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We show that arbitrarily weak interparticle interactions destabilize the surface states of 3D topological

superconductors with spin SU(2) invariance (symmetry class CI) in the presence of nonmagnetic disorder.

The conduit for the instability is disorder-induced wave function multifractality. We argue that time-

reversal symmetry breaks spontaneously at the surface, so that topologically protected states do not exist

for this class. The interaction-stabilized surface phase is expected to exhibit ferromagnetic order, or to

reside in an insulating plateau of the spin quantum Hall effect.
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The existence of novel delocalized surface states is a key
signature of 3D topological phases of matter [1–3]. These
states envelop a fully gapped, yet topologically ‘‘twisted’’
bulk and can display exceptional properties such as the
quantized magnetoelectric effect and Majorana fermions
[1]. A complete classification [2,3] for (effectively) non-
interacting particles has demonstrated that only five
classes of topological phases and associated surface states
arise in 3D.

An important development [2] has been the incorpora-
tion of disorder effects on 2D surface states. This is crucial
because the terminating facets of a bulk 3D crystal inevi-
tably host structural defects and impurities. The topologi-
cally nontrivial bulk is linked [2] to an effective low-energy
surface theory of 2D Dirac fermions, perturbed by random
impurity potentials [4,5]. Each of the five classes of 3D
topological phases is ‘‘protected’’ from the effects of time-
reversal invariant (i.e., nonmagnetic) disorder, in the sense
that at least one surface Dirac wave function escapes
Anderson localization [2,5].

Unlike uniform plane waves, the extended 2D energy
eigenstates enveloping a surface-disordered topological
phase exhibit wild spatial amplitude fluctuations. These
arise from quantum interference due to multiple impurity
scattering, and manifest in the local density of states
(LDOS). The pattern of LDOS fluctuations presents an
intricate structure, characterized by an infinite set of scal-
ing dimensions associated to interwoven fractal measures
of the surface, a feature known as multifractality [5]. The
evasion of localization in favor of multifractal scaling is
rare in 2D, and is a signature of topological protection in
the presence of disorder [6].

In this Letter, we show that topological protection can be
undermined by interparticle interactions. In particular, we
study the combined effects of multifractal LDOS fluctua-
tions and interactions upon the surface Andreev bound

states of 3D topological superconductors. Because the
bulk condensate screens the long-ranged Coulomb force,
surface quasiparticles interact only via short-ranged poten-
tials. In the clean limit, the vanishing density of states for
the 2D Dirac surface band implies that weak short-ranged
interactions are irrelevant, i.e., the surface states remain
‘‘protected.’’ However, it is known that disorder-induced
LDOS multifractality can amplify interaction effects, such
as pairing correlations near the superconductor-insulator
transition [7]. With physics dominated by its surface, the
complete picture of a 3D topological phase must incorpo-
rate both disorder-induced quantum interference and inter-
actions [8].
Specifically, we demonstrate that arbitrarily weak inter-

actions (consistent with bulk symmetries) destabilize the
noninteracting surface states of 3D topological supercon-
ductors with spin SU(2) symmetry (class CI [2,3]), in the
presence of nonmagnetic disorder. Multifractal LDOS
fluctuations enhance the interactions, facilitating the
instability. We argue that time-reversal symmetry breaks
spontaneously at the surface, so that ‘‘protected’’ surface
states do not exist in this class. Depending upon the sign of
the relevant interaction coupling U [see Fig. 1, Eqs. (10)
and (11)], the surface should develop ferromagnetic order,
or enter an insulating plateau state of the spin quantumHall
effect [9]. Our result provides the impetus to identify a
suitable material for the class CI bulk as an avenue to
realize the spin quantum Hall phase. A similar analysis
for the 3D topological superconductor class AIII will be
published elsewhere [10].
Three of the five 3D topological symmetry classes can

be realized as time-reversal invariant superconductors,
distinguished by the degree of electronic spin conservation.
In a 3D topological superconductor, Cooper pairing leads
to a fully gapped quasiparticle band in the bulk, associated
to an integer-valued winding number � [2,3]. The modulus
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j�j equals the number of flavors (or ‘‘valleys’’) of 2D
quasiparticle bands that appear at the sample surface,
with energies that infiltrate the bulk gap. In the clean limit,
the surface states exhibit a massless Dirac character at low
energies; the Dirac point appears precisely at the bulk
chemical potential (inside the gap) due to particle-hole
symmetry.

