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We study the effects of superconducting pairing in small metallic grains. We show that in the limit of large
Thouless conductance one can explicitly determine the low-energy spectrum of the problem as an expansion in
the inverse number of electrons on the grain. The expansion is based on the formal exact solution of the
Richardson model. We use this expansion to calculate finite-size corrections to the ground-state energy,
Matveev-Larkin parameter, and excitation energies.
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I. INTRODUCTION

Since mid 1990’s, when Ralph, Black, and Tinkham suc-
ceeded in resolving the discrete excitation spectrum of
nanoscale superconducting metallic grains,1 there has been
considerable effort to describe theoretically superconducting
correlations in such grainsssee, e.g., Ref. 2 for a reviewd. A
key question in any such description is how results of the
BCS theory are modified in finite systems. In this paper we
address this problem by developing a systematic expansion
in the inverse number of electrons on the grain for the low-
energy spectrum of the problem.

In the absence of spin-orbit and spin-exchange interac-
tions and magnetic fields one can describe3,4 superconduct-
ing correlations in weakly disordered grains by a simple pair-
ing sBCSd Hamiltonian

HBCS= o
i,s

eicis
† cis − ldo

i,j=1

n

ci↓
† ci↑

† cj↑cj↓. s1.1d

Here ei are orbital energy levels andd is the mean level
spacingd=kei+1−eil. Operatorscis

† scisd createsannihilated
an electron of spin projections in orbital statei, n is the total
number of levels, andl denotes a dimensionless coupling
constant. The interaction part of Hamiltonians1.1d allows
only transitions of singlet electron pairs between the orbitals.

BCS Hamiltonians1.1d is known to be integrable5 and
solvable by Bethe’s ansatz. The exact solution6 yields a com-
plicated set of coupled polynomial equationsfsee Eq.s1.2d
belowg. As a consequence, very few explicit results have
been derived and most studies resorted to numerics2,7 based
on the exact solution. The purpose of the present paper is to
remedy this situation in the regime when the level spacing is
the smallest energy scale in the problem.

BCS Hamiltonians1.1d was studied extensively in 1960’s
in the context of pair correlations in nuclear matter.8 A
straightforward but important observation was that singly oc-
cupied orbitals do not participate in pair scattering.9 Hence,
the labels of these orbitals are good quantum numbers and
their contribution to the total energy is only through the ki-
netic term in BCS Hamiltonians1.1d. Due to this “blocking
effect” the problem of diagonalizing Hamiltonians1.1d re-
duces to the subspace of orbitals that are either empty or

doubly occupied—“unblocked” orbitals. The latter problem
turns out to be solvable6 by Bethe’s ansatz. The spectrum is
obtained from the following set of algebraic equations for
unknown parametersEi:

−
1

ld
+ o

j=1

m

8
1

Ei − Ej
=

1

2o
k=1

n
1

Ei − ek
i = 1, . . . ,m, s1.2d

wherem is the total number of singlet pairs andn now is the
number of unblocked orbitalsek. Bethe’s ansatz equations
s1.2d for BCS Hamiltonians1.1d are commonly referred to as
Richardson’s equations. Eigenvalues of BCS Hamiltonian
s1.1d are related to Richardson parametersEi via

E = 2o
i=1

m

Ei + o
B

eB, s1.3d

whereoBeB is a sum over singly occupied—“blocked” orbit-
als.

In 1977, Richardson used exact solutions1.2d to outline10

a method for expanding the low-energy spectrum in powers
of the inverse number of pairs 1/m. Richardson showed that
BCS results11 for the energy gap, condensation energy, exci-
tation spectrum, etc., are recovered from exact solutions1.2d
in the thermodynamical limit. The proper limit is obtained by
taking the number of levelsn to infinity, so thatnd→2D
=const, m=n/2, where D is an ultraviolet cutoff usually
identified with Debye energy. In particular, for equally
spaced levelsei, the energy gapD and the ground-state en-
ergy in the thermodynamical limit are

D0sld =
D

sinhs1/ld
, Eg.s.

BCSsld = − Dmcoth 1/l. s1.4d

In the present paper we show that the ground-state and
excitation energies of BCS Hamiltonians1.1d can be evalu-
ated explicitly to any order ind/D0,1/m in terms of the
BCS gapD0, chemical potentialm, mean level spacingd,
ultraviolet cutoffD, and the thermodynamic density of states
nsed. In the physical limitD0/D→0, the expansion is appli-
cable for D0ùd. In fact, we believe that in this limit the
expansion is in powers ofd/D0 with a convergence radius
d/D0,1.
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BCS Hamiltonians1.1d supports two types of low-energy
excitations. Excitations of the first type preserve the number
of pairsspair-preserving excitationsd. The second type of low
lying excitationsspair-breaking excitationsd is obtained by
breaking a single electron pair. In the thermodynamical limit
both types of excitations are gapped with the same gapDp

=Db=2D0, whereDp and Db are the energy gaps for pair-
preserving and pair-breaking excitations respectively. In Sec.
V, we evaluate leading finite size correctionssof order 1/md
to the gapsDp and Db. Interestingly, it turns out that these
corrections coincide, even though the two gaps are not iden-
tical in higher orders in 1/m. In the limit D0/D→0, our
result yieldsDp=Db=2D0−d. We also show that the energy
levels of lowest excitations of two types cross at certain
value of the coupling constantl.

