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We determine the radio-frequency (rf) spectra for nonstationary states of a fermionic condensate
produced by a rapid switch of the scattering length. The rf spectrum of the nonequilibrium state with
constant BCS order parameter has two features in contrast with equilibrium where there is a single peak.
The additional feature reflects the presence of excited pairs in the steady state. In the state characterized by
periodically oscillating order parameter, the rf-absorption spectrum contains two sequences of peaks
spaced by the frequency of oscillations. Satellite peaks appear due to a process where a rf photon in
addition to breaking a pair emits or absorbs oscillation quanta.
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Cooper pairing in ultracold Fermi gases has been a ma-
jor focus of research in the past few years. Remarkable
experimental techniques such as sweeps across the
Feshbach resonance [1,2], generation of collective modes
[3] and vortex lattices [4], and radio-frequency (rf) spec-
troscopy [5,6] have been developed to probe the paired
state. While it was crucial to establish for cold gases well-
known signatures of fermionic pairing, of a key interest are
regimes not easily accessible in superconductors, e.g.,
strong interactions in the vicinity of the Feshbach reso-
nance and highly imbalanced mixtures.

One of the most interesting possibilities is to access the
nonadiabatic coherent dynamics of fermionic condensates
[7–15]. Driven out of equilibrium by a sudden change of
the pairing strength on the BCS side of the Feshbach
resonance, these systems acquire steady states with prop-
erties strikingly different from equilibrium ones. Three
distinct nonstationary states have been predicted—a state
where amplitude of the BCS order parameter ��t� oscil-
lates periodically [9,14], a state with a constant but reduced
gap, and a gapless superfluid state [13–15]. Realization of
a particular steady state is determined by the magnitude of
change of the pairing strength. Most previous studies con-
centrated on the time evolution of the order parameter,
while direct experimental manifestations of the nonadia-
batic dynamics have not been sufficiently explored. The
purpose of the present Letter is to address this issue.

Amongst existing experimental techniques the rf spec-
troscopy appears to have the greatest potential for distin-
guishing different dynamical states from equilibrium
phases. This motivates us to study spectroscopic signatures
of the dynamics of fermionic condensates. Our main find-
ings are as follows. In contrast to the BCS ground-state
spectrum which has a single peak at a frequency deter-
mined by the equilibrium gap, the rf spectrum of a non-
equilibrium state with constant but finite �s displays two
distinct peaks. The second peak reflects the fact that this
nonequilibrium state is a superposition of an infinite num-
ber of excited stationary states of the condensate. Excited
states contain a mixture of ground-state pairs and excited

pairs—two-particle excitations of the condensate that con-
serve the total number of particles and Cooper pairs (see
[16,17] and the discussion below).

The ‘‘ordinary’’ peak present already in the ground state
is due to a process whereby a photon breaks a ground-state
pair, while in the process responsible for the second peak it
breaks an excited pair, [Fig. 1(a)]. It is interesting to note
that in electronic superconductors excited pairs carry no
charge or spin and are therefore difficult to detect.

For a steady state with periodically oscillating order
parameter, we show that each of the peaks described above
acquires equidistant satellite peaks; i.e., there are two
series of equally spaced peaks in this state. The spacing
between peaks in each series is equal to the frequency of
oscillation �. Satellite peaks appear because a photon can
gain optimal energy for breaking a ground-excited pair by
emitting or absorbing several ‘‘deltons’’—oscillation
quanta of energy �, [Fig. 1(b)].
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FIG. 1 (color online). (a) Nonstationary state of a fermionic
condensate with time-independent order parameter �s contains a
mixture of ground-state and excited Cooper pairs of atoms j1i
and j2i with energies �

������������������
"2 ��2

s

p
. An rf photon can break either

type of pair and transfer one of the atoms to state j3i. (b) In the
steady state where the order parameter ��t� oscillates with
frequency �, the photon can break a pair and emit or absorb
several oscillation quanta.
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In an atomic Fermi gas the pairing occurs between atoms
in two hyperfine states j1i and j2i. The frequency of
external rf radiation can be tuned to induce transitions
between one of these states, say j2i, to the third atomic
state j3i. The rf spectrum corresponds to the rate of loss of
atoms from j2i, i.e. I�!rf� � �dN2=dt, measured as a
function of the radiation frequency !rf . In the normal state
of atoms j1i and j2i the quantity I�!rf� has a sharp peak at
!rf � !a, the frequency of atomic transition between j2i
and j3i. In the paired ground state the peak shifts to a larger
frequency since now an additional energy is required to
break pairs [5,18].