In this paper, we study a universal low-energy model for
the 2D surface states of a 3D class CI topological super-
conductor. In contrast to the spin-orbit-coupled Z2 topo-
logical insulators, a CI superconductor has full spin SU(2)
symmetry. The nontrivial topology arises through the
entwining of orbital degrees of freedom, including non-
(simple) s-wave pairing [11,12]. For class CI, � is even
because Dirac surface bands appear in time-reversal con-
jugate pairs [2,12,13]. We consider the generic case with
j�j ¼ 2k, k 2 f1; 2; 3; . . .g. Neglecting interactions, the
Hamiltonian for the surface theory is

HD ¼
Z

d2rc yf��̂ � ½ir�AiðrÞt̂i��gc : (1)

The fermion field c is a complex Dirac spinor with pseu-
dospin � 2 f1; 2g and valley v 2 f1; . . . ; 2kg indices, i.e.,
c ! c �;v when all indices are displayed. The pseudospin

components c 1;v and c 2;v are linear combinations of the

Nambu elements c";v;� and cy#; �v;�0 . These annihilate (create)

spin up (down) electrons in valley v ( �v). (Under time
reversal, v and �v interchange.) The indices f�; �0g label
additional orbital (e.g. sublattice) degrees of freedom,
whose precise interpretation depends upon bulk micro-
scopics. A 3D class CI lattice model with � ¼ �2
appeared in Ref. [12].

For a 3D topological superconductor, a key consequence
of the nontrivial bulk is the special form that time-reversal

symmetry adopts on the surface. If we write HD � c yĥc ,

with ĥ the single-particle Hamiltonian operator, then the
usual time-reversal symmetry for spin-1=2 electrons in
the bulk translates into the following chiral condition on
the surface [2,10,12,13]:

��̂3ĥ�3 ¼ ĥ: (2)

This implies that any surface disorder that does not break
time reversal (including nonmagnetic impurities) canmani-
fest only as a random vector potential in the low-energy
Dirac description. [Recall that c in Eq. (1) carries U(1)
spin, rather than electric charge. In this language, vector
potentials couple to time-reversal invariant spin and valley
currents.] A homogeneous perturbation such as a chemical
potential shift, or a time-reversal invariant pairing of the
surface quasiparticles can be eliminated by a gauge trans-
formation. Moreover, an energy gap (Dirac mass term)
cannot appear at the surface of a topological superconductor
unless time reversal is broken. For class CI, nonmagnetic
disorder induces scattering between the 2k valleys in the

form of the non-Abelian valley vector potential AiðrÞt̂i� in

Eq. (1). Here t̂
i
� denotes a 2k� 2k generator of the group

Spð2kÞ. (The group is symplectic due to the spin symmetry
[13].) In the absence of interactions, elastic scattering due to
vector potential disorder begets delocalized, multifractal
surface states, many properties of which can be computed
exactly via conformal field theory (CFT) [4,14,15].
We first consider the effects of disorder upon the non-

interacting surface states. Below we describe the physics
and main idea of the CFT method. A technical summary
can be found in Ref. [13], while a more comprehensive
discussion will appear elsewhere [10]. The spatial character
of the surface-state wave functions (localized versus
extended) can be ascertained via disorder-averagedmoments
of physical observables, such as the conductance or the
LDOS. To facilitate this, we replicate c �;v ! c �;v;a, where

the replica index a 2 f1; . . . ; ng, and we are to take n ! 0
at the end of the calculation [5]. Symmetry is the primary
tool employed in the following, so we will rewrite Eq. (1)
in a manifestly symmetric form. We decompose c and c y
into ‘‘left’’ L and ‘‘right’’ R fields,

fL";v;a;L#;v;ag � fc 1;v;a; c
y
2;v0;að�̂2Þv0;vg;

fR";v;a;R#;v;ag � fc 2;v;a; c
y
1;v0;að�̂2Þv0;vg:

(3)

Here and below, repeated indices are summed. Ls;v;a

denotes a 4nk-component spinor; the index s (v) trans-
forms in the fundamental representation of the spin SU(2)
[valley Spð2kÞ] symmetry. We also define

L � LTiŝ2�̂2 ! Ls;va ; R � RTiŝ2�̂2 ! Rs;v
a : (4)