Another measure of the low-energy properties of BCS
models1.1d is the parity parameter13 introduced by Matveev
and Larkin. This parameter is defined as

DML = Eg.s.
2m+1 −

1

2
sEg.s.

2m+2 + Eg.s.
2md, s1.5d

whereEg.s.
l is the ground-state energy of BCS Hamiltonian

s1.1d with l electrons. Matveev and Larkin evaluatedDML in
the physical limitD0/D→0 in two different regimesD0@d
and D0!d. They found that in the first regime the leading
finite size correction to the parity parameters1.5d comes en-
tirely from the stationary pointsmean-fieldd expression for
the ground-state energy of BCS Hamiltonians1.1d. Here we
use our method to calculateDML in the regimeD0.d for an
arbitrary ratioD0/D. We show that the contribution of quan-
tum fluctuations to the leading finite size correction toDML
behaves assD0/DdlnsD0/Dd for small D0/D.

The ground-state energy of pairing Hamiltonians1.1d has
been discussed recently in a number of papers. Numerical fits
for finite-size corrections to the ground-state energy in the
weak-coupling regimel!1 have been proposed.7,12 Here
we evaluate the leading finite-size correction exactly and find
a complete agreement with numerical results7,12 in the weak-
coupling regime.

In Ref. 12, authors studied the condensation energy, de-
fined as the difference between the ground-state energy and
the expectation value of BCS Hamiltonians1.1d in the Fermi
ground-state. The expression for this difference that one ob-
tains in the second order of perturbation theory inl was
compared to the BCS expressionEg.s.

BCSsld−Eg.s.
BCSs0d. The au-

thors found that the two expressions become of the same
order when D0.ÎDd and interpreted the rangedøD0
øÎDd as a new “intermediate” regime of pairing correla-
tions in metallic grainssas opposed to only two regimesd
øD0 and dùD0 suggested3 by Andersond. We argue below
that, although the finite-size correction to the condensation
energy indeed becomes of the same order as the BCS result
for D0.ÎDd, this fact does not indicate a new physical re-
gime, but is rather an artifact of the model. Main contribu-
tion to the finite-size correction to the condensation energy
comes from energies in the intervalD0!eøD and therefore
is beyond the limits of applicability of BCS Hamiltonian

s1.1d. Effects coming from this range of energies can be
properly accounted14 for within the Eliashberg theory.15

The paper is organized as follows. Section II is devoted to
the review of a general method10 of 1/m expansion due to
Richardson. In Sec. III, we show that Richardson’s results
can be used to evaluate ground state and excitation energies
of BCS Hamiltonians1.1d to any order in 1/m and explicitly
calculate the leading correction to the ground-state energy. In
Sec. IV, we discuss various limits of our results and make a
comparison with previous work. Results for the excitation
spectrum and Matveev-Larkin parameter are collected in
Secs. V and VI, respectively, where we also determine the
gaps for pair-breaking and pair-preserving excitations and
discuss the range of applicability of the 1/m expansion.

II. REVIEW OF RICHARDSON’S 1/ m EXPANSION

Here we briefly review Richardson’s 1/m expansion10 for
the ground-state and excitation energies of pairing Hamil-
tonians1.1d. The details can be found in the original work.10

In subsequent sections we will use Richardson’s results to
explicitly evaluate finite-size corrections to the low-energy
spectrum of BCS Hamiltonians1.1d.

Richardson’s 1/m expansion is based on an electrostatic
analogy to Eq.s1.2d. In this analogy, the rootsEi of Eq. s1.2d
are interpreted as locations ofm two-dimensional free
charges of unit strength in the complex plane. The free
charges are subject to a uniform external field −1/sldd and
the field of n fixed charges of strength 1/2 located at the
points ek on the real axis. The total electrostatic field at a
point z associated with the charge distribution is given by

Fszd = o
i=1

m
1

z− Ei
−

1

2o
k=1

n
1

z− ek
−

1

ld
. s2.1d

The field Fszd contains complete information about the
spectrum of BCS Hamiltonians1.1d. For example, the energy
spectrum is related to the quadrupole momentum ofFszd.
Indeed, defining multipole moments ofFszd by

Fszd = o
m=0

`

Fsmdz−m s2.2d

and expanding Eq.s2.1d in 1/z, we obtain

E = 2o
i=1

m

Ei = 2Fs2d + o
k=1

n

ek, s2.3d

−
1

ld
= Fs0d, s2.4d

m−
1

2
= Fs1d. s2.5d

The 1/m expansion is facilitated by the following field equa-
tion that can be derived from Eqs.s1.2d and s2.1d:
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dF

dz
+ F2 =

1

2o
k

1

sz− ekd2 +
1

4Sok

1

z− ek
+

2

ldD2

− o
k

Hk

z− ek
,

s2.6d

whereHk is the field at the location of the fixed chargeek due
to the free charges

Hk = o
i

2

ek − Ei
. s2.7d

Equations2.6d can be solved by expanding the fieldFszd in
powers of 1/m

Fszd = o
r=0

`

Frszd, s2.8d

whereFrszd is of orderm1−r. It turns out10 that the lowest
order in Eq.s2.8d, F0szd, together with field equations2.6d
completely determine the fieldFszd to higher orders in 1/m.
Moreover, to obtain higher orders,Frszd for r ù1, fromF0szd
one needs to solve only algebraic equations.

