	(n coordinates)	is	integrable	if	it	has	the	
maximum	possible	number	(n)	of	functionally	independent	
Poisson-commuting	integrals {Hi , Hj}=0; i,j=0,1…n

Consequences:
1. Exact	solution:	the	dynamics	of	Hi(p , q ) is	exactly	solvable	by	

quadratures	(Liouville-Arnold	theorem)
2. Poisson	level	statistics	semi-classically		[Berry & Tabor (1976)] 

except	when	E(n1, n2, …) is	flat	in	n1, n2, …,	i.e.	decoupled	
harmonic	oscillators

3. Generalized	Microcanonical Ensemble	typically	holds	for	
dynamics			[Arnold, Math. Methods of CM, E.Y. ArXiv:1509.06351 ]
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Dynamics	is	on	“invariant	torus”	– n-dim	portion	of	2n-dim	phase-space	cut	
out	by	integrals	of	motion	H1(p,q,)=const, H2(p,q,) =const, …, Hn(p,q,)=const

There	are	n typically	incommensurate	frequencies	w1, w2, …, wn (non-resonant	
torus)	

Theorem	about	averages	(Arnold, Math. Methods of CM):																													
For	a	non-resonant	torus	and	any	“reasonable”	observable	O(p,q,)                            
time	average	=	phase-space	average	over	the	torus

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(')

d'

(2⇡)n

Generalized	Gibbs	Ensemble	DeMystified in	Classical	Mechanics		



Going	back	to	the	original	variables	p & q and	using	the	fact	that	this	is	a	
canonical	transform	can	prove Generalized	Microcanonical distribution

Generalized	Gibbs	Ensemble	DeMystified in	Classical	Mechanics		
Theorem	about	averages	(Arnold, Math. Methods of CM):																														
For	a	non-resonant	torus	and	any	“reasonable”	observable	O(p,q,)                            
time	average	=	phase-space	average	over	the	torus

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(')

d'

(2⇡)n

lim
T!1

1

T

Z T

0
O (t) dt =

Z
O(p, q)⇢(p, q)dpdq

Additive	integrals,	
thermodynamic	limit

Generalized	(canonical)	Gibbs

⇥(p, q) = Z�1
exp

✓
�
X

k

�kHk(p, q)

◆
Hk / n

n ! 1

⇢(p, q) = V �1
nY

k=1

� (Hk(p, q)� ↵k)
Works	for	any	system	size	(any	n)!
Exceptions:	resonant	tori

See	e.g.	Ruelle,	Stat.	Mech.:	
Rigorous	Results	(1999)

not always the case???

E.Y. ArXiv:1509.06351



H(u) = T + uVHints	from	Hubbard	study,	u=U/T:			
Yuzbashyan,	Altshuler,	Shastry	(2002)	 u – real	parameter,																										

T,V – N x N Hermitian	matrices

Nontrivial	integrals	depend	on	a	real	parameter	(interaction	or	external	field)	in	a	
certain	fixed	way.	Always at least one linear integral. Same is the case 
for other known parameter-dependent models

Ø 1d	Hubbard,	XXZ	spin	chain	(u = anisotropy):	integrals	are	polynomial	in	u
Ø Gaudin magnets	(all	integrable	pairing	models):	u=hyperfine interaction,	

Hamiltonian	and	all	integrals	are	linear	in	u

Can we develop a similar sound notion of integrability in Quantum 
Mechanics – for N x N Hermitian matrices (Hamiltonians)? 

Ĥi(u) = ŝzi � u
X

j 6=i

ŝi · ŝj
�i � �j [Ĥi(u), Ĥj(u)] = 0



Proposed solution: fix parameter dependence

H(u) = T + uVLet u – real	parameter,	T,V – N x N Hermitian	matrices

Suppose	we	require	a	commuting	partner	also	linear	in	u:

H1(u) = T1 + uV1

These	commutation	relations	severely	constraint	matrix	elements	of	T.	
For	a	generic/typical	H(u) – no	commuting	partners	except	itself	and	
identity.	Now	can	separate	generic	(no	partners)	from	special	
(integrable).

[V, V1] = 0, [T, V1] = [T1, V ], [T, T1] = 0

[H(u), H1(u)] = 0



Proposed solution: fix parameter dependence

H(u) = T + uVLet u – real	parameter,	T,V – N x N Hermitian	matrices

Suppose	we	require	a	commuting	partner	also	linear	in	u:

H1(u) = T1 + uV1

[V, V1] = 0, [T, V1] = [T1, V ], [T, T1] = 0

[H(u), H1(u)] = 0

In	the	simplest	3	x	3	case	– single	algebraic	constraint on	matrix	elements	Tij

⇥u0 : Discriminant� |H(u0)� �I| = 0Xing	condition: also	single	
constraint

Moreover,	xing condition	=	commutation	condition,	i.e.

[H0(u), H1(u)] = 0 () xings in 3⇥ 3 case!



N x N Hamiltonians linear in a parameter separate into 
two distinct classes = good notion of integrability

H(u) = T + uV No	commuting	partners	linear	in	u other	than	
itself	and	identity	(typical)	– nonintegrable,	
need	N2/2 real	parameters	to	specify	H(u)

Nontrivial	commuting	partners Hk(u)=Tk+uVk exist –
integrable,	turns	out	need	less	than 4N parameters	–
measure	zero	in	the	space	of	linear	Hamiltonians

Classification		by	the	number	n of	commuting	partners
n = N-1 (maximum	possible)	– type	1	integrable	system
n = N-2 – type	2
n = N-3 – type	3
…
n = N-M – type	M
…	



Definition: A Hamiltonian operator H ⌘ H0(u) = T0 + uV0

is integrable if it has n � 1 nontrivial linearly independent
commuting partners Hi(u) = Ti + uVi

[Hi(u), Hj(u)] = 0 for all u and i, j = 0, . . . , n� 1

General member of the commuting family: h(u) =
Pn

i=1 diHi(u)

Known	parameter-dependent	integrable	models	fall	under	this	definition:
Ø 1d	Hubbard	model:	u=U/T,		Hamiltonian	and	first	integral	are	linear	in	u
Ø integrable	XXZ	spin	chain:	u = anisotropy,	H0(u) and	H1(u) are	linear	in	u
Ø Gaudin	magnets	(all	integrable	pairing	models):	u=spin exchange,	

Hamiltonian	and	all	integrals	are	linear	in	u

si – quantum spins ✏i – real parameters

Ĥi(u) = ŝzi � u
X

j 6=i

ŝi · ŝj
�i � �j [Ĥi(u), Ĥj(u)] = 0



What can we achieve with this notion of quantum 
integrability? – quite a lot!!

Definition: Quantum Hamiltonian H0 is 
integrable if… 

Consequences:
1. Exact	Solution
2. Generate (ensembles of)	integrable	models
3. Commuting	integrals [Hi , Hj]=0; i, j=0,1…
4. Energy	level	crossings?
5. Poisson	level	statistics	and	exceptions
6. Generalized	Gibbs	distribution	for	dynamics?



What can we achieve with this notion of quantum 
integrability? – quite a lot!!

ü Construct (ensembles	of)	integrable	models	with	any	given	number	n of	integrals!

[V, V1] = 0, [T, V1] = [T1, V ], [T, T1] = 0
Simplest	case:	n=N-1 (type	1	– max	#	of	integrals	– analog	of	classical	integrability)



Simplest	case:	n=N-1 (type	1	– max	#	of	integrals	– analog	of	classical	integrability)

Hermitian matrix E
Arbitrary vector |��

N commuting N ⇥N Hermitian matrices Hi(u)

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

⇥k - eigenvalues of E,�k - components of |�� (2N arbitrary real parameters)

Constructed	all n = N-1, N-2, N-3 (types	1,	2,	3) and	some for	arbitrary	other	n

Every	type-1	family	contains	a	
“reduced”	Hamiltonian ⇤(u) = E + u|�ih�|

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆

dk- eigenvalues of T - another N arbitrary real numbers to fix a linear combi-

nation within the family. By construction [T,E] = 0.



X

j

�2
j

�� ✏j
=

1

u
, Ek =

u�2
k

�� ✏k
, |�i =

X

j

�j |ji
�� ✏j

ü Exact	solution	through	a	single algebraic	equation	for	all	types	(cf.	Bethe	Ansatz)

(type	1)

�j , ✏j - given; solve for �

ü Number	of	level	crossings		as	a	function	of		the	#	(n) of	commuting	partners	in	
an	integrable	family

# of xings = (N2 � 5N + 2)/2 + n� 2k, k = 1, 2, . . .

Typically ⇠ N2/2 xings

What can we achieve with this notion of quantum 
integrability? – quite a lot!!