Ls;va and Rs;v
a transform in the conjugate representations of

the spin and valley symmetry groups; ŝ2 and �̂2 are spin

FIG. 1 (color online). Phase portrait sketch for the surface
physics of a 3D time-reversal invariant, spin SU(2) symmetric
topological superconductor. The vertical axis is the interaction
strength U [Eq. (10)], while the horizontal axis measures non-
magnetic disorder. Although the noninteracting system has a
disorder-stabilized phase with delocalized (‘‘protected’’) surface
states (II), it is destroyed by arbitrarily weak interactions
[Eq. (11)]. Instead, at zero temperature, we expect that the
surface exhibits broken spin symmetry [U > 0 ) ðIIIÞ], or the
spin quantum Hall effect [U < 0 ) ðIVÞ]. In either scenario,
interactions break time-reversal symmetry spontaneously.
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and valley antisymmetric Pauli matrices [16]. Equation (1)
can be rewritten as HD ¼ H0 þ �HD, where

H0 ¼ i
Z

d2r½L �@Lþ R@R�; (5)

�HD ¼
Z

d2r½Ji� �Ai þ �Ji�Ai�: (6)

In Eq. (5), we have switched to complex spatial coordi-
nates fz; �zg ¼ x� iy, f@; �@g � 1

2 ð@x � i@yÞ. The valley dis-
order appears in Eq. (6), where fAi; �Aig � �iðAx

i � iAy
i Þ.

This couples to the valley Spð2kÞ current, which has the

holomorphic component Ji� � �ði=2ÞLt̂i�L.
Eq. (5) is manifestly invariant under chiral (independent

left and right) spin SU(2), valley Spð2kÞ, and replica SOðnÞ
transformations. The symmetry group enlarges to SOð4nkÞ
if we include operations that mix all three index types. This
free fermion theory is equivalent to the SOð4nkÞ1 Kac-
Moody CFT [17]. The latter has a special property known
as a conformal embedding rule [17–19], which gives a
decomposition into a ‘‘product’’ of two other CFTs:
Spð2nÞk, associated to the ðspinÞ � ðreplicaÞ invariance of
Eq. (5), and Spð2kÞn, associated to the valley symmetry.

The delocalization physics of the noninteracting surface
with Hamiltonian H0 þ �HD is the same as in
Refs. [14,15], which dealt with 2D Dirac fermions coupled
to a random SU(N) vector potential. Disorder is a relevant
perturbation to the clean fermion theory [14]. Crucially, the
impurity potential couples only to the valley current Ji� in
Eq. (6). This leads to a ‘‘fractionalization’’ of the original
SOð4nkÞ1 CFT: the valley Spð2kÞn sector localizes, leaving
behind the ‘‘critical’’ (delocalized) spin-replica Spð2nÞk
sector [14]. The latter is used to compute the scaling behav-
ior disorder-averaged observables. Even in the absence of
interactions, disorder localizes all surface states away from
zero energy [20]; this is different from the case of a single
Dirac fermion on the surface of a 3D topological insulator
[21]. However, the localization length diverges upon
approaching the chemical potential, so that the zero energy
state at the Dirac point remains completely delocalized
(‘‘topologically protected’’).

The disorder-induced spatial fluctuations of the LDOS
�ð"; rÞ are encoded in the multifractal spectrum �ðqÞ [5,6].
The �ðqÞ spectrum measures the sensitivity of extended
wave functions to the sample boundary. A large L� L area
of the surface is finely partitioned into a grid of boxes of
size a � L. One then defines the box probability �n and
inverse participation ratio P q,

�nð"Þ �
Z
An

d2r�ð"; rÞ; P qð"Þ �
X
n

�
�nð"Þ

��

�
q
; (7)

whereAn denotes the nth box and �� ¼ P
i�i is the global

DOS. When " is tuned to a critical delocalization energy

(such as a mobility edge), P q 	 ða=LÞ�ðqÞ, where the

exponent �ðqÞ is both self-averaging and universal [22].