We start with the Hamiltonian Ĥ � ĤBCS
12 � Ĥ3 � Ĥ

EM
23 ,

where

 Ĥ BCS
12 �

X
j;��1;2

"jĉ
y
j�ĉj� �

��t�
�F

X
i;j

ĉyi1ĉ
y
i2ĉj2ĉj1 (1)

is the BCS Hamiltonian describing pairing between states
j1i and j2i, ĉj� (� � 1, 2) annihilate atoms in states j1i and
j2i, "j are single-particle energy levels relative to the Fermi
level of atoms j1i and j2i, ��t� and �F are the dimension-
less coupling and the density of states at the Fermi level,
Ĥ3 �

P
j"jd̂

y
j d̂j, where d̂j annihilate atoms in states j3i,

represents noninteracting atoms in states j3i, and
 

ĤEM
23 �

!
2

X
j

�ĉyj2ĉj2 � d̂
y
j d̂j� � ĤT;

ĤT �
X
jl

�Tjlĉ
y
j2d̂l � H:c:�:

(2)

accounts for the interaction of atoms j2i and j3i with the rf
radiation field [18] in the rotating wave approximation
[19]. Here ! � !rf �!a is the detuning frequency.
Since the size of the trap is much smaller than the photon
wavelength, one can take the tunneling matrix to be diago-
nal, Tjl � T�jl.

We assume that the pairing strength has been switched
from �i to �f and the rf radiation is turned on after the
condensate has reached one of the steady states described
above. The magnitude of the change in pairing strength is
denoted by the parameter �:

 � � ��1
i � �

�1
f :

Our task is to evaluate the current hÎi � �dhN̂2i=dt. The
wave function of the condensate in the steady state without
the rf field is of the BCS form j��t�i �

Q
j�vj�t� �

uj�t�ĉ
y
j1ĉ
y
j2�j0i [9]. Treating the tunneling Hamiltonian,

ĤT in Eq. (2), as a perturbation, we obtain the current
out of state j2i to the lowest nonvanishing order in Tjl

 I�jTj2
Z 1
�1
d ~!

X
"j	��

Re�uj�"j�!� ~!� �uj�!�"j�e
i ~!t�;

(3)

where uj�!� are Fourier components of uj�t� and �� �
�3 ��2 is a difference between the corresponding chemi-

cal potentials for atoms in states j3i and j1i, j2i. In recent
experiments all states j3i were initially unpopulated [5,6],
which suggests that we set �� ’ �EF. However, our
model based on truncated BCS Hamiltonian (1) becomes
invalid for that case since the so-called ‘‘off-diagonal’’
interaction terms between atoms in states j1i and j2i cannot
be discarded [20]. To circumvent this problem in what
follows we assume j��j 
 EF.

Consider first the steady state with a constant order
parameter �s that is realized for ��=2 � � � �=2. The
steady state wave function has been determined exactly in
Ref. [15]

 

uj
vj

" #
� sin

�j
2

u0
j

v0
j

" #
ei	jt�cos

�j
2

�v0
j

� �u0
j

" #
e�i	jt�i
j ; (4)

where 	j � �"2
j � �2

s�
1=2, 
j is the time-independent rela-

tive phase, and u0
j � �	j � "j�=2	j and v0

j � �	j �
"j�=2	j are the Bogoliubov amplitudes in the BCS ground
state with gap �s. The distribution function cos2����j=2��,
(Fig. 3), and �s are known exactly in terms of the initial
and final equilibrium BCS gaps �i and �f [15]. The first
term in Eq. (4) is the wave function of a ground-state pair
of energy�	j. The second term is the wave function of an
excited pair with energy 	j [16]. Excited pairs are excita-
tions of the condensate and should be contrasted to the
single-particle excitations, which are created outside of the
condensate. When the BCS wave function is projected onto
the subspace of fixed particle number [21], excited pairs
conserve the total number of paired atoms, while quasi-
particle excitations break Cooper pairs. In the Anderson
pseudospin representation [21], excited and ground state
pairs correspond to a pseudospin, respectively, aligned
parallel or antiparallel to its effective magnetic field. In
this case �j is the angle between the pseudospin and the
field.