But it’s also possible to have no xings

ü Yang-Baxter	formulation

scattering matrix Sij =
(✏j � ✏i)I + 2g⇧ij

(✏j � ✏i) + g (�2
i + �2

j )
SikSjkSij = SijSjkSik



2

[Hi(u), Hj(u)] = 0 for all u and i, j = 0, . . . , n� 1
General member of the commuting family: h(u) =

Pn
i=1 diHi(u)

Hi(B) = Bszi +
P

k 6=i
si·sk
✏i�✏k

si – quantum spins ✏i – real parameters
[Hi(u), Hj(u)] = 0 () [Ti, Tj ] = [Vi, Vj ] = 0, [Ti, Vj ] = [Tj , Vi]

⇡ik = |iihk| (15)

Hi(u) = u⇡ii +
X

k 6=i

�i�k(⇡ik + ⇡ki)� �2
i ⇡ii � �2

j ⇡kk

✏i � ✏k
(16)

⇡ik = |iihk| - projectors, �i, ✏i - arbitrary real numbers

⇡ik ! a†iak where ai are Fermi/Bose destruction operators
PN

j=1

�2
j

�� ✏j
= u

X

j

�2
j

�� ✏j
= u, Ek =

�2
k

�� ✏k
, |�i =

X

j

�j |ji
�� ✏j

(17)

�j , ✏j - given; solve for �

Sij =
(✏j � ✏i)I + 2g⇧ij

(✏j � ✏i) + g (�2
i + �2

j )
(18)

SikSjkSij = SijSjkSik (19)

Momenta P = ⇡/6, 5⇡/6
Size of the block Its Type

8⇥ 8 Type 3

3⇥ 3 Type 1

16⇥ 16 Type 12

14⇥ 14 Type 3

3⇥ 3 Type 1

Momenta P = ⇡/3, 2⇡/3
Size of the block Its Type

12⇥ 12 Type 7

14⇥ 14 Type 11

4⇥ 4 Type 1

2⇥ 2 —

16⇥ 16 Type 6

Applications:1d Hubbard model (6 sites, 3 up/3 down spins

# of nontrivial integrals = Size – Type 

Ø Each	block	is	characterized	by	a	complete	set	of	quantum	#s	(P, S2, Sz…)	
Ø We	determine	the	type	of	each	block

Results for Hubbard:
v In most blocks – exact solution in terms of a single equation – vast 

simplification over Bethe Ansatz (9 equations)!

v New symmetries in 1d Hubbard! # of nontrivial integrals linear in 
u=U/T is 14-3-1=10. Only one such integral was identified before



Applications: BCS (Richardson) and Gaudin models

Gaudin	magnet	integrable	family Ĥi(u) = ŝzi � u
X

j 6=i

ŝi · ŝj
�i � �j

One spin-flip sector Jz = {max�1,min+1} is type-1 with �2
i = 2si.

Other sectors – other types.

ĤBCS =
X

i

2"iŝ
z
i � u

X

i,j

ŝ�i ŝ
+
j =

X

i

2"iĤi

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆

Every	type-1	family	contains	a	“reduced”	Hamiltonian

Set di = "i and �i = 1 to get BCS,

ˆHBCS = ⇤(u) = E + |�ih�|



Integrable Matrix Theory (IMT) – ensemble theory of 
quantum integrability

Other	types	similarly	given	in	terms	of	two	commuting	matrices	and	a	
vector |g>

Two matrices [T,E] = 0 & vector |�i () type 1 H(u) = T + uV

To	generate	an	integrable	matrix	with	any	prescribed	number	of	
integrals	– generate T, E and |g>



Integrable Matrix Theory (IMT) – ensemble theory of 
quantum integrability

Other	types	similarly	given	in	terms	of	two	commuting	matrices	and	a	
vector |g>

Two matrices [T,E] = 0 & vector |�i () type 1 H(u) = T + uV

To	generate	an ensemble	of	integrable	matrices	with	any	prescribed	
number	of	integrals	– generate	an	ensemble of T, E and |g>

dk, "k – eigenvalues of T,E. �k – components of |�i

Q: What is the natural probability density function for 
this ensemble? How do we generate most typical/random 
integrable models?

P (T,E, �) =?

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆Type	1	in	the	shared	eigenbasis of	T & E:



Two matrices [T,E] = 0 & vector |�i () type 1 H(u) = T + uV

Similar	to	Random	Matrix	Theory,	two	ways	to	derive	P(T, E, g) 

1. Maximize	the	entropy	of	the	distribution	(least	information,	most	unbiased	
choice.	Generalized	Gibbs	Ensemble	follows	from	the	same	principle)

1. Statistical	independence	+	rotational	invariance	of		P(T, E, g). T, E, g are	given	by	
RMT	results	projected	onto	the	constrained	space	[T, E] = 0

S[P ] = �hln(P )i = �
Z

P (T,E, �) ln(P (T,E, �))d� dT dE

hTrT i, hTrT 2i, hTrEi, hTrE2i = const

Integration over constrained

space: [T,E] = 0, |�| = 1

Q: What is the natural probability density function for 
this ensemble? How do we generate most typical/random 
integrable models?

P (T,E, �) =?



1. Maximize	the	entropy	of	the	distribution	(least	information,	most	unbiased	
choice).	Generalized	Gibbs	Ensemble	follows	from	the	same	principle)

1. Statistical	independence	+	rotational	invariance	of		P(T, E, g). T, E, g are	given	by	
RMT	results	projected	onto	the	constrained	space	[T, E] = 0

S[P ] = �hln(P )i = �
Z

P (T,E, �) ln(P (T,E, �))d� dT dE

hTrT i, hTrT 2i, hTrEi, hTrE2i = const

Integration over constrained

space: [T,E] = 0, |�| = 1

Integrable Matrix Theory (IMT)
Both	approaches	yield	the	same	answer,	b =1,2 for	Hermitian,	real-symmetric	

P (d, ", �) / �
�
1� |�|2

�Y

i<j

|"i � "j |� |di � dj |�e�
P

k "2ke�
P

k d2
k

dk, "k – eigenvalues of T,E. �k – components of |�i

T,E - random matrices with uncorrelated eigenvalues



Integrable Matrix Theory (IMT)
Both	approaches	yield	the	same	answer,	b =1,2 for	Hermitian,	real-symmetric	

P (d, ", �) / �
�
1� |�|2

�Y

i<j

|"i � "j |� |di � dj |�e�
P

k "2ke�
P

k d2
k

dk, "k – eigenvalues of T,E. �k – components of |�i

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆Type	1	in	the	shared	eigenbasis of	T & E:

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

Similar	but	more	involved	construction	for	other	types,	see	arXiv:1511.02446

Now can study ensembles of integrable matrices and obtain 
integrable counterparts of RMT results as opposed to only 
a spectral statistics of specific integrable models



Integrable Matrix Theory, Level Statistics (numerics) 
I. Statistics	are	typically	Poisson	as	long	as	the	#	of	integrals	(=size-

type)	isn’t	too	small 2
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+
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H�x⇥ ⇥ xT � V

FIG. 1: (colour online) The level spacing distribution for a
4000⇥4000 real symmetric integrable matrix H(x) = xT +V
(defined in Sect. II), x = 1. This particular matrix is a sum of
200 linearly independent matrices that commute for all values
of the real parameter x. Note that the spacing distribution is
maximized at s = 0, a feature known as level clustering. The
smooth curve is a Poisson distribution, which is theorized to
be typical of integrable matrices. Compare to the generic real
symmetric matrix case in Fig. 2.

!"! !"# $"! $"# %"! %"# &"!
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!"%
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!"(

!")
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!

"
�!⇥ Wigner Surmise

RandomMatrix

FIG. 2: (colour online) The level spacing distribution of a
4000⇥4000 random real symmetric matrix with entries chosen
as independent random numbers from a normal distribution
with zero mean and unit variance. Such a matrix belongs to
the Gaussian orthogonal ensemble (GOE) of real symmetric
matrices, studied in random matrix theory (RMT). The main
feature of the spacing distribution here is its vanishing for
small spacings, also known as level repulsion. The smooth

curve is the Wigner surmise P (s) = ⇡
2 se

�⇡
4 s2 . Compare to

the integrable matrix case in Fig. 1.

not be represented as a collection of decoupled harmonic
oscillators.

Our main results are as follows. For a generic choice
of parameters, the level statistics of integrable matrices
H(x) are Poissonian in the limit of the Hilbert space size
N ! 1 if the number of conservation laws n scales at
least as logN . Exceptions to Poisson statistics fall into

two categories. First, it is always possible to construct
a commuting family that has any desired level spacing
distribution at a given isolated value, x = x

0

, of the cou-
pling (or external field) parameter. The statistics quickly
cross back over, however, to Poisson at deviations from
x
0

of size �x ⇠ N�1. Second, one obtains non-Poissonian
distributions by introducing correlations among the or-
dinarily independent parameters characterizing an inte-
grable matrix H(x); the reduced BCS model falls into
this category. The statistics again revert to Poisson at
O(N�1) deviations from such correlations. We also show
numerically that as N ! 1, integrable matrix ensembles
satisfy two distinct definitions of ergodicity with respect
to the nearest-neighbor spacing distribution P (s). Not
only are the statistics of a single matrix representative of
the entire ensemble, but the statistics of the j-th spacing
across the ensemble are independent of j.
In Sect. III, we present numerical results on the level

statistics of type-1 matrices, defined to be integrable ma-
trices H(x) with the maximum number n

max

= N � 1
of linearly independent commuting partners. Section IV
contains numerical results for integrable matrices with
n  n

max

. We present our analytical justification of nu-
merical results using perturbation theory in Sect. V. Fi-
nally, we give numerical results on ergodicity in Sect. VI.