Different states of the system are described by different
F0szd. For example, one can show that the BCS ground state
corresponds to

F0szd = − o
k

Îsz− md2 + D2

2sz− ekdÎsek − md2 + D2
. s2.9d

The parametersD and m correspond to the BCS gap and
chemical potential, respectively. Equations forD andm can
be derived by substitutingF0szd into Eqs.s2.4d and s2.5d

2

ld
= o

k

1
Îsek − md2 + D2

, s2.10d

n − 2m= o
k

ek − m

Îsek − md2 + D2
. s2.11d

There are no higher order corrections to Eqs.s2.10d and
s2.11d, since by constructionF0szd yields exact monopole
and dipole moments ofFszd, Fs0dszd, andFs1dszd.

Note that, according to Eqs.s2.1d and s2.9d, F0szd also
describes the fixed charges exactly, since

lim
z→ek

sz− ekdF0szd = −
1

2
. s2.12d

Higher order corrections to the fieldFszd can be expressed
only in terms ofek, D, m, and finite zeroes ofF0szd

o
k=1

n
1

sxl − ekdÎsek − md2 + D2
= 0. s2.13d

For example,

F1szd =
1

2ZszdSok

z+ ek − 2m

Zszd + Zsekd
− o

l

z+ xl − 2m

Zszd + Zsxld
−

z− m

Zszd D ,

s2.14d

where

Zszd = Îsz− md2 + D2.

One can showfby, e.g., sketching the left-hand side of Eq.
s2.13dg that there aren−1 finite solutions to Eq.s2.13d, each
of them lying between two consecutive single electron levels
ek.

The ground-state energy to the first two orders in 1/m,
i.e., to the orderm0, can be obtained fromF0szd and F1szd
using Eq.s2.3d:

E = E0 + E1,

E0 = o
k

ek − msn − 2md +
D2

ld
− o

k

Îsek − md2 + D2,

s2.15d

E1 = − mld + o
l=1

n−1FÎsxl − md2 + D2 −
Nl

Pl
G , s2.16d

where

Nl = o
k

1

sxl − ekd2 Pl = o
k

1

sxl − ekd2Îsek − md2 + D2
.

To calculate excitation energies one needs to appropriately
modify F0szd, the lowest order in 1/m of the electrostatic
field Fszd. Here we simply write down excitation energies to
the first two nonzero orders in 1/m referring a reader inter-
ested in a detailed derivation to the original work:10

esld = e1sld + e2sld, l = 1, . . . ,n − 1,

e1sld = 2Îsxl − md2 + D2, s2.17d

e2sld = 2o
mÞl

1

Pl
FsF18d

2 − sF1d2 +
d

dz
sF18 − F1d +

2F18

xm − xl
G

z=xm

,

s2.18d

where

F18szd = F1szd +
Îsxl − md2 + D2

sz− xldÎsz− md2 + D2
−

1

z− xl
s2.19d

andesld is the excitation energy relative to the ground state.
Finally, we note that the lowest nonzero order of 1/m

expansion,E0 and e1sld for the ground-state and excitation
energies, reproduces the mean fieldsBCSd results for pairing
Hamiltonian s1.1d. Therefore, the mean field for pairing
Hamiltonian s1.1d is exact in the thermodynamical limit,
while contributionsE1 ande2sld, Eqs.s2.16d and s2.18d, are
leading finite-size corrections to the thermodynamical limit.

III. GROUND-STATE ENERGY

Here we evaluate the leading finite-size correction to the
ground-state energy of BCS Hamiltonians1.1d. First, we note
that, as shown in Appendix A, expressions2.16d for the
finite-size correctionE1 can be cast into a simpler form
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E1 = ldSn

2
− mD + o

l=1

n−1

Îsxl − md2 + D2 − o
k=1

n

Îsek − md2 + D2.

s3.1d

To facilitate comparison to the mean-field BCS results1.4d,
we assume belown=2m equally spaced single electron lev-
els ek=sk−m−1/2dd with energies ranging fromD=sm
−1/2dd to −D. It should be emphasized, however, that ex-
plicit results in terms ofD, m, and the density of statesnsed
can be equally well obtained for arbitrary continuousnsed.

Since n=2m and ek are distributed symmetrically with
respect to zero, Eq.s2.11d yields m=0, while Eqs.s2.10d,
s2.15d, ands3.1d become

2

ld
= o

k=1

2m
1

Îek
2 + D2

, s3.2d

E0 =
D2

ld
− o

k=1

2m

Îek
2 + D2, s3.3d

E1 = o
l=1

2m−1

Îxl
2 + D2 − o

k=1

2m

Îek
2 + D2. s3.4d

Equations2.13d for xl now reads

fsxld = o
k=1

2m
1

sxl − ekdÎek
2 + D2

= 0. s3.5d

Since for eachek there isek8=−ek, fszd is an odd function of
z. Therefore,xl =0 is a solution of Eq.s3.5d, while the re-
maining n−2=2m−2 nonzero solutions come in pairs ofxl
and −xl. Let us labelm−1 positive rootsxl with l =1, . . . ,m
−1 and relabelm positive single electron energiesek with
k=0,1. . . ,m−1. Then, we can rewrite Eq.s3.4d as

E1 = D − 2Îd2

4
+ D2 + 2o

l=1

m−1

Îxl
2 + D2 − 2o

k=1

m−1

Îek
2 + D2,

s3.6d

where we have separated contributions to the summations of
xl =0 andek= ±d/2.