The multifractal spectrum thus provides a unique finger-
print for spatial fluctuations in a particular symmetry class.
In the field-theoretic description, the qth moment of the
disorder-averaged LDOS (q 2 1; 2; 3; . . . ; ) is associated to
a particular composite operatorOq, with scaling dimension

�q. The set of such dimensions determines the multifractal

spectrum via �ðqÞ ¼ 2ðq� 1Þ þ�q � q�1 [5,6]. By con-

trast, localized states are insensitive to the sample bound-
ary for sufficiently large L and have �ðqÞ ¼ 0.
For the class CI surface, we have identified the operators

that represent disorder-averaged LDOSmoments; these are
a subset of the primary fields in the Spð2nÞk CFT. As a
result, we obtain the exact disorder-averaged multifractal
spectrum at zero energy [10,13],

�ðqÞ ¼ ðq� 1Þ
�
2� q

2ðkþ 1Þ
�
: (8)

For k ¼ 1, Eq. (8) agrees with previous calculations [15];
the form for general k is new. One of the main results of
this paper, Eq. (8), proves that the noninteracting surface
states at the bulk chemical potential remain delocalized, a
consequence of the bulk topological order.
Now we turn to interparticle interactions. Robust surface

states must be protected from the combined effects of both
disorder and interactions. In a weakly interacting fermion
gas, the low-energy behavior of the density of states
completely determines the importance of short-ranged
interactions. The lowest-order (tree level) renormalization
group (RG) equation for a generic four-fermion coupling
U is [10]

d lnU=dl ¼ �1 ��ðUÞ
2 þOðUÞ; (9)

where l denotes the log of the RG length scale such as the

system size. In a clean 2D system, �ðUÞ
2 ¼ 2�1, with �1

the scaling dimension of the LDOS. For the clean Dirac
surface band, �1 ¼ 1, so that weak short-ranged interac-
tions are strongly irrelevant. By contrast, a negative �1

(due, e.g., to a van Hove singularity) would imply that U is
relevant, signaling a potential instability. With impurities

present, the exponents �1 and �ðUÞ
2 denote scaling dimen-

sions of the disorder-averaged LDOS and four-fermion
interaction, respectively. The latter satisfies the lower

bound �ðUÞ
2 
 �2 [10], where �2 is the dimension of the

second LDOS moment that determines �ð2Þ. The crucial
point is that�2 is independent of, and strictly less than 2�1

for a multifractal delocalized state in a disordered system
[23]. Impurity-mediated LDOS fluctuations can therefore
amplify short-ranged interaction effects by increasing the
overlap of single-particle wave functions in local regions.
This is particularly relevant for an interaction U that satu-

rates the bound �ðUÞ
2 ¼ �2 < 2�1.

Physically, we expect that the important interactions
include a spin exchange channel (because spin is a conserved
hydrodynamic mode) and a Cooper pairing interaction
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(because disorder respects time reversal). The former is

written � ~S � ~S, where ~S denotes the spin density. As dis-
cussed below Eq. (2), the pairing of the surface quasipar-
ticles does not open a gap unless time reversal is
simultaneously broken. The latter occurs when the Dirac
mass operatorm � c y�̂3c develops an expectation value.
This can be understood explicitly in the 3D CI topological
superconductor lattice model of Ref. [12], which features
real d-wave pairing in the bulk. In that model, m is inter-

preted as a sum of pairing operators: m	�icy" c
y
# þ ic#c",

where cs annihilates a lattice electron. Crucially, m is odd
under time reversal, due to the factors of i. Thus, a nonzero
expectation hmi � 0would imply (‘‘dþ is’’) pairing of the
surface quasiparticles, opening an energy gap and breaking
time-reversal symmetry. The resulting state is an insulating
plateau of the spin quantum Hall effect (see below). An
attractive Cooper pairing interaction can bewritten as�m2.

To keep the analysis general, we enumerate all four-
fermion interactions that preserve the bulk symmetries
[time-reversal invariance, spin SU(2), and valley Spð2kÞ
symmetry]. This necessitates the incorporation of a third
interaction channel J�S

�J�S , where J
�
S is the holomorphic spin

current. The replicated interaction Hamiltonian for the CI
surface is [13]

HI ¼
Xn
a¼1

Z
d2r

�
Uðmama � 4 ~Sa � ~SaÞ þ VJ�Sa

�J�Sa

þW

�
3mama þ 4 ~Sa � ~Sa � 1

k
J�Sa

�J�Sa

��
: (10)

The interaction strengths fU;V;Wg are defined so as to
couple to RG eigenoperators in the presence of disorder. In
the minimal two valley realization (k ¼ 1), the W-channel
interaction does not exist. For that case only, J�Sa

�J�Sa ¼
3mama þ 4 ~Sa � ~Sa.