II. BASIC NOTIONS

Refs. 12–14 contain a comprehensive account of the
rigorous definition of an integrable matrix, including mo-
tivating factors and connections to known quantum in-
tegrable models. Ref. 11 then uses this definition to
construct basis-independent ensembles of such matrices.
Here, we give a brief definition of integrable matrices be-
fore delving into their level statistics. We say that H(x)
is integrable if there exist n > 1 nontrivial linearly inde-
pendent N ⇥N Hermitian matrices Hi(x)

Hi(x) = xT i + V i such that

⇥
H(x), Hi(x)

⇤
= 0, [Hi(x), Hj(x)] = 0

for all x and i, j = 1, . . . , n.

(1)

Multiples of the identityH0(x) ⌘ (bx+c) are considered
trivial and linear independence is therefore understood
up to a multiple of the identity, i.e.

P
n

i=1

a
i

Hi(x) =
(bx + c) with real a

i

if and only if all a
i

= 0 and
b = c = 0. In addition, we impose an (optional) con-
dition that Hi(x) have no common x-independent sym-
metries – there is no constant matrix ⌦ ( 6= a ) such that
[⌦, Hi(x)] = 0 for all x and i. If there are such sym-
metries, Hi(x) are simultaneously block-diagonal and
Eq. (1) reduces to that for smaller matrices without x-
independent symmetries. Further, it follows that up to a
multiple of the identity H(x) must be a linear combina-

Level	spacing	distribution	for	a	4000 x 
4000 real	symmetric	integrable	matrix	
H(u)=T+uV at	u=1



I. Statistics	are	typically	Poisson	as	long	as	the	#	of	integrals	(=size-
type)	isn’t	too	small

II. There	are	two	exceptions	to	Poisson	statistics	
A. At u=0 the	statistics	is	Wigner-Dyson.	Can	engineer	any	

statistics	in	H(u)=T+uV at isolated	value	of	the	coupling	u=u0

Integrable Matrix Theory, Level Statistics 

Can	arbitrarily	chose	either	T or	V,	but	not	both,	i.e.	can	have	a	desired	
statistics	e.g.	at	u=0,	but	not	at	all	u

T,E - random matrices with uncorrelated eigenvalues di, "i



I. Statistics	are	typically	Poisson	as	long	as	the	#	of	integrals	(=size-
type)	isn’t	too	small

II. There	are	two	exceptions	to	Poisson	statistics	
A. At u=0 the	statistics	is	Wigner-Dyson.	Can	engineer	any	

statistics	in	H(u)=T+uV at isolated	value	of	the	coupling	u=u0

But it becomes Poisson already at (u� u0) / 1/N

Integrable Matrix Theory, Level Statistics (numerics) 

4

all type-1 matrices, i.e. independent of the number n of
basis matrices (conservation laws) in linear combination
as long as n > O(logN).

We fit all spacing distributions P (s) to the Brody
function1 P (s,!), where ! is the Brody parameter

P (s,!) = a(!)s!e�b(!)s

!+1

. (7)

The distribution in Eq. (7) has unit mean and norm with
appropriate choices of constants a(!) and b(!). It in-
terpolates between a Poisson distribution P (s) = e�s at

! = 0 and the Wigner surmise P (s) = ⇡

2

se�
⇡
4 s

2

at ! = 1,
and hence is a convenient fitting function. The Brody pa-
rameter ! can take all values ! > �1, which means it
also can detect enhanced level clustering or repulsion.

C. Crossover in coupling parameter x

Here we show that even if statistics are engineered to
be non-Poissonian at a given coupling value x = x

0

(we
set x

0

= 0), level clustering is restored at small devia-
tions from x

0

. For any N , the matrices T and V each
have eigenvalues that lie on an O(1) interval centered
about zero. We consider the primary type-1 construc-
tion encountered in Eq. (3) and explore the level statis-
tics of large matrices. In Fig. 3, we see qualitatively how
the statistics change with x when N = 4000. We find
that Poisson statistics dominate until a crossover begins
near N�1. Finally, only once x < N�1 do we find level
repulsion in integrable type-1 matrices.

To verify that the crossover scaling inferred from Fig. 3
is correct for all N � 1, in Fig. 4 we plot how the
Brody parameter ! (see Eq. (7)) evolves with x for vari-
ous choices of N . It turns out that !(x,N) can be fit to
a relatively simple function, for any N � 1

!(x,N) = ↵� � tanh

✓
log

N

x�X
0

Z

◆
. (8)

The numbers (↵,�, X
0

, Z) are fit parameters and take the
values (0.482, 0.474,�1.04, 0.157) in Fig. 4. Most impor-
tant is that for any N � 1 we find X

0

⇠ �1, which solid-
ifies our claim that the crossover occurs when x ⇠ N�1.
Analytical arguments explaining this scaling are given in
Sect. V.

D. Correlations between matrix parameters

In the eigenbasis of V , our parametrization of inte-
grable N ⇥N matrices is given in terms of about 3N in-
dependent parameters. Through an explicit construction
of the probability density function of integrable matri-
ces obtained through basis-independent considerations,
Ref. 11 shows that for a typical integrable matrix, d

i

and
"
i

are indeed uncorrelated. We see in this section that if
correlations are introduced between "

i

and d
i

, the statis-
tics become non-Poissonian. Small perturbations about

!"! !"# $"! $"# %"! %"# &"!

!"!

!"%

!"'

!"(

!")

$"!

*

+
�*⇥ x ⇥ N�1.5

x ⇥ N�1
x ⇥ 1

FIG. 3: (colour online) Crossover in coupling x of the level
statistics of type-1 integrable N⇥N matrices H(x) = xT+V ,
N = 4000. See Sect. III A for their parametrization. V is
a random matrix so that H(x = 0) is engineered to have
level repulsion. Each distribution contains the levels statis-
tics of a single matrix H(x) at a given value of x. Note that
level repulsion does not start to set in until x = N�1. Each
numerical distribution is fit to the Brody function P (s,!)
from Eq. (7); for couplings x =

�
1, N�1, N�1.5

�
the fits give

! = (0.94, 0.30, 0.01), respectively. The solid lines are ref-
erence plots of a Poisson distribution P (s) = e�s and the

Wigner Surmise P (s) = ⇡
2 se

�⇡
4 s2 . See Fig. 4 for more on this

crossover.
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�,⇥

⇤

N ⇥ 4000
N ⇥ 2000
N ⇥ 1000
N ⇥ 500

!"#$$"%

FIG. 4: (colour online) Crossover in level statistics with vari-
ation of coupling parameter x in type-1 integrable N ⇥ N
matrices H(x) = xT + V , quantified by the Brody parameter
!(x,N) from Eq. (7). The two important limits are ! = 0
for Poisson statistics and ! = 1 for random matrix (Wigner-
Dyson) statistics. Each plotted value !(x,N) is computed
for the combined level spacing distribution of several matri-
ces from the ensemble. We extract the crossover scale by
fitting !(x,N) to Eq. (8) (solid curve) to all curves simulta-
neously, where most notably X0 ⇠ �1 for all N investigated,
indicating that crossovers to Poisson statistics occur at cou-
plings x ⇠ N�1 for integrable matrices H(x) when H(x = 0)
is engineered to have level repulsion. The precise crossover
point is indicated by a vertical line.

logN u

Brody	parameter	w as	a	function	of logN (u)

Brody	distribution:	

P (s,!) = as!e�bs!+1

P (s, 1) = ⇡
2 se

�⇡
4 s2

- Wigner

P (s, 0) = e�s
- Poisson

T,E - random matrices with uncorrelated eigenvalues di, "i

GOE

N	x	N	Type	1,	#	of	integrals	=	N	- 1	



Exceptions to Poisson Statistics in IMT

A. At u=0 the	statistics	is	Wigner-Dyson.	Can	engineer	any	statistics	
in	H(u)=T+uV at isolated	value	of	the	coupling	u=u0

A. Statistics	is	non-Poisson	when	normally	uncorrelated	parameters	
become	correlated	(atypical	integrable	models)

[H(u)]km = u�k�m

✓
dk � dm
"k � "m

◆
, [H(u)]mm = dm � u

X

j 6=m

�2
j

✓
dj � dm
"j � "m

◆Type	1	in	the	shared	eigenbasis of	T & E:

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

T,E - random matrices with uncorrelated eigenvalues di, "i

T = f(E), di = f("i) - non-Poisson with strong level repulsion,

e.g. BCS model has di = "i



Exceptions to Poisson Statistics in IMT

A. At u=0 the	statistics	is	Wigner-Dyson.	Can	engineer	any	statistics	
in	H(u)=T+uV at isolated	value	of	the	coupling	u=u0

A. Statistics	is	non-Poisson	when	normally	uncorrelated	parameters	
become	correlated	(atypical	integrable	models)

Reverts to Poisson at deviations � / 1/N from such points
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dj ⇤ �1�⌅Dj⇥ � j

FIG. 7: (colour online) Variation in the Brody parameter
!(�, N) when di = "i(1+ �Di) in the level statistics of N ⇥N
type-1 integrable matrices H(x) for various N , x = 1. The
number � is a parameter controlling the size of the perturba-
tion from correlation, and Di is a O(1) random number from
a normal distribution. Note that the crossover in � is very
similar to the crossover in x given in Fig. 4. The numerical
curves are fit to the function !(�, N) given in Eq. (11) (solid
curve), with a crossover scale X0 ⇠ �1, indicating that devi-
ations from correlation of size N�1 are enough for statistics
to revert to Poisson. Each plotted value !(�, N) is computed
for the combined level spacing distribution of several matri-
ces from the ensemble. A vertical line indicates the crossover
scale on the plot. For a similar plot for nonlinear functions
di("i) see Fig. 8.

x ! �. We find that the crossover occurs when � ⇠ N�1,
indicating that any perturbation to correlations will de-
stroy level repulsion as N ! 1. In particular, Fig. 7
gives (↵,�, X

0

, Z) = (0.479, 0.474,�1.03, 0.169) for lin-
ear correlations. This scaling is not restricted to the
case d

k

= "
k

, as seen in Fig 8 where we again consider
d
j

=
P

4

k=1

A
k

h
k

("
j

) and find the same crossover scaling,
(↵,�, X

0

, Z) = (0.237, 0.233,�0.914, 0.206).

E. Basis matrices: how many conservation laws?

Here we demonstrate that in order to obtain Poisson
statisitcs, the number of linearly independent conserva-
tion laws contained in an N ⇥ N integrable type-1 ma-
trix can be much less than N . The matrices Hj(x) (see
Sect. III A), defined so that d

k

= �
jk

provide a natural
basis for a general H(x):

H(x) =
nX

j=1

d
j

Hj(x). (12)

From the sum in Eq. (12), we can determine the num-
ber n needed to obtain Poisson statistics. Individual
basis matrices Hj(x) will exhibit level repulsion, and it

⇥!"# ⇥!"$ ⇥%"# ⇥%"$ ⇥$"# $"$ $"#

$"$

$"!
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$"(

%"$

)*+
!
�⇧⇥

⌃

dj ⇤ �1�⇧Dj⇥ ⌅k ak � jk

N ⇤ 4000
N ⇤ 2000
N ⇤ 1000
N ⇤ 500

!"#$$"%

FIG. 8: (colour online) Variation in the Brody parameter
!(�, N) when di =

P4
k=1 Akhk("j)(1+�Di) in the level statis-

tics of N ⇥N type-1 integrable matrices H(x) for various N ,
x = 1. The number � is a parameter controlling the size of the
perturbation from correlation, Di is a O(1) random number
from a normal distribution, hk(z) is the k-th order Hermite
polynomial, and Ak are O(1) random numbers. Each plotted
value !(�, N) is computed for the combined level spacing dis-
tribution of several matrices from the ensemble. The crossover
in � is very similar to the crossover in x given in Fig. 4 and
the crossover in � for linear correlations in Fig. 7. In this case,
however, because the correlations are nonlinear, the level re-
pulsion is somewhat diminished in comparison to previous
cases. Despite the reduced level repulsion, the crossover still
demonstrates the same scaling - fitting the numerical curves
to !(�, N) given in Eq. (11) (solid curve), with a crossover
scale X0 ⇠ �1 (indicated by a vertical line), we find again
that deviations from correlation of size N�1 are enough for
statistics to revert to Poisson.

is only when an integrable matrix formed from an un-

correlated (w.r.t. "
j

, see Sect. IIID) linear combina-
tion of su�ciently many of them will we observe Poisson
statistics. Level repulsion in this case can be qualita-
tively understood by reasoning that a basis matrix only
“contains” one nontrivial conservation law, namely itself.
More concretely, we see from the exact solution Eq. (6)
that the eigenvalues of basis matrices are simple, mostly
smooth functions of �

j

, which interlace the "
j

and there-
fore generically exhibit level repulsion.

Figure 9 quantifies how many basis matrices n (i.e.
conservation laws) are needed for Poisson statistics as a
function of N , the matrix size. We find numerically that
the plots of the Brody parameter ! (Eq. (7)) vs. the
number n of basis matrices in linear combination can be
fit to a simple function

!(n,N) = ae�(

b
lnN )n, (13)

where a and b are real constants that in principle depend
implicitly on N . The fact that for di↵erent values of N
we find that b ⇠ 1 supports the notion that we need only
about logN conservation laws in order to induce Pois-
son statistics. We make this claim with caution because

Brody	parameter	w as	a	function	of logN (d )

T,E - random matrices with uncorrelated eigenvalues di, "i

di = (1 + �Di)"i Di – O(1) random number

GOE

N	x	N	Type	1,	#	of	integrals	=	N	– 1,	u=1 



Exceptions to Poisson Statistics in IMT

A. At u=0 the	statistics	is	Wigner-Dyson.	Can	engineer	any	statistics	
in	H(u)=T+uV at isolated	value	of	the	coupling	u=u0

A. Statistics	is	non-Poisson	when	normally	uncorrelated	parameters	
become	correlated	(atypical	integrable	models)

Reverts to Poisson at deviations � / 1/N from such points

Brody	parameter	w as	a	function	of logN (d )

T,E - random matrices with uncorrelated eigenvalues di, "i

Di – O(1) random number

N	x	N	Type	M,	#	of	integrals	=	N	- M,	u=1 
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FIG. 10: (colour online) Variation in the Brody parameter
!(�, N) when gi = �i(1+ �Gi) in the level statistics of N ⇥N
ansatz type-M integrable matrices H(x), Eq. (14), for various
N and M , x = 1. The ordered pairs given in the legend indi-
cate size and type (N,M) of the matrices used to generate the
curves. The number � is a parameter controlling the size of
the perturbation from correlation, and Gi is a O(1) random
number from a normal distribution. The crossover in � for
small M is very similar to the primary type-1 crossover in x
given in Fig. 4 and the primary type-1 correlation crossovers
in � in Figs. 7, 8. For larger M , correlations cannot be in-
troduced (see Eq. (21)). Although these matrices have fewer
than the maximum number of conservation laws, the crossover
still demonstrates the same universal scaling observed earlier;
fitting the numerical curves to !(�, N) given in Eq. (11) (solid
curves), with a crossover scale X0 ⇠ �1 (indicated by a verti-
cal line), we find again that deviations from correlation of size
N�1 are enough for statistics to revert to Poisson. Each plot-
ted value !(�, N) is computed for the combined level spacing
distribution of several matrices from the ensemble. For the
case of correlations in ansatz matrices, we actually choose all
�k > 0 in order to avoid pathological statistics in H(x).

matrices. Denoting n as the number of conservation laws
contained in a linear combination, the Brody parameter
!(n,N) once again decays exponentially:

!(n,N) = ae�(

b
lnN )n, (23)

where a and b are real constants that in principle depend
implicitly on N and M . We see from Fig. 11, N = 500,
that !(n,N) decays to zero in nearly the same way for
M = 470 as for M = 20. It is only for very large M ,
such as M = 497, that level clustering is forbidden, and
this only because we can use a maximum of 3 nontrivial
basis matrices. Similar behavior emerges for N = 2000
in Fig. 12. For all N and M tested, we find b ⇠ 1 so that
in order to obtain Poisson statistics in ansatz type-M
integrable N ⇥ N matrices with n conservation laws in
linear combination, we establish the same upper bound
on n

min

as in Sect. III E, namely n
min

< O(N↵) where
0 < ↵ < 1.