Becausexl is located betweenel and el−1=el −d, we can
write it asxl =el −ald, where 0,al ,1. ExpandingÎxl

2+D2

in xl in the vicinity of xl =el and bearing in mind thatd
<D /m is of order 1/m, we obtain

E1 = − D − 2o
l=1

m−1
ald

Îel
2 + D2

, s3.7d

where we neglected terms of order 1/m. With the same ac-
curacy, we can replace the summation overk with an inte-
gration

E1 = − D − 2E
0

D

de
eased

Îe2 + D2
. s3.8d

Note thatE1 is indeed of orderm0 as it should be. The func-
tion ased is evaluated in Appendix B. The result, up to terms
of order 1/m, is

ased = −
1

p
arccot

1

p
lnFDÎe2 + D2 − eÎD2 + D2

DÎe2 + D2 + eÎD2 + D2G .

s3.9d

Introducing a new variable

x =
1

p
lnFDÎe2 + D2 − eÎD2 + D2

DÎe2 + D2 + eÎD2 + D2G ,

e = −
DD sinhspx/2d

ÎD2 cosh2spx/2d + D2
, s3.10d

we can cast expressions3.8d into a more convenient form

E1 = − 2E
0

` dx

p

DÎD2 + D2

s1 + x2dÎD2 + D2fcoshspx/2dg−2
.

s3.11d

To complete the evaluation of the ground-state energy to
orderm0, we also need to calculate the leading termE0 with
the same accuracy. The first step is to replace summation in
Eqs. s2.10d and s3.3d with integrations according to the fol-
lowing formula:

do
j=n1

n2

fs jdd =E
n1d

n2d

dxfsxd +
d

2
ffsn1dd + fsn2ddg + os1/md.

Equationss2.10d and s3.3d now read

2

l
=E

−D

D de

Îe2 + D2
+

d
ÎD2 + D2

, s3.12d

E0 =
D2

ld
−

1

d
E

−D

D

deÎe2 + D2 − ÎD2 + D2. s3.13d

The solution of Eq.s3.12d for D to orderm0 is obtained by
dropping the second term on the right-hand side. Evaluating
the integral, we obtainD0=D / fsinhs1/ldg in agreement with
Eq. s1.4d. To compute the correction of order 1/m to D, we
substituteD=D0+dD into Eq. s3.12d and expand indD.
Keeping only terms of order 1/m, we find

D = D0 + d
D0

2D
. s3.14d

Plugging D into Eq. s3.13d and using ÎD0
2+D2

=D coths1/ld, we obtain up to terms of order 1/m

E0 = − Sm+
1

2
DD coths1/ld. s3.15d

Note also thatD in expressions3.11d for E1 can be replaced
by D0 up to terms of order 1/m. Thus, the ground-state en-
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ergy of BCS Hamiltonians1.1d for m pairs and n=2m
equally spaced levels is

Eg.s.= − D coths1/ldFm+
1

2
+ fsldG , s3.16d

where

fsld = 2E
0

` dx

ps1 + x2d
coshspx/2d

Îcosh2spx/2d + sinh2s1/ld
.

s3.17d

The plot of functionfsld is shown in Fig. 1.
The finite size correction to the mean field BCS result

s1.4d is

Eg.s.= Eg.s.
BCS+ Ef.s., Ef.s. = − D coths1/ldF1

2
+ fsldG .

s3.18d

Note thatEf.s. is different fromE1 given by Eq.s3.11d due to
contribution of orderm0 from E0.

Higher-order corrections to the ground-state energy can
also be evaluated explicitly. The first step is to express them
in terms ofD andxl following the prescriptions of Ref. 10.
Then,D andxl have to be calculated to appropriate order in
1/m using methods of this section and Appendix B. Final
results for higher order corrections will involve multiple in-
tegrations similar to the integration in Eq.s3.17d. For ex-
ample, the expression for the correction of order 1/m con-
tains a triple integral.

The general case when the distribution of single electron
levels in the limit m,n→`, m/n=fixed is described by a
continuous density of statesnsed can be treated similarly.
Final expressions for corrections will now be in terms ofD,
m, andnsed. For example, the correction of orderm0 will be
again given by the integral in Eq.s3.8d where the limits of
integration should now be −D and D, e has to be replaced
with e−m, and the integrand has to be multiplied bynsed.

The functionased will still be given by Eq.sB2d where now
nsed has to be included under the integral.

IV. COMPARISON TO PREVIOUS STUDIES

Here we analyze our result and compare it to previous
results. First, we check whether Eq.s3.18d reproduces the
results of 1/l expansion16 aroundl=`. Expanding the inte-
grand in Eq.s3.17d in 1/l, evaluating the resulting integrals,
and expanding coths1/ld in 1/l, we obtain

Ef.s. = − DF3

2
l +

1

3l
−

19

360l2 +
143

15120l5 + OS 1

l7DG .