Our task is to evaluate Eq. (9) in the disordered, non-
interacting CI surface theory for the three interaction op-
erators in Eq. (10) [24]. Using the Spð2nÞk CFT, we have
found that one particular operator controls the scaling
of both the second LDOS moment and the interaction U,

leading to �ðUÞ
2 ¼ �2 ¼ 0, while �1 ¼ 1=2ðkþ 1Þ

[10,13]. The main result of this paper follows:

dU

dl
¼ U

2ðkþ 1Þ þ OðU2Þ; (11)

which implies that the interaction U in Eq. (10) grows at
longer wavelengths, destabilizing the noninteracting, dirty
surface for any number of 2k valleys. By contrast, the other
interactions V andW remain irrelevant for any k, satisfying
d lnV
dl ¼ � 4kþ3

2ðkþ1Þ ,
d lnW
dl ¼ � 3

2ðkþ1Þ [10,13]. We conclude that

while weak interactions are suppressed in the clean limit by
the vanishing density of states at the Dirac point, surface
disorder strongly renormalizes the interaction channel U,
making it relevant.

Equation (11) can be understood as an enhancement of
interaction matrix elements in the eigenbasis of the disor-
dered theory: local accumulations of the DOS due to wave
functionmultifractality induce stronger interactions between
the surface quasiparticles. The amplification of the particular
interaction channelU over the others signals the instability of
the noninteracting surface to spontaneous time-reversal sym-
metry breaking. From Eq. (10), we anticipate (at least local)

ferromagnetic order h ~Si � 0whenU ! þ1. Without time-
reversal symmetry, the surface is not ‘‘topologically pro-
tected’’ [1–3], and we expect Anderson localization of all
surface states [2,5]. However, we cannot rule out an exotic
metallic phase when spin symmetry is also broken [25]. By
contrast, U ! �1 should cause Cooper pairing of the sur-
face quasiparticles. Treating the relevant interaction in mean
field theory, one replaces m2!2hmic y�̂3c in Eq. (10).
A nonzero Dirac mass opens an energy gap, producing
an insulating surface. Time-reversal symmetry is broken
because hmi � 0 implies surface pairing at a nonzero super-
fluid phase angle with respect to the bulk.
To lowest order in (1=k), Eq. (11) agrees with a pertur-

bative result [26] obtained using the nonlinear sigma model
[5,13]. The calculations in Ref. [26] were performed in the
context of a nontopological 2D system of gapless super-
conductor quasiparticles, subject to disorder and interac-
tions with spin SU(2) symmetry and time-reversal
invariance. The Spð2nÞk CFT employed here has a sigma
model representation with the same structure, but aug-
mented with a Wess-Zumino-Witten (WZW) term [17].
In the k � 1 limit, this model becomes weakly coupled,
and the WZW term can be ignored. The results of Ref. [26]
therefore provide a nontrivial check of our analysis in the
many-valley limit. In addition, at one loop in the sigma
model calculation, RG flow equations beyond linear order
in the interaction strengths can be obtained because the
sigma model treats interactions nonperturbatively via RPA
and BCS-type summations. For the 2D class CI quasipar-
ticle system, the sigma model generically predicts an insta-
bility of the ‘‘metallic’’ phase signaled by the divergence of
the spin exchange or BCS pairing interaction strengths
[13,26]. This provides evidence for the absence of an
interacting, time-reversal invariant fixed point.
The insulating state that occurs for hmi � 0 preserves

spin SU(2) symmetry. This state resides in a plateau of the
so-called spin quantum Hall effect [9], analogous to the
‘‘half-integer’’ quantum Hall phase at the surface of a 3D
Z2 topological insulator with broken time-reversal symme-
try [1,12]. The quantized spin Hall conductance [9] is
�s

xy ¼ 1
h ð@2Þ2p, with p ¼ k sgnhmi if valley symmetry is

unbroken on average (i.e., after disorder averaging). If
valley symmetry remains broken even after disorder aver-
aging, then p 2 f�k;�kþ 2; . . . ; k� 2; kg; see also
Ref. [9]. Our results are summarized in Fig. 1.
In conclusion, we have demonstrated that interactions

destabilize class CI disordered surface states in 3D.
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We have argued that time-reversal symmetry breaks spon-
taneously, and that the CI topological superconductor sur-
face enters into either a ferromagnetic or a spin quantum
Hall phase. These are expected to be interaction stabilized
Anderson insulators. The other 3D topological supercon-
ductor classes AIII and DIII also admit WZW CFT
descriptions [2]. The minimal surface state (single Dirac
valley) realization for each of these is stable against dis-
order and short-ranged interactions [2,10]. Results for class
AIII with multiple valleys will appear elsewhere [10],
while class DIII is an important topic for future work.
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