�

�

�

! "# "! $#

#%#

#%$

#%&

#%'

#%(

)

⇥ M � 497

M � 480

M � 250

FIG. 11: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 500, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (250, 480) we find
the decay constant b = (1.13, 1.04), indicating that we only
need nmin ⇠ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Poisson
statistics for M = 497 because the maximum number of non-
trivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 15 conservation laws for Poisson statistics to
start emerging for N = 500. See Fig. 12 for a similar plot for
N = 2000 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

V. ANALYTICAL RESULTS: PERTURBATION
THEORY

Some of the numerical observations found in Sects. III
and IV can be understood using perturbation theory in
the parameter x. We restrict our analysis to the pri-
mary type-1 parametrization because our arguments for
this case are much more transparent than for the ansatz
construction. The analysis for ansatz matrices is similar.
The eigenvalues ⌘

m

(x) of H(x) to first order in x are
given by the second equation in (3), where we set con-
stant |�

j

|2 = N�1 for clarity and to achieve proper scal-
ing for large N

⌘
m

(x) ⇡ d
m

� x

N

X

j 6=m

✓
d
m

� d
j

"
m

� "
j

◆
. (24)

The first term comes from V , which we take to have a
Wigner-Dyson P (s), and the second term from T , which
is determined by the integrability condition and whose
level statistics we do not control. Let us estimate the x
at which the two terms in Eq. (24) become comparable.
Without loss of generality we can take d

k

= O(N0) =
O(1) and we must also take "

k

= O(1) so that T and
V scale in the same way for large N . Suppose "

k

are
ordered as "

1

< "
2

< · · · < "
N

. When d
k

and "
k

are

(N,M)

di = (1 + �Di)"i
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FIG. 14: (colour online) Demonstrating property Eq. (31),
vertical ergodicity, in type-1 matrices in the primary
parametrization. Shown are the level statistics Pi,N,R(s) of a
single type-1 integrable matrix H(x), x = 1 and N = 20000,
for di↵erent regions R of its spectrum (the subscript i indi-
cates H(x) is the i-th matrix in the ensemble). Each spec-
tral region R contains 4000 eigenvalues. The inset shows the
density of states of this matrix and indicates which numeri-
cal curve corresponds to which region R. The distributions
Pi,N,R(s) shown are independent of R, indicating that type-
1 matrix spectra are translationally invariant with respect to
level statistics. The same results obtain from any type-1 H(x)
generated according to specifications given in Sect. III A, i.e.
Pi,N,R(s) is also independent of i. Noting that these distribu-
tions are Poisson, Pi,N,R(s) ⇡ e�s (solid curve) and compar-
ing to Fig. 18 which gives PN0(s) ⇡ e�s for N 0 = 2000, we
see that the vertical ergodicity property, Eq. (31), is satisfied
for type-1 integrable matrices.

spin chains with disorder by averaging a statistic of the
j-th level spacing over di↵erent realizations of disorder.

Integrable matrices H(x) are generally horizontally er-
godic, but the property does not set in for small N as
quickly as it does for Gaussian random matrices. As an
example, Figs. 20, 21 show p

3,2

(s), the distribution of
the 2nd eigenvalue spacing for N = 3, M = 1. This dis-
tribution di↵ers markedly from a Poisson distribution,
especially in the small s and large s regions. For small
s there is slight level repulsion and for large s Fig. 21
shows that the decay of p

3,2

(s) is a power law.

As we increase N , however, we begin to observe hor-
izontal ergodicity. In the case of type-1 matrices in
the primary parametrization, we see in Fig. 22 that the
graphs of two di↵erent p

10,j

(s) closely resemble those of
two di↵erent p

80,j

(s), the latter of which are clearly Pois-
son. The same behavior is seen in ansatz matrices of any
type, but the convergence to a Poisson distribution does
not become apparent until N = 300 as in Fig. 23.

To summarize, we find that our type-M integrable ma-
trix ensembles M↵

N!1 are both vertically and horizon-
tally ergodic as defined in Eqs. (31, 32). Numerical data
generated in Sects. III and IV used both P

i,N,R

(s) and
P
N,R

(s) to represent level statistics of integrable matri-
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FIG. 15: (colour online) Demonstrating property Eq. (31)
in ansatz type-M integrable matrices. Shown are the level
statistics Pi,N,R(s) of a single integrable matrix H(x), x = 1,
N = 20000 and M = 10000, for di↵erent regions R of its
spectrum (the subscript i indicates H(x) is the i-th matrix in
the ensemble). Each spectral region R contains 4000 eigen-
values. The inset shows the density of states of this matrix
and indicates which numerical curve corresponds to which re-
gion R. The distributions Pi,N,R(s) shown are independent
of R, indicating that type-M matrix spectra are translation-
ally independent with respect to level statistics. The same
results obtain from any type-M H(x) generated according to
specifications given in Sect. IVA, i.e. Pi,N,R(s) is also in-
dependent of i. Noting that these distributions are Poisson,
Pi,N,R(s) ⇡ e�s (solid curve) and comparing to Fig. 19 which
gives PN0(s) ⇡ e�s for N 0 = 2000 M 0 = 1000, we see that the
vertical ergodicity property, Eq. (31), is satisfied for type-M
integrable matrices in the ansatz parametrization.

ces. The results of this section show that for large N , it
is valid to treat these two distinct distributions as equal.

VII. CONCLUSION

The goal of this work was to demonstrate two proper-
ties of ensembles M↵

N!1 of type-M integrable matrices
linear in a coupling parameter H(x) = xT + V :

1) The level statistics spacing distribution P (s) is Pois-
son, P (s) = e�s, for generic choices of parameters for al-
most all M . There are cases of level repulsion, but they
correspond to sets of measure zero in parameter space.

2) As N ! 1, all M↵

N

are both horizontally and ver-
tically ergodic as defined in Sect. VI. In short, integrable
matrix ensembles are ergodic with respect to the nearest-
neighbor level spacing distribution.

We find that integrable N ⇥ N matrices H(x) have
Poisson statistics as long as the number of conservation
laws within a matrix n increases as N increases. In par-
ticular we find that n

min

⇠ logN in order to have Poisson
statistics. The number of nontrivial conservation laws
can be controlled by the type-M for which n = N �M
or by using only n independent basis matrices in linear
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FIG. 14: (colour online) Demonstrating property Eq. (31),
vertical ergodicity, in type-1 matrices in the primary
parametrization. Shown are the level statistics Pi,N,R(s) of a
single type-1 integrable matrix H(x), x = 1 and N = 20000,
for di↵erent regions R of its spectrum (the subscript i indi-
cates H(x) is the i-th matrix in the ensemble). Each spec-
tral region R contains 4000 eigenvalues. The inset shows the
density of states of this matrix and indicates which numeri-
cal curve corresponds to which region R. The distributions
Pi,N,R(s) shown are independent of R, indicating that type-
1 matrix spectra are translationally invariant with respect to
level statistics. The same results obtain from any type-1 H(x)
generated according to specifications given in Sect. III A, i.e.
Pi,N,R(s) is also independent of i. Noting that these distribu-
tions are Poisson, Pi,N,R(s) ⇡ e�s (solid curve) and compar-
ing to Fig. 18 which gives PN0(s) ⇡ e�s for N 0 = 2000, we
see that the vertical ergodicity property, Eq. (31), is satisfied
for type-1 integrable matrices.

spin chains with disorder by averaging a statistic of the
j-th level spacing over di↵erent realizations of disorder.

Integrable matrices H(x) are generally horizontally er-
godic, but the property does not set in for small N as
quickly as it does for Gaussian random matrices. As an
example, Figs. 20, 21 show p

3,2

(s), the distribution of
the 2nd eigenvalue spacing for N = 3, M = 1. This dis-
tribution di↵ers markedly from a Poisson distribution,
especially in the small s and large s regions. For small
s there is slight level repulsion and for large s Fig. 21
shows that the decay of p

3,2

(s) is a power law.

As we increase N , however, we begin to observe hor-
izontal ergodicity. In the case of type-1 matrices in
the primary parametrization, we see in Fig. 22 that the
graphs of two di↵erent p

10,j

(s) closely resemble those of
two di↵erent p

80,j

(s), the latter of which are clearly Pois-
son. The same behavior is seen in ansatz matrices of any
type, but the convergence to a Poisson distribution does
not become apparent until N = 300 as in Fig. 23.

To summarize, we find that our type-M integrable ma-
trix ensembles M↵

N!1 are both vertically and horizon-
tally ergodic as defined in Eqs. (31, 32). Numerical data
generated in Sects. III and IV used both P

i,N,R

(s) and
P
N,R

(s) to represent level statistics of integrable matri-
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FIG. 15: (colour online) Demonstrating property Eq. (31)
in ansatz type-M integrable matrices. Shown are the level
statistics Pi,N,R(s) of a single integrable matrix H(x), x = 1,
N = 20000 and M = 10000, for di↵erent regions R of its
spectrum (the subscript i indicates H(x) is the i-th matrix in
the ensemble). Each spectral region R contains 4000 eigen-
values. The inset shows the density of states of this matrix
and indicates which numerical curve corresponds to which re-
gion R. The distributions Pi,N,R(s) shown are independent
of R, indicating that type-M matrix spectra are translation-
ally independent with respect to level statistics. The same
results obtain from any type-M H(x) generated according to
specifications given in Sect. IVA, i.e. Pi,N,R(s) is also in-
dependent of i. Noting that these distributions are Poisson,
Pi,N,R(s) ⇡ e�s (solid curve) and comparing to Fig. 19 which
gives PN0(s) ⇡ e�s for N 0 = 2000 M 0 = 1000, we see that the
vertical ergodicity property, Eq. (31), is satisfied for type-M
integrable matrices in the ansatz parametrization.

ces. The results of this section show that for large N , it
is valid to treat these two distinct distributions as equal.