Comparing this expression with terms of orderm0 in 1/l
expansion16 for the ground-state energyfsee Eq.s30d of Ref.
16g, we find that the two results coincide.

Now let us consider the limit of smalll. The asymptotic
behavior offsld for small l is worked out in Appendix C.
Here we write down the first two terms

fsld = l + ln 2l2 + Osl3d. s4.1d

Expanding coths1/ld=Î1+D0
2/D2 in D0/D and using D

=sm−1/2dd, we obtain from Eq.s3.16d

Eg.s.= − DSm+
1

2
D −

D0
2

2d
− Dl − ln 2Dl2 + Osl3d.

s4.2d

The first term in Eq.s4.2d is the energy of noninteracting
Fermi ground state to orderm0. The second term is the non-
perturbative mean-fieldsBCSd contribution to the ground-
state energy. The first two terms are extensive and survive
the thermodynamical limit. The last two terms give the cor-
rection to the ground-state energy that one would obtain in
the second order of ordinary perturbation theory inl around
noninteracting Fermi ground state.

We see that our results3.18d yields the leading finite-size
correction to the thermodynamical limit for all values ofl.
In particular, there is no breakdown in the regime of ultras-
mall grains, i.e., ford.D0. As we will see in subsequent
sections, this is not a generic feature of our approach, but is
specific to the ground-state energy and is probably related to
the ultraviolet naturessee belowd of the finite-size correction
calculated above.

A frequently discussed quantity2,7,12 is the difference be-
tween the ground-state energy and the expectation value of
BCS Hamiltonians1.1d in the unperturbed Fermi ground
state,uFg.s.l, i.e., a state where single particle levels below
the Fermi levelek,0 are doubly occupied, while the remain-
ing levels are empty. This difference is often called conden-
sation energy, even though this name is misleading for the
reasons detailed below. However, to facilitate a comparison
with results of Refs. 7 and 12, we will use the same termi-
nology in this section. We have

Econd= kFg.s.uHBCSuFg.s.l − Eg.s.= − DSm+
1

2
D − 2lmd− Eg.s..

Using D=sm−1/2dd and Eq.s4.2d, we obtain

FIG. 1. The plot of functionfsld defined by Eq.s3.17d. This
function appears in leading finite size corrections to ground state
s3.16d and excitations5.10d and s5.13d energies of BCS Hamil-
tonian s1.1d and to Matveev-Larkin parameters6.2d. Note the as-
ymptotics fsld→0 and fsld→1 for l→0 and l→`,
respectively.
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Econd=
D0

2

2d
+ ln 2Dl2 + Osl3d. s4.3d

Comparison shows that exact results4.3d for Econd to order
m0 is in complete agreement with fits to numerical data.7,12

Finally, note that the second term in expressions4.3d is
ultraviolet divergent, since it depends explicitly on the ultra-
violet cutoff D. For pairing by phonons the ultraviolet cutoff
D can be identified with the Debye energyvD. To properly
take into account any effect that comes from energies com-
parable tovD, one needs to go beyond the BCS theory which
is appropriate only at energies much lower thanvD. The
contribution from energies comparable tovD to finite-size
corrections can be adequately treated14 within the Eliashberg
theory.15 In particular, the hard cutoff atD=vD has to be
replaced by a soft effective cutoff due to the 1/v2 decay of
the phonon propagator for frequenciesv@vD. Therefore,
even though the contribution of the finite size correction in
Eq. s4.3d becomes important forD0øÎDd, the conclusion of
Ref. 12 that this is an indication of any new physical regime
is not justified.

V. EXCITATION ENERGIES

In this section we evaluate leading finite-size corrections
to lowest excitation energies. As we will see below, the re-
sults of this section are accurate only in the regime of rela-
tively large grains, D0.d, i.e., within terms of order
osd/D0d. These higher-order corrections can also be straight-
forwardly calculated using methods of Sec. III. However, we
will only evaluate corrections of orderd/D0 here.

As in Sec. III, we will perform calculations for the case of
2m electrons andn=2m equally spaced levelsek=sk−m
−1/2dd with energies ranging fromD=sm−1/2dd to −D. In
this case, Eq.s2.11d impliesm=0. A more general case when
the single electron levels are distributed with a smooth den-
sity of states can be treated similarlyfsee the discussion be-
low Eq. s3.18dg.

Note that Hamiltonians1.1d conserves the number of
paired electrons. Therefore, the excitations can be grouped
into two types: those that preserve the number of pairs and
those that break pairs. Energies of low lying pair-preserving
excitations in the thermodynamical limit are given by Eq.
s2.17d with m=0

e1
p = 2Îxl

2 + D0
2, s5.1d

wherexl are the roots of Eq.s2.13d. Low lying pair-breaking
excitations are obtained by breaking a single pair and placing
the two unpaired electrons on two single electron levelsea
andeb. The energy of this excitation according to Eq.s1.3d is

eb = ea + eb + Eg.s.sea,ebd − Eg.s., s5.2d

whereEg.s.sea,ebd is the ground-state energy of BCS Hamil-
tonian s1.1d with levelsea andeb blocked. In the thermody-
namical limit, using Eq.s2.15d, we obtain

e1
b = Îea

2 + D0
2 + Îeb

2 + D0
2. s5.3d

Therefore, in the thermodynamical limit both types of exci-
tations are gapped with the same gap 2D0, i.e.,

