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Finite-size corrections for the pairing Hamiltonian
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We study the effects of superconducting pairing in small metallic grains. We show that in the limit of large
Thouless conductance one can explicitly determine the low-energy spectrum of the problem as an expansion in
the inverse number of electrons on the grain. The expansion is based on the formal exact solution of the
Richardson model. We use this expansion to calculate finite-size corrections to the ground-state energy,
Matveev-Larkin parameter, and excitation energies.
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I. INTRODUCTION doubly occupied—*“unblocked” orbitals. The latter problem
turns out to be solvabfey Bethe's ansatz. The spectrum is

S(;m(:je .m'd 19?0.’5’ vvtr;]en dR_’aIpht, Black_,t "i!‘d kahzim SUCHhtained from the following set of algebraic equations for
ceeded in resolving the discrete excitation spectrum of , . parameterg;:

nanoscale superconducting metallic grdirteere has been

considerable effort to describe theoretically superconducting 1 1 1
correlations in such grainsee, e.g., Ref. 2 for a revigwA -+ ==> i=1,...m, (1.2
key question in any such description is how results of the Moo B-F 2 E-e

BCS theory are modified in finite systems. In this paper We\ﬁherem is the total number of singlet pairs anchow is the
address this problem by developing a systematic expansio . .
'S P y developing y ic expansi number of unblocked orbitalg,. Bethe’s ansatz equations

in the inverse number of electrons on the grain for the low- S
energy spectrum of the problem. (1.2 for BCS Hamiltonian(1.1) are commonly referred to as

In the absence of spin-orbit and spin-exchange interacichardson’s equations. Eigenvalues of BCS Hamiltonian

tions and magnetic fields one can desctbsuperconduct- (1.1) are related to Richardson parametgys/ia
ing correlations in weakly disordered grains by a simple pair-

m
ing (BCS Hamiltonian E=2> E + 2 s, (1.3
N i=1 B
Hecs= 2 &1, — N 2 ¢ ¢l (1.1)  whereSgeg is a sum over singly occupied—*blocked” orbit-
io ij=1 als.

) ) In 1977, Richardson used exact solutidn?) to outline®
Herel & are orbital energy IeveTIs and is the mean level 3 method for expanding the low-energy spectrum in powers
spacingd=(e,,~ ). Operatorsc;, (C;,) create(annihilate ¢ e inverse number of pairs i Richardson showed that
an electron of spin projectiom in orbital state, nis the total  gcg resulté! for the energy gap, condensation energy, exci-
number of levels, and denotes a dimensionless coupling (ation spectrum, etc., are recovered from exact solutlo®)
constant. The interaction part of Hamiltoni&h.1) allows i, the thermodynamical limit. The proper limit is obtained by
only transitions of singlet electron pairs between the orbltalstaking the number of levels to infinity, so thatnd— 2D

BCS Hamiltonian(1.1) is known to be integrabfeand = ¢onst, m=n/2, whereD is an ultraviolet cutoff usually

solvable by Bethe’s ansatz. The exact soliftipields a com-  jgentified with Debye energy. In particular, for equally

plicated set of coupled polynomial equatidisee Eq.(1.2)  gpaced levels;, the energy gap and the ground-state en-
below]. As a consequence, very few explicit results haveergy in the thermodynamical limit are

been derived and most studies resorted to nuntericased

on the exact solution. The purpose of the present paper is to acs

remedy this situation in the regime when the level spacing is Ag(N) = Sinh(1/N)’ Egs(\)=-Dmcoth 1A. (1.4)
the smallest energy scale in the problem.