Using Eqs. (3) and (4), we derive the rate of loss in state
j2i
 

I�!�

2�jTj2
�

�2
s

!2

�
sin2�� �!�

2
#�!�!�T �

�cos2�� �!�
2

#�!�!�T �
�
; (5)

where !�T �
����������������������
��2 ��2

s

p
� �� and �! � �!2 � �2

s�=2!.
The first term represents the contribution of ground-state
pairs, [Fig. 2(b)], corresponding to a process where a
photon breaks a ground-state pair and creates an unpaired
atom in state j3i, [Fig. 1(a)]. Energy balance yields ! �
"j � 	j. The first term is nonzero when ! exceeds the
threshold energy !�T . In the ground state ��!� � � and
only this term remains. The second term derives from
excited pairs and corresponds to the process where a
photon breaks an excited pair, [Fig. 1(a)]. The energy
balance now implies ! � "j � 	j, which is negative for
all j. We see that an additional peak appears at ! 	 �!�T ,
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[Fig. 2(a)]. The maximum in absorption is reached at ! 
��s. Its height is suppressed, since ��!� can only deviate
significantly from � in an narrow window of width �s
around the Fermi energy, where there is a significant
density of excited pairs. Finally, we note that when �s !
0 the two peaks merge at zero frequency; i.e., the rf
spectrum of the gapless steady state is reversed to that of
a normal state.

Now let us turn to the regime of periodically oscillating
order parameter, which occurs when �> �=2 [9,14]. In
this state ��t� is given by the Jacobi elliptic function dn
with an amplitude comparable to �f and a period of order
2�=�f. We are to analytically determine the Bogoliubov
amplitudes using the exact solution for the BCS dynamics
[11,13], yielding

 

uj
vj

" #
�

X1
n��1

�
sin
�j
2

ajn
bjn

" #
ei��j�n��t � cos

�j
2

�
�bjn
� �ajn

" #
e�i��j�n��t

�
; (6)

where � is the frequency of oscillations of ��t�, �j �
��"j� is a function of single-particle energy, and �j has
been discussed below Eq. (4). For brevity, the analytic
expressions for �, ajn, bjn, and �j are omitted. We note,
however, that �j plays the analogous role of excitation
energy 	j for the periodic regime. For example, �j ! 	j
as we approach the regime of constant steady state gap,
�! �=2. One can also show that ��"� is a monotonic
function of j"j, ��"� 	 j"j, ��0� � �=2, and ��"� ! j"j
for �i ! 0 and for large j"j.

Comparison of the steady state wave functions (4) and
(6) suggests the two terms in Eq. (6) may be interpreted as
two orthogonally paired states for each level j. These are
the analog of ground-state and excited pairs and have
energies ��j. In addition, these states contain n quanta
of the oscillating pairing field ��t� each carrying energy �.
We will refer to these quanta as deltons. These are quanta
of the amplitude mode of the pairing field and can be
interpreted as Higgs bosons [22,23].