D1
p = D1

b = 2D0. s5.4d

Since pair-breaking excitations are capable of carrying
spin-1,Db can also be called the spin gap. To calculate cor-
rections toD1

p and D1
b, one needs to go beyond mean-field

approximation.
First, let us determine the energy of lowest lying pair-

breaking excitations to order 1/m. Breaking a pair changes
both the number of pairs tom8=m−1 and also the number of
unblocked levels ton8=2m−2=2m8. The lowest energy is
archived by blocking levelsea=d/2 andeb=−d/2. Since this
leaves the distribution of single particle levels symmetric
with respect to zero, the chemical potentialm in Eq. s2.11d
remains equal to zero,m8=m=0. However, the blocking af-
fects the gapD8, since now terms corresponding toek
= ±d/2 have to be excluded from gap Eq.s2.10d. Using Eq.
s2.10d, we obtain

o
k

1

Îek
2 + D82

=
2

Îd2/4 + D2
+ o

k

1

Îek
2 + D2

, s5.5d

whereD8 is the value of the gap with levels ±d/2 blocked.
Expanding the left-hand side of Eq.s5.5d in dD=D8−D and
using gap equations2.10d, we obtain

dD = − dÎ1 +
D2

D2 . s5.6d

According to Eq.s5.2d, to order 1/m the lowest lying pair-
breaking excitations have the following energy:

Db = E08sD8d − E0sDd + E18sD8,xl8d − E1sD,xld, s5.7d

whereE0sDd andE1sD ,xld are given by Eqs.s3.3d ands3.4d,
respectively, and primes denote quantities for the ground
state with levels ±d/2 blocked. Equationss3.3d, s3.4d, s5.6d,
and s3.14d imply

E08sD8d − E0sDd = 2D8 + o
k

dDD

4sek
2 + D2d3/2

= 2D0 +
dD0

D
− dÎ1 +

D0
2

D2 , s5.8d

E18sD8,xl8d − E1sD,xld =
]E1sDd

]D
dD + o

l

xldxl

Îxl
2 + D2

,

s5.9d

whereE1sDd is given by Eq.s3.11d anddxl is the change inxl

due to blocking levels ±d/2.
We see from Eq.s3.5d that the effect of removing levels

ek= ±d/2 from the summation in Eq.s2.13d is strongest for
the roots closest to the blocked levels ±d/2. For these roots
dxl ,d. On the other hand, due to an additional factor ofxl in
front of dxl in equations5.9d, the contribution of each of
thesexl to the right-hand side of Eq.s5.9d is of orderd2/D.
By splitting the sum in Eq.s3.5d into two sums as in Appen-
dix B, one can show that the contribution of all these roots to
the sum in Eq.s5.9d is of orderos1/md. For the remaining
roots,dxl /xl is of order 1/m and each term in Eq.s3.5d can
be expanded intodxl / sxl −ekd. We have
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o
ekÞ±d/2

1

Îek
2 + D2sxl8 − ekd

= o
k=1

2m
1

Îek
2 + D2sxl + dxl − ekd

−
2

xlD

= o
k=1

2m
1

Îek
2 + D2sxl − ekd

.

Expanding intodxl, we obtain

dxlo
k

1

Îek
2 + D2sxl − ekd2

= −
2

xlD
.

The summation here can be evaluated in the same way as the
first sum in Eq.sB1d. Recall that roots of Eq.s3.5d xl and
thereforedxl are distributed symmetrically with respect to
zero. Using the notation introduced in the text following Eqs.
s3.5d and s3.6d, we have forxl .0

dxlxl = −
2d2Îel

2 + D2

D

sin2 paseld
p2 ,

whereaseld is given by Eq.s3.9d. Substitutingdxlxl into Eq.
s5.9d and using Eqs.s5.8d, s5.7d, s3.9d, ands3.11d, we obtain

Db = 2D0 − dÎ1 +
D0

2

D2 +
dD0

D
f1 + fsldg, s5.10d

where we used the change of variabless3.10d and fsld is
defined by Eq.s3.17d. Expressions5.10d yields the energy of
lowest lying pair-breaking excitations up to terms of order
ohd/ sminfD ,D0gdj.

In the physical limit of weak couplingD0/D→0 accord-
ing to Eq.s4.1d, expressions5.10d becomes

Db = 2D0 − d + osd/D0d. s5.11d

Next, we turn to excitations that preserve the number of
pairs. Energies of these excitations to order 1/m are given by
Eqs.s2.17d and s2.18d. Equations5.1d shows that the lowest
lying excitation corresponds toxl =0. We have, up to terms of
orderohd/ sminfD ,D0gdj

Dp = 2D + 2 o
xmÞ0

1

Pl
FsF18d

2 − sF1d2 +
d

dz
sF18 − F1d +

2F18

xm
G

z=xm

,

s5.12d

whereF1szd andF18szd are defined by Eqs.s2.14d ands2.19d.
Taking into account that bothek andxl are distributed sym-
metrically with respect to zero andm=0, we can rewrite
these equations as

F1szd =
z

2Îz2 + D2So
k

1

Îz2 + D2 + Îek
2 + D2

− o
l

1

Îz2 + D2 + Îxl
2 + D2

−
1

Îz2 + D2D ,

F18szd = F1szd +
Îxl

2 + D2

sz− xldÎz2 + D2
−

1

z− xl
.