BCS Hamiltonian(1.1) was studied extensively in 1960’s In the present paper we show that the ground-state and
in the context of pair correlations in nuclear maftek  excitation energies of BCS Hamiltonidf.1) can be evalu-
straightforward but important observation was that singly oc-ated explicitly to any order ird/Ay~1/m in terms of the
cupied orbitals do not participate in pair scatterinigence, BCS gapA,, chemical potentiajs, mean level spacingl,
the labels of these orbitals are good quantum numbers andltraviolet cutoffD, and the thermodynamic density of states
their contribution to the total energy is only through the ki- ¥(¢). In the physical limitA,/D— 0, the expansion is appli-
netic term in BCS Hamiltoniaii1.1). Due to this “blocking cable forAg=d. In fact, we believe that in this limit the
effect” the problem of diagonalizing Hamiltoniaid.1) re-  expansion is in powers al/Ay with a convergence radius
duces to the subspace of orbitals that are either empty at/Ag~ 1.
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BCS Hamiltonian(1.1) supports two types of low-energy (1.1). Effects coming from this range of energies can be
excitations. Excitations of the first type preserve the numbeproperly accountéd for within the Eliashberg theory.
of pairs(pair-preserving excitationsThe second type of low The paper is organized as follows. Section Il is devoted to
lying excitations(pair-breaking excitationsis obtained by the review of a general methdof 1/m expansion due to
breaking a single electron pair. In the thermodynamical limitRichardson. In Sec. Ill, we show that Richardson’s results
both types of excitations are gapped with the same &fap can be used to evaluate ground state and excitation energies
=AP=2A,, where AP and AP are the energy gaps for pair- of BCS Hamiltonian(1.1) to any order in 1t and explicitly
preserving and pair-breaking excitations respectively. In Secalculate the leading correction to the ground-state energy. In
V, we evaluate leading finite size correctiofws order 1/n)  Sec. IV, we discuss various limits of our results and make a
to the gapsAP and AP. Interestingly, it turns out that these comparison with previous work. Results for the excitation
corrections coincide, even though the two gaps are not iderspectrum and Matveev-Larkin parameter are collected in
tical in higher orders in Ih. In the limit Aj/D—0, our  Secs. V and VI, respectively, where we also determine the
result yieldsAP=AP=2A,—d. We also show that the energy gaps for pair-breaking and pair-preserving excitations and
levels of lowest excitations of two types cross at certaindiscuss the range of applicability of therthexpansion.
value of the coupling constant
Another measure of the low-energy properties of BCS
model(1.1) is the parity parameté&tintroduced by Matveev
and Larkin. This parameter is defined as Here we briefly review Richardson’s tv/expansiot® for
the ground-state and excitation energies of pairing Hamil-
1 tonian(1.1). The details can be found in the original wdfk.
Ay =BT - E(ESE% EZY). (1.5  In subsequent sections we will use Richardson’s results to
explicitly evaluate finite-size corrections to the low-energy
spectrum of BCS Hamiltoniaft.1).
where E! s is the ground-state energy of BCS Hamiltonian Richardson’s 1 expansion is based on an electrostatic
(1.2) with I electrons. Matveev and Larkin evaluat&gl, in analogy to Eq(1.2). In this analogy, the rootg; of Eq. (1.2
the physical limitA,/D— 0 in two different regimes\y>d  are interpreted as locations ah two-dimensional free
and Ag<d. They found that in the first regime the leading charges of unit strength in the complex plane. The free
finite size correction to the parity parametér5) comes en- charges are subject to a uniform external field At and
tirely from the stationary pointmean-field expression for the field of n fixed charges of strength 1/2 located at the
the ground-state energy of BCS Hamiltonidnl). Here we  points ¢, on the real axis. The total electrostatic field at a
use our method to calculatl, in the regimeA,>d for an  point z associated with the charge distribution is given by
arbitrary ratioAy/D. We show that the contribution of quan-
tum fluctuations to the leading finite size correctionAtg, moogq 101 1
behaves agAy/D)In(Ay/D) for small Ay/D. F@=2 S_E 52 N
The ground-state energy of pairing Hamiltonidnl) has 21278 Ziezma A
been discussed recently in a number of papers. Numerical fits The field F(z) contains complete information about the
for finite-size corrections to the ground-state energy in thepectrum of BCS HamiltoniafL.1). For example, the energy