VII. CONCLUSION

The goal of this work was to demonstrate two proper-
ties of ensembles M↵

N!1 of type-M integrable matrices
linear in a coupling parameter H(x) = xT + V :

1) The level statistics spacing distribution P (s) is Pois-
son, P (s) = e�s, for generic choices of parameters for al-
most all M . There are cases of level repulsion, but they
correspond to sets of measure zero in parameter space.

2) As N ! 1, all M↵

N

are both horizontally and ver-
tically ergodic as defined in Sect. VI. In short, integrable
matrix ensembles are ergodic with respect to the nearest-
neighbor level spacing distribution.

We find that integrable N ⇥ N matrices H(x) have
Poisson statistics as long as the number of conservation
laws within a matrix n increases as N increases. In par-
ticular we find that n

min

⇠ logN in order to have Poisson
statistics. The number of nontrivial conservation laws
can be controlled by the type-M for which n = N �M
or by using only n independent basis matrices in linear

At	large	N,	spectral	statistics	is	independent	of	the	region	R of	the	spectrum	and	
coincides	with	the	ensemble	distribution	of	jth spacing

lim
N!1

Pi,N,R(s) ⇡ e�s ⇡ lim
N!1

pN,j(s)

ith matrix	(member)	of	the	ensemble jth spacing	across	the	entire	ensemble

Single	 N x N  Type	1	matrix,	
N = 20000, u=1, #	of	integrals	= 19999

Single	N x N Type	10000	matrix,
N = 20000, u=1, #	of	integrals	= 10000
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At	large	N,	spectral	statistics	is	independent	of	the	region	R of	the	spectrum	and	
coincides	with	the	ensemble	distribution	of	jth spacing

lim
N!1

Pi,N,R(s) ⇡ e�s ⇡ lim
N!1

pN,j(s)

ith matrix	(member)	of	the	ensemble jth spacing	across	the	entire	ensemble14
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FIG. 20: (colour online) Plot of the statistics p3,2(s), the
second spacing of 106 type-1 integrable matrices H(x) of size
N = 3 with x = 1. The distribution is not Poisson (solid line)
and actually has a power law tail (see Fig. 21 for more on the
tail). In order to observe the horizontal ergodicity property
of type-1 integrable matrices, defined in Eq. (32), we need to
go to larger N as in Fig. 22.
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FIG. 21: (colour online) Log-log plot of the tail of the distri-
bution p3,2(s) shown in Fig. 20, the statistics of the second
spacing of 106 primary type-1 integrable matrices H(x) of
size N = 3 with x = 1. The linear fit f(s) = �3.15s + 0.02
shows that the tail of the distribution p3,2(s) follows a power
law s�↵ with exponent ↵ ⇡ 3.15. Because the distribution
pN,j(s) transitions to Poisson for large N , as evidenced by
Fig. 22 for type-1 primary matrices and Fig. 23 for type-M
ansatz matrices, we conclude that as N increases, the tail of
pN,j(s) becomes a power law of increasing exponent and only
becomes exponential in the limit N ! 1.

to the linearity in x condition, the ensembles of matrices
studied in this work are only constrained by symmetry
requirements just like the Gaussian random matrix en-
sembles. The only di↵erence here is that in the integrable
case there are many more symmetries. We therefore ex-
pect our results to apply generally to quantum integrable
models with coupling parameters.
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FIG. 22: (colour online) Demonstrating the horizontal er-
godicity property Eq. (32) in type-1 N ⇥ N matrices H(x),
x = 1 in the primary parametrization. The four numerical
curves show the statistics pN,j(s) for (N, j) = (10, 3), (10, 5),
(80, 10) and (80, 40), each containing 105 eigenvalue spac-
ings. The statistics are nearly independent of j for N = 10,
and for N = 80 there is no perceptible di↵erence between
j = 10 and j = 40. The solid line is a Poisson distribution
p(s) = e�s. Horizontally ergodicity is shown to hold also for
type-M ansatz matrices in Fig. 23.
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FIG. 23: (colour online) Demonstrating the horizontal ergod-
icity property Eq. (32) in ansatz type-150 N ⇥ N matrices
H(x), x = 1 and N = 300. The two numerical curves show
the statistics pN,j(s) for (N, j) = (300, 150) and (300, 20),
each containing ⇠ 104 eigenvalue spacings. The statistics are
nearly independent of j, although higher N would be needed
in order for the di↵erences to disappear. The solid line is a
Poisson distribution p(s) = e�s.
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and actually has a power law tail (see Fig. 21 for more on the
tail). In order to observe the horizontal ergodicity property
of type-1 integrable matrices, defined in Eq. (32), we need to
go to larger N as in Fig. 22.
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FIG. 21: (colour online) Log-log plot of the tail of the distri-
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shows that the tail of the distribution p3,2(s) follows a power
law s�↵ with exponent ↵ ⇡ 3.15. Because the distribution
pN,j(s) transitions to Poisson for large N , as evidenced by
Fig. 22 for type-1 primary matrices and Fig. 23 for type-M
ansatz matrices, we conclude that as N increases, the tail of
pN,j(s) becomes a power law of increasing exponent and only
becomes exponential in the limit N ! 1.

to the linearity in x condition, the ensembles of matrices
studied in this work are only constrained by symmetry
requirements just like the Gaussian random matrix en-
sembles. The only di↵erence here is that in the integrable
case there are many more symmetries. We therefore ex-
pect our results to apply generally to quantum integrable
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FIG. 22: (colour online) Demonstrating the horizontal er-
godicity property Eq. (32) in type-1 N ⇥ N matrices H(x),
x = 1 in the primary parametrization. The four numerical
curves show the statistics pN,j(s) for (N, j) = (10, 3), (10, 5),
(80, 10) and (80, 40), each containing 105 eigenvalue spac-
ings. The statistics are nearly independent of j for N = 10,
and for N = 80 there is no perceptible di↵erence between
j = 10 and j = 40. The solid line is a Poisson distribution
p(s) = e�s. Horizontally ergodicity is shown to hold also for
type-M ansatz matrices in Fig. 23.
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in order for the di↵erences to disappear. The solid line is a
Poisson distribution p(s) = e�s.
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Q: How many nontrivial integrals should a system have so 
that its level statistics is Poisson? (numerics) 

#	of	nontrivial	integrals	=	Size	– Type	
= N - M 9
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FIG. 10: (colour online) Variation in the Brody parameter
!(�, N) when gi = �i(1+ �Gi) in the level statistics of N ⇥N
ansatz type-M integrable matrices H(x), Eq. (14), for various
N and M , x = 1. The ordered pairs given in the legend indi-
cate size and type (N,M) of the matrices used to generate the
curves. The number � is a parameter controlling the size of
the perturbation from correlation, and Gi is a O(1) random
number from a normal distribution. The crossover in � for
small M is very similar to the primary type-1 crossover in x
given in Fig. 4 and the primary type-1 correlation crossovers
in � in Figs. 7, 8. For larger M , correlations cannot be in-
troduced (see Eq. (21)). Although these matrices have fewer
than the maximum number of conservation laws, the crossover
still demonstrates the same universal scaling observed earlier;
fitting the numerical curves to !(�, N) given in Eq. (11) (solid
curves), with a crossover scale X0 ⇠ �1 (indicated by a verti-
cal line), we find again that deviations from correlation of size
N�1 are enough for statistics to revert to Poisson. Each plot-
ted value !(�, N) is computed for the combined level spacing
distribution of several matrices from the ensemble. For the
case of correlations in ansatz matrices, we actually choose all
�k > 0 in order to avoid pathological statistics in H(x).

matrices. Denoting n as the number of conservation laws
contained in a linear combination, the Brody parameter
!(n,N) once again decays exponentially:

!(n,N) = ae�(

b
lnN )n, (23)

where a and b are real constants that in principle depend
implicitly on N and M . We see from Fig. 11, N = 500,
that !(n,N) decays to zero in nearly the same way for
M = 470 as for M = 20. It is only for very large M ,
such as M = 497, that level clustering is forbidden, and
this only because we can use a maximum of 3 nontrivial
basis matrices. Similar behavior emerges for N = 2000
in Fig. 12. For all N and M tested, we find b ⇠ 1 so that
in order to obtain Poisson statistics in ansatz type-M
integrable N ⇥ N matrices with n conservation laws in
linear combination, we establish the same upper bound
on n

min

as in Sect. III E, namely n
min

< O(N↵) where
0 < ↵ < 1.
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FIG. 11: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 500, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (250, 480) we find
the decay constant b = (1.13, 1.04), indicating that we only
need nmin ⇠ logN conservation laws for Poisson statistics
to emerge, independent of type. We do not observe Poisson
statistics for M = 497 because the maximum number of non-
trivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 15 conservation laws for Poisson statistics to
start emerging for N = 500. See Fig. 12 for a similar plot for
N = 2000 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