Summations inF1szd and in Eq.s5.12d can be evaluated in
the same way as sums in Eqs.s5.9d and s3.6d have been
evaluated. Even though this calculation looks rather different
from the one that lead to Eq.s5.10d, it yields an identical
result, i.e.,

Dp = Db + ohd/sminfD,D0gdj. s5.13d

Thus, both gaps coincide up to terms of orderos1/md.
However, this coincidence is not preserved in higher orders.
Indeed, it was shown in Ref. 16 that in the strong-coupling
limit, l@1, the gap for pair-breaking excitations is larger
Db−Dp.d2/D0.0. On the other hand, atl=0 the gap for
pair-preserving excitations is larger,Db−Dp=−d. Therefore,
the lowest-energy levels of the two types of excitations cross
at certain value ofD0. Equations5.13d shows that the dis-
tance between the two levels is reduced fromd at D0 to
osd/D0dd even whend!D0!D. However, the knowledge of
higher-order corrections to the gapsDb andDp is needed to
determine whether the crossing occurs in the physical regime
D0/D→0, i.e., atD0.d.

VI. MATVEEV-LARKIN PARAMETER

Finally, let us evaluate the Matveev-Larkin parameter.13

This parameter is a measure of a parity effect in the grain and
is defined as follows:

DML = Eg.s.
2m+1 −

1

2
sEg.s.

2m+2 + Eg.s.
2md, s6.1d

whereEg.s.
l is the ground-state energy of BCS Hamiltonian

s1.1d with l electrons.
The calculation ofDML is similar to the one that lead to

Eq. s5.10d, only now we also have to take into account the
change in the chemical potential

m2m+2 − m2m = 2sm2m+1 − m2md = − 2sD2m+2 − D2md

= dÎ1 +
D0

2

D2 ,

D2m+2 − D2m = Osd2/D0d.

The calculation results in

DML =
Db

2
= D0 −

d

2
Î1 +

D0
2

D2 +
dD0

2D
f1 + fsldg, s6.2d
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wherefsld is defined by Eq.s3.17d. As before, this expres-
sion is accurate up to terms of orderohd/ sminfD ,D0gdj. In
the physical limitD0/D→0, expressions6.2d, according to
Eq. s4.1d, reduces to the one obtained in Ref. 13

DML = D0 −
d

2
+ osd/D0d. s6.3d

The first three terms on the right-hand side of Eq.s6.2d
come from the mean-fieldsstationary pointd approximation
s2.15d for the ground-state energy. The last term in Eq.s6.2d
represents the contribution of order 1/m of quantum fluctua-
tions around the stationary point. The asymptotic behavior of
this term in the physical limitD0/D→0 is given by Eq.
s4.1d. In terms ofd, D0, andD it readsd lnsD0/DdD0/D. In
this limit quantum fluctuations will contribute to higher or-
ders in d/D0 as evidenced by the result13 for DML in the
regimed!D0. Therefore, it is of certain interest to use meth-
ods of Sec. III to evaluate further corrections toDML.

We conclude this section with a comment on the range of
applicability of 1/m expansion detailed in this paper. It is
clear from Eqs.s5.11d and s6.3d that the expansion is appli-
cable in the regimeD0ùd. In fact, results of Refs. 16 and 10
ssee also Sec. IId suggest that the expansion is in powers of
d/D0 with a convergence radiusd/D0.1.

VII. CONCLUSION

In this paper we have shown that finite-size corrections to
the thermodynamical limit for pairing Hamiltonians1.1d can
be evaluated explicitly in terms of the BCS gapD0, chemical
potentialm, mean level spacingd, ultraviolet cutoffD, and
the thermodynamic density of statesnsed to any order in
d/D0,1/m. We evaluated leading corrections to the ground-
state and lowest excitation energies, and to Matveev-Larkin
parameterfEqs. s3.18d, s5.10d, s5.11d, s5.13d, s6.2d, and
s6.3dg. Our results for the ground-state energy are in agree-
ment with previous numerical studies. We saw that the finite-
size correction to the condensation energy is ultraviolet di-
vergent and therefore comparing it to the BCS result is not
justified.

We found that the gaps for pair-breaking and pair-
conserving excitations of pairing Hamiltonians1.1d coincide
up to terms of orderos1/md, where m is the number of
electron pairs on the grain. In higher orders in 1/m the two
gaps are different, the difference being of orderd2/D0, where
d is the mean level spacing andD0 is the BCS gaps1.4d. We
showed that the energy levels of the lowest excitations of
two types cross at a certain value of the coupling constantl.

The range of applicability of 1/m expansion detailed in
the present paper isD0ùd. In fact, we believe that in the
physical limit D0/D→0 the expansion is a power series in
d/D0 with a convergence radius of order 1.