Equations (3) and (6) determine the rf spectrum in the
periodic regime
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2�jTj2
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X
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sin2

�j
2
jajnj2��!� �j � �j � n��

� cos2
�j
2
jbjnj2��!� �j � �j � n��

�
: (7)

Here we dropped oscillatory terms assuming they average
to zero on the time scale of the measurement. Expression
(7) describes two series of equidistant peaks, (Fig. 4),
corresponding to the processes where an rf photon breaks
one of the two paired states on level j and emits or absorbs
n deltons, [Fig. 1(b)]. The energy balance reads ! � "j �
�j � n�. The first series of peaks is described by the first
term in Eq. (7) and is analogous to the ground-state pair
peak in Eq. (5). In this case, the n � 0 peak is located at
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FIG. 3 (color online). The probability n�"� � cos2�����=2� of
having an excited pair [see the text below Eq. (5)] at energy " in
all steady states produced by a switch of the BCS coupling
constant �i ! �f [15]. Plots for three values of � � 1=�i �
1=�f are shown. The presence of excited pairs leads to additional
peaks in rf spectra shown in Figs. 2 and 4. In the ground state
n�"� � 0.
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FIG. 2 (color online). rf spectra (5) for a nonstationary state
with a constant order parameter �s � 0 produced by an abrupt
change in the pairing strength, �i ! �f for �� � �0:75�f;
(a) The spectral weight for !< 0 where the peak is due to
processes where the photon breaks an excited pair. This peak is
absent in the ground state, � � 0; (b) The peak at !> 0 is due
to processes where an rf photon breaks a ground-state Cooper
pair. A similar peak is present in the paired ground state. �f is
the equilibrium gap for the final coupling �f.
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the minimum detuning frequency !�T � ����� � ��
cf. Eq. (5). Thus, peaks in the first sequence are at ! �
!�T � n�. When ��t� is the Jacobi elliptic function dn,
� � 2�s [24], where �s is the time average of ��t� over
the period. We note that the Fourier components of
Bogoliubov amplitudes, ajn and bjn in Eq. (7), are discon-
tinuous at the Fermi level "j � 0 similar to T � 0 Fermi
distribution. This is a consequence of the fact that initial
states for the periodic regime are close to the normal state
[9,13,14]. The discontinuities lead to jumps in the rf spec-
tra at ! � �2n� 1��s, (Fig. 4).

The second series of peaks is the analog of the excited
pair peak in Eq. (5). These peaks are at!  ��s � n� �
�2n� 1��s, (Fig. 4). Their heights are suppressed for the
same reason as in the excited pair peak in Eq. (5). Their
width is determined by the width of the excited pair dis-
tribution function and becomes extremely narrow for large
�, (Fig. 3). In this limit, they can be superimposed by
jumps in the first sequence of peaks, (Fig. 4).

The sharp features of the rf spectra detailed above will
be broadened by variety of effects in practice such as
changes in particle number between experiments. More
significant deviations will occur as one gets closer to the
Feshbach resonance as our treatment is based on BCS
theory. Finally, rf probing should be performed on a time
scale shorter than the quasiparticle relaxation time �" ’
EF=�2

f [14], which limits the lifetime of the steady states
considered here. At times larger than �" an isolated system
is expected to rethermalize to a state with a nonzero
effective temperature which can be determined by balanc-
ing the total internal energy [14,15].

In conclusion, we have obtained rf spectra for the non-
equilibrium steady states formed in a fermionic condensate

due to a rapid switching of the pairing strength. The rf
spectrum of the steady state with constant order parameter
�s � 0 has two peaks in contrast to the spectrum of the
paired ground state where there is a single peak. The peak
at negative detuning frequencies reflects the presence of
excited pairs—elementary excitations of the condensate
and its shape is a direct measure of their distribution
function. The other peak is a counterpart of the ground-
state spectroscopic response. In the steady state character-
ized by a periodically oscillating ��t�, each of the two
peaks splits into a sequence of equidistant peaks with the
spacing between peaks given by the frequency of oscilla-
tions �.
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FIG. 4 (color online). rf absorption spectra Eq. (7) for the state
with periodic in time order parameter ��t� produced by a sudden
switch of the pairing strength �i ! �f for �� ’ �0:75�s. The
detuning frequency ! is in units of time-averaged order parame-
ter �s. Note two sequences of peaks at even and odd multiples of
�s and also jumps at ! � �2n� 1��s that sometimes are on top
of the odd peaks. The frequency of oscillations of ��t� is � �
2�s. Multiple peaks are due to processes where an rf photon
breaks an excited-state–ground-state Cooper pair and emits or
absorbs several oscillation quanta (deltons).
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