V. ANALYTICAL RESULTS: PERTURBATION
THEORY

Some of the numerical observations found in Sects. III
and IV can be understood using perturbation theory in
the parameter x. We restrict our analysis to the pri-
mary type-1 parametrization because our arguments for
this case are much more transparent than for the ansatz
construction. The analysis for ansatz matrices is similar.
The eigenvalues ⌘

m

(x) of H(x) to first order in x are
given by the second equation in (3), where we set con-
stant |�

j

|2 = N�1 for clarity and to achieve proper scal-
ing for large N

⌘
m

(x) ⇡ d
m

� x

N

X

j 6=m

✓
d
m

� d
j

"
m

� "
j

◆
. (24)

The first term comes from V , which we take to have a
Wigner-Dyson P (s), and the second term from T , which
is determined by the integrability condition and whose
level statistics we do not control. Let us estimate the x
at which the two terms in Eq. (24) become comparable.
Without loss of generality we can take d

k

= O(N0) =
O(1) and we must also take "

k

= O(1) so that T and
V scale in the same way for large N . Suppose "

k

are
ordered as "

1

< "
2

< · · · < "
N

. When d
k

and "
k

are

10

�

�
�

! "# "! $#

#%#

#%$

#%&

#%'

#%(

)

⇥ M � 1997

M � 1980

M � 1000

FIG. 12: (colour online) Graph of the Brody parameter
!(n,N) (Eq. (7)) vs. number n of ansatz type-M basis ma-
trices Hi(x), see Eq. (18), contained in linear combination
H(x) =

Pn
i=1 giH

i(x) for N = 2000, x = 1. The fits pre-
sume exponential decay and are expressed in terms of two
parameters (a, b) from Eq. (13). For M = (1000, 1980) we
find the decay constant b = (0.99, 1.03), indicating that we
only need nmin ⇠ logN conservation laws for Poisson statis-
tics to emerge, independent of type. We do not observe Pois-
son statistics for M = 1997 because the maximum number of
nontrivial basis matrices is 3 in this case, and we see that we
need at least ⇠ 20 conservation laws for Poisson statistics to
start emerging for N = 2000. See Fig. 11 for a similar plot for
N = 500 and Fig. 9 for the same concept in type-1 matrices
in the primary parametrization. Each plotted value !(n,N)
is computed for the combined level spacing distribution of
several matrices from the ensemble.

uncorrelated d
m

� d
j

is O(1) when j is close to m, i.e.
when ("

m

� "
j

) = O(N�1). The second term in Eq. (24)
is then xc

m

lnN , where c
m

= O(1) is a random number
only weakly correlated with d

m

. We performed simple
numerical tests that confirm this scaling argument.

If we now order d
m

, c
m

in general will not be ordered,
i.e. if d

m+1

> d
m

is the closest level to d
m

and there-
fore (d

m+1

� d
m

) = O(N�1), the corresponding di↵er-
ence (c

m+1

� c
m

) = O(1). The contributions to level-
spacings from the two terms in Eq. (24) become compa-
rable for x = x

c

⇡ 1/(N lnN). It makes sense that the
second term introduces a trend towards a Poisson dis-
tribution because it is a (nonlinear) superposition of "

k

and d
k

– eigenvalues of two uncorrelated random matri-
ces. Thus, we expect a crossover from Wigner-Dyson to
Poisson statistics at x = x

c

. In our numerics we observe
x
c

⇠ N�1 likely because we do not reach large enough
N to detect the log component of the crossover.

This argument breaks down when d
k

= f("
k

), since in
this case (d

m

�d
j

) = O(N�1) when ("
m

�"
j

) = O(N�1).
The two terms in Eq. (24) become comparable only at
x = O(1); moreover, the second term no longer trends
towards Poisson statistics. Relaxing the correlation be-
tween d

k

and "
k

with d
k

= f("
k

)(1 + �D
k

), D
k

= O(1),
and going through the same argument, one expects a

crossover to Poisson statistics at � = O(1/N lnN) when
x = O(1).
We can gain additional insight into the case of corre-

lated d
i

and "
i

from the BCS Hamiltonian. As mentioned
earlier, in this case d

i

= "
i

. According to Eq. (10) the
eigenvalues are

⌘
m

(x) = x
NX

k=1

"
k

�2

k

�
m

� "
k

= �
m

� x
NX

k=1

�2

k

, (25)

where we used Eq. (5). It also follows from Eq. (5) that
�
m

lie between consecutive "
i

and therefore ⌘
m

(x) can
have no crossings characteristic of the Poisson distribu-
tion at any finite x.
What is the scale of the perturbation of the d

k

’s needed
to create such a crossing? Let us, for example, modify a
single d

k

d
k

= "
k

+ ��
ik

(26)

where �
ik

is a Kronecker-� function and � a small per-
turbation. We can write out the ⌘

m

explicitly as

⌘
m

= �
m

� x
X

k

�2

k

+ x�
�2

i

�
m

� "
i

(27)

and after a few steps of algebra we find that

⌘
m+1

� ⌘
m

= (�
m+1

� �
m

)
�
1� x��2

i

(�
m+1

� "
i

)(�
m

� "
i

)

�
.

(28)
Since there are no crossings in the � spectrum we can say
that the condition for a crossing of ⌘

m

is

1

x
=

��2

i

(�
m+1

� "
i

)(�
m

� "
i

)
. (29)

We can extract the scale of � by recalling that �2

i

⇠ N�1

and (�
m

� "
i

) ⇡ ("
m

� "
i

) ⇡ (m� i)/N . Finally, for the
case x ⇠ O(1) we find

� ⇠ (m� i)2

N
. (30)

So a perturbation of d
i

in the BCS problem need only be
O(N�1) to produce a crossing at finite x.
The level repulsion observed in basis matrices is a con-

sequence of the level repulsion implicit in the parame-
ters �

i

, independent of the choice of "
i

. Indeed, basis
matrices Hk(x) in the primary type-1 parametrization,

Eq. (3), have eigenvalues ⌘k
m

(x) =
1

�
m

� "
k

, which is a

smooth function of �
m

except near "
k

. The ⌘k
m

(x) there-
fore inherit the level repulsion of the �

m

, which interlace
the "

m

and therefore repel each other regardless of the
statistics of "

i

(see Fig. 6). Analogous reasoning applies
to ansatz basis matrices.

H(u) =
kX

i=1

diHi(u), k  N �M

Brody parameter ! as a function of k for N ⇥N type M matrices.

Fit: a exp(�bk/ lnN). b = (1.13, 1.04; 0.99, 1.03) for M = (250, 480; 1000, 1980)

N = 500 N = 2000

# of integrals needed / lnN (log of Hilbert space dim)?

! = 1 – GOE, ! = 0 – Poisson



Every	type-1	family	contains	a	
“reduced”	Hamiltonian ⇤(u) = E + u|�ih�|

Type 1 and short-range impurity problem

⌘ ĤBCS in 1 Cooper pair sector,
GOE (exception from typical Poisson)

Type	1	H(u): # of integrals =N-1 (max	#	– analog	of	classical	integrability)



Every	type-1	family	contains	a	
“reduced”	Hamiltonian ⇤(u) = E + u|�ih�|

Type 1 and short-range impurity problem

⌘ ĤBCS in 1 Cooper pair sector,
GOE (exception from typical Poisson)

Also, ⌘ ˆHimp short-range impurity, u�(r), in a quantum dot

Aleiner &	Matveev,	PRL	(1998)
Bogomolny et.	al.	PRL	(2000)

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

Q: Can we determine the statistics of eigenvalues of H(u) 
analytically?