Note that our results significantly simplify in the physical
limit D0/D→0 fe.g., compare Eqs.s5.10d and s5.11dg.
An interesting open problem is to take this limit directly
in Richardson’s equationss1.2d and to develop a simplified
version of the 1/m expansion for this case. In particular,
this might help to address the problem of the crossover be-

tween the fluctuation dominatedsd@D0d and the bulksd
!D0d regimes.
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APPENDIX A

Here we show that expressions2.16d for the correction to
the ground-state energy can be simplified to Eq.s3.1d. In-
deed, define

fszd = o
k=1

n
dk

z− ek
, wheredk =

1
Îsek − md2 + D2

.

Equations2.13d now readsfsxld=0. The functionfszd hasn
−1 finite zeroes atz=xl and also a zero atz=`. Its dual
function,gszd=1/ fszd, hasn−1 poles atz=xl and also a pole
at z=` with a residuesok=1

n dkd−1. Therefore, it can be repre-
sented as

gszd = o
l=1

n−1
ml

z− xl
+

z

ok
dk

= o
l=1

n−1
ml

z− xl
+

ldz

2
,

where we have usedokdk=2/sldd in accordance with gap
equations2.10d. The following equations for the residues of
gszd and fszd are helpful:

ml = lim
z→xl

fsz− xldgszdg = lim
z→xl

z− xl

fszd

=
1

f8sxld
= − Fo

k

dk

sxl − ekd2G−1

= −
1

Pl
,

1

dk
=

1

limz→ek
fsz− ekdfszdg

= g8sekd = − o
l

ml

sxl − ekd2 +
ld

2
,

where the prime denotes the derivative with respect toz.
Using these equations, we obtain

o
l=1

n−1
Nl

Pl
= − o

l=1

n−1

o
k=1

n
ml

sxl − ekd2

= o
k=1

n S 1

dk
−

ld

2
D

= −
ldn

2
+ o

k=1

n

Îsek − md2 + D2. sA1d

Finally, substituting Eq.sA1d into expressions2.16d, we ob-
tain Eq.s3.1d.
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APPENDIX B

In this Appendix we solve Eq.s3.5d for xl. As was dis-
cussed below Eq.s2.14d, each solutionxl lies between two
consecutive single electron levelsek. Consider the solution
xsed that lies betweene−d and e, where we dropped sub-
scripts for simplicity.

Now let us multiply Eq.s3.5d by d and rewrite it as

o
uek−euøJd

d

sxsed − ekdÎek
2 + D2

+ o
uek−eu.Jd

d

sxsed − ekdÎek
2 + D2

= 0, sB1d

where 1!J!L=minfD ,Dg /d. For example, one can choose
J=ÎL. In the first summation in Eq.sB1d, Îek

2+D2 can be
replaced byÎe2+D2 with a relative error of orderJd/D. We
obtain

o
uek−euøJd

d

sxsed − ekdÎek
2 + D2

= F1 + OSJd

D
DG 1

Îe2 + D2o
p=0

J F 1

p + 1 −ased
−

1

p + asedG ,

whereased is defined byxsed=e−asedd. To determineased
to the leadingsm0d order in 1/m, we can now take the limit
m→`. With a suitable choice ofJ se.g.,J=ÎLd, J→` and
sJdd /D→0 in this limit, while the second sum in Eq.sB1d
becomes a principal value integral. Using

o
p=0

` F 1

p + 1 −ased
−

1

p + asedG = − p cotfpasedg

we obtain

p cotfpasedg =
W

−D

D de8

se − e8dÎe82 + D2
. sB2d

Finally, evaluating the integral, we arrive at Eq.s3.9d.
Correctionsdased to ased of order 1/m and higher can

also be evaluated explicitly by expanding Eq.s3.5d in dased.
These corrections contribute to terms of order 1/m and
higher in the ground-state energy.

APPENDIX C

Here we determine the asymptotic behavior for smalll of
the integral

fsld = 2E
0

` dx

ps1 + x2d
coshspx/2d

Îcosh2spx/2d + sinh2s1/ld
.

First, we note that up to terms of ordere−1/l, one can rewrite
this integral as

fsld = 2E
−`

` dx

pf1 + sx + x0d2gÎ1 + e−px
, wherex0 =

2

pl
.

Let us divide the domain of integration into three intervals
s−` ,−ad, s−a,ad, and sa,`d, where 1!a!x0, and denote
the corresponding integrals byI3, I2, and I1, respectively.
Each of the integralsIk can be expanded into its own small
parameter that depends ona. The dependence ona will can-
cel out when the results are added together. We have

I3 = 2E
a

` dx

pf1 + sx − x0d2gÎ1 + epx

= 2E
a

` dx

p

e−px/2 − e−3px/2 + ¯

1 + sx − x0d2

= Ose−pa/2d,

I2 = 2E
−a

a dx

pf1 + sx0 + xd2gÎ1 + e−px

=
2

x0
2E

−a

a dx

pÎ1 + e−px
−

2

x0
3E

−a

a xdx

pÎ1 + e−px
+ ¯

=
2pa + 4 ln 2

p2x0
2 + OSa2

x0
3D ,

I1 = 2E
a

` dx

pf1 + sx + x0d2gÎ1 + epx

= 2E
a

` dx

p

1 − e−px/2 + ¯

1 + sx + x0d2

=
2

px0
−

2a

px0
2 + OSa2

x0
3D .

Adding I1, I2, andI3, we obtain Eq.s4.2d. Higher-order terms
can also be calculated by the same method.
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