X

i

�2
i

�m � ✏i
=

1

u
"i - eigenvalues of E
�m - eigenvalues of ⇤(u)

Eigenvalues of H(u): Em = u
X

i

di�
2
i

�m � "i
, di - GOE

P ({�m, "i}) = . . . , P ({�m}) = GOE? At least P (s) / s�



Type 1: Second “Hamiltoniazation” & Localization
Every	type-1	family	contains	a	
“reduced”	Hamiltonian ⇤(u) = E + u|�ih�|
All	members	of	a	commuting	family	have	the	same	eigenstates	– can	consider	any	
one	of	them

⇤(u) ! Ĥ(⇤) =
X

ij

⇤ij(u)c
†
i cj

⇤(u) ! Ĥ(u) =
X

i

"in̂i + u
X

ij

�i�jc
†
i cj

Infinite	range	hopping	in	the	Hilbert	space	between	the	eigenstates
of	u=0 or	generally	u=u0 Hamiltonian

Hi(u) ! Ĥi(u) = n̂i + u
X

j 6=i

�i�j(c
†
i cj + c†jci)� �2

i n̂j � �2
j n̂i

"i � "j

[

ˆHi(u), ˆHj(u)] = 0, ˆH(u) =
X

i

"i ˆHi(u) + const



Type 1: Second “Hamiltoniazation” & Localization

Ĥ(u) =
X

i

"in̂i + u
X

ij

�i�jc
†
i cj

Source:	
Wikipedia

"i, �i - random (arbitrary) "i

"j

� i
� j

Complete	graph,	(N-1)-simplex

Exact solution:

NX

i=1

�2
i

�m � ✏i
=

1

u
, |�mi =

NX

i=1

�ic
†
i

�m � ✏i
|0i

Participation ratio: PR�m =

"
X

i

�2
i

(�m � "i)2

#2

X

i

�4
i

(�m � "i)4

All states are localized except the ground state. Ground 
state delocalizes at |uc|/d ~ 1/log(N)

d – average	level	spacing	between	ei

u < 0



Ĥ(u) =
X

i

"in̂i + u
X

ij

�i�jc
†
i cj

"i, �i - random (arbitrary)

Source:	
Wikipedia

"i

"j

� i
� j

u < 0

Excited	states	localized at	any	u [see	also	Ossipov (2013)]		

Ground	state	extended for	|u| >> 1/log(N). Delocalization of	the	ground	state	at							
|uc|/d ~ 1/log(N) corresponds	to	the	superconducting	transition	in HBCS

e.g. for "i 2 [�W/2,W/2] with ⇢("i) = const and �i = 1

Excited states: PR�m =

3 + 3f

2
("m)

1 + 3f

2
("m)

, f(x) = � �

⇡u

+

1

⇡

ln

2x+W

W � 2x

, 1  PR�m  3

Ground state: PRg.s. =
3N

1 + 2 cosh(�/u)
/ N

Complete	graph,	(N-1)-simplex

Can explicitly determine exact PR in N ! 1 limit when "i, �i are distributed

with a smooth density, i.e. neglecting mesoscopic fluctuations in the DoS



Ĥ(u) =
X

i

"in̂i + u
X

ij

�i�jc
†
i cj

"i, �i - random (arbitrary)

Source:	
Wikipedia

"i

"j

� i
� j

u < 0

4

kinetic energy may also be viewed as a “flat band” model,
with a flat dispersion for all except one state. Indeed, for
tij = �i�j all but one eigenvalues of the second term in
Eq. (2) are zero. The non-zero eigenvalue (ground state
for y > 0) corresponds to the eigenstate �ic

†
i |0i.

Let us consider limits y ! 0 and y ! 1 separately.
When y ! 0 all states are localized as expected. Indeed,
Eq. (8) implies Ek ! ✏k, summations in Eq. (10) are
dominated by the i = k term and we obtain PREk = 1 for
all k. When y ! 1 excited states are localized as before
because Ek for k � 1 remains trapped in the interval
(✏k�1

, ✏k). The ground state energy on the other hand
diverges – Eq. (8) implies E

0

! �y
P

i �
2

i . Then, ✏i are
negligible as compared to E

0

in Eq. (10) and

PRE0 =

⇥P
i �

2

i

⇤
2

P
i �

4

i

, (12)

which is of order N according to our choice of �i. The
ground state is therefore delocalized for y ! 1. It un-
dergoes a localization-delocalization crossover at a cer-
tain yc, which we estimate below in this section.

It is possible to evaluate the PR analytically to lead-
ing order in 1/N for distributions of ✏i and �i with neg-
ligible short range fluctuations (such that the spacing
�i = ✏i+1

�✏i changes slowly with i – |�i+1

��i|/�i is of or-
der 1/N for all i – and similarly for �i). For simplicity, let
us take constant �i, which we can set to one with no loss
of generality, and equally spaced ✏i, i.e. �i = � = 2w/N .

For excited states, we write Ek = ✏k � ↵k�, where
0 < ↵k < 1, and solve Eq. (8) for ↵k to the leading order
in 1/N as described in Appendix B of39. This yields

cot⇡↵k =
�

⇡y
+

1

⇡
ln

✏k + w

w � ✏k
⌘ f(✏k). (13)

We note that � = y/� is the proper dimensionless cou-
pling constant in the sense that it must stay finite in the
N ! 1 limit. This is because the second summation in
Eq. (2) scales as N2 for tij = �i�j and our choice of �i.
Therefore, we need y / � / 1/N so that both terms in
Eq. (2) are extensive in the thermodynamic limit. For
the BCS Hamiltonian in Eq. (9), so defined � is the di-
mensionless superconducting coupling40.

Eq. (10) becomes to leading order in 1/N

PREk =

hP1
n=0

⇣
1

(n+↵k)
2 + 1

(n+1�↵k)
2

⌘i
2

P1
n=0

⇣
1

(n+↵k)
4 + 1

(n+1�↵k)
4

⌘ , (14)

which evaluates to

PREk =
3

1 + 2 cos2 ⇡↵k
=

3 + 3f2(✏k)

1 + 3f2(✏k)
. (15)

This answer is in good agreement with numerics already
for N = 20, see also Fig. 1. Note that 1  PREk  3.

We saw above that the ground state energy E
0

! �1
as y ! 1, while E

0

! ✏
0

for y ! 0. Let y be large
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1
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3

100 500 1000
1

2

3

Eigenstate

P
R

FIG. 1. PR of eigenstates of a type 1 Hamiltonian for y =
.004, N = 103 in ascending order according to the energy.
Each ✏i and �i is an independent random number uniformly
distributed in an interval (�1, 1). Larger circle near the left
top corner indicates the ground state, which is extended. Left
inset is the same as above, but averaged over 103 realizations
of disorder and compared to Eq. (15) for the same y,N,w.
The right inset shows the PR (except the ground state) for
N = 103 equally spaced ✏i, �i = 1 and y = .004 similarly
compared to Eq. (15) (the two curves are indistinguishable).

enough that E
0

is well separated from ✏
0

. Then, we can
replace summation in Eq. (8) with integration and obtain

ln
E

0

� w

E
0

+ w
=

�

y
=

2w

Ny
. (16)

Performing the same replacement in Eq. (10) and using
Eq. (16), we derive

PRE0 =
3N

1 + 2 cosh(�/y)
. (17)

Note that in the limit y ! 1, PRE0 = N in agree-
ment with Eq. (12). This expression also allows us to
estimate the value yc beyond which the ground state be-
comes extended. We obtain �c = yc/� ⇡ 1/ lnN . This
also corresponds to the coupling for which the gap in the
spectrum � = E

1

� E
0

⇡ �w � E
0

becomes compa-
rable to the spacing �. For a superconductor described
by the BCS model (9) this localized-extended crossover
translates into a normal-superconducting one41,42. As
N ! 1 this crossover becomes a quantum phase transi-
tion at � = 0, i.e. any infinitesimal coupling is su�cient
to make the ground state extended (superconducting).

PR for u = �.004, N = 10

3
. "i, �i are independent

random numbers uniformly distributed in interval (�1, 1)

Mesoscopic fluctuations:

Excited states:

PR

max

�m
⇡ ↵ lnN

due to clustering in "i



What can we achieve with this notion of quantum 
integrability? – quite a lot!!

Definition: Quantum Hamiltonian H0 is 
integrable if… 

Consequences:

6. Generalized	Gibbs	Ensemble	for	dynamics?



Proof of Generalized Gibbs Ensemble for Type 1

⇢ = Z�1e�
P

i �iHi

hin|Hi|ini = Tr ⇢Hi

Type	1	H(u): # of integrals =N-1 (max	#	– analog	of	classical	integrability)

hO(t)it!1 =
NX

m=1

|cm|2Omm
|ini =

X

m

cm|�mi (diagonal	ensemble)

# of integrals = N � 1 = # of parameters �i = # of independent |cm|,
i.e. enough integrals to reproduce all |cm|

hO(t)it!1 = Tr ⇢O ?

Can determine �i such that hO(t)it!1 = Tr ⇢O

Specifically, �i =
1

u

X

m

ln |cm|2

N 2
m(�m � "i)

As	in	Classical	Mechanics	integrals	fully	constrain	the	motion	apart	from	
linear	in	time	phases	(angle	variables)	that	cancel	out	upon	time-averaging.	
In	both	cases	integrals	completely	fix	infinite	time	averages.



Proof of Generalized Gibbs Ensemble for Type 1

⇢ = Z�1e�
P

i �iHi

hin|Hi|ini = Tr ⇢Hi

General	member	of	the	commuting	family: H(u) =
NX

i=1

diHi(u) = T + uV

He↵(u) – a	member	of	the	commuting	family

For quantum quenches, ui ! uf , in type 1 He↵(u) 6= �H(u)

The	system	effectively	thermalizes	with	a	different Hamiltonian	(related	to	
the	localization	of	eigenstates	H(uf ) in	the	eigenspace of	H(ui ) seen	above)

In a nonintegrable system expect He↵ = �H(u),
e.g. if we take T and V to be random matrices, He↵ = 0⇥H(u)

hO(t)it!1 = Tr ⇢O ?
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