weak-coupling regime\<1 have been p_roposéd? Here  spectrum is related to the quadrupole momentunf ).
we evaluate the leading finite-size correction exactly and fingpqeed defining multipole moments Bfz) by

a complete agreement with numerical restfitsn the weak-

coupling regime. w
In Ref. 12, authors studied the condensation energy, de- F(z)= D, FMzm (2.2)

fined as the difference between the ground-state energy and m=0

the expectation value of BCS Hamiltonigh1) in the Fermi

ground-state. The expression for this difference that one oband expanding Eq2.1) in 1/z, we obtain

tains in the second order of perturbation theoryhinvas

compared to the BCS expressiBfi;\)~E;$X0). The au- m "

thors found that the two expressions become of the same E= 22 Ei=2F?+2 q, (2.3

order when Ay=1\Dd and interpreted the rangd<A, =1 k=l

<.Dd as a new “intermediate” regime of pairing correla-

tions in metallic graingas opposed to only two regimes 1

<A, andd=A, suggestetiby Anderson. We argue below V' (2.4

that, although the finite-size correction to the condensation

energy indeed becomes of the same order as the BCS result

for Ag=Dd, this fact does not indicate a new physical re- m— 1_ FO 2.5

gime, but is rather an artifact of the model. Main contribu- 2 ' )

tion to the finite-size correction to the condensation energy

comes from energies in the intervd)< e<D and therefore The 1/m expansion is facilitated by the following field equa-

is beyond the limits of applicability of BCS Hamiltonian tion that can be derived from Eggl.2) and(2.1):

Il. REVIEW OF RICHARDSON'S 1/ m EXPANSION

(2.2)
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dF 1 1 1 1 2\2 H

TR D Pkt IED L

dz 2 K (Z_Ek) 4 K Z— € Ad K Z— €
(2.6)

whereH, is the field at the location of the fixed chargedue
to the free charges

Hi= 2 : (2.7)
i &~ E
Equation(2.6) can be solved by expanding the fiefdz) in
powers of 1m

F(2) =2 Fi(2), (2.9
r=0

whereF,(2) is of orderm®™. It turns out® that the lowest

order in Eq.(2.9), Fy(2), together with field equatio(i2.6)

completely determine the fielé(z) to higher orders in Irh.

Moreover, to obtain higher orders,(z) for r =1, fromFy(2)

one needs to solve only algebraic equations.

PHYSICAL REVIEW B 71, 094505(2005

Z(2) = (z— w)?+ A2

One can showhby, e.g., sketching the left-hand side of Eq.
(2.13] that there are—1 finite solutions to Eq(2.13), each

of them lying between two consecutive single electron levels
€.
The ground-state energy to the first two orders im,L/
i.e., to the ordem®, can be obtained frorfy(z) and F4(2)
using Eq.(2.3):

E=Eo+E,,

AZ
Eo= 2 &= p(n=2m) + — = >\ (g~ ) + A%,
k k

A
(2.15
n-1 N
E;=-mad+ > \f’(X|—,u)2+A2—;' . (219
|

1=1

where

Different states of the system are described by different 1
Fo(2). For example, one can show that the BCS ground state N, = 2 ——— P= 2
corresponds to k(X&) k

1
(X — €02V (g— )2+ A%

(2= )2+ A2 To calculate excitation energies one needs to appropriately
V(z-p) . . .
Fo@=-2 YRS S modify Fo(2), the lowest order in In of the electrostatic

2z~ @) V(e w) field F(z). Here we simply write down excitation energies to
The parametera and u correspond to the BCS gap and the first two nonzero orders in treferring a reader inter-

(2.9

chemical potential, respectively. Equations forand u can
be derived by substituting,(z) into Egs.(2.4) and (2.5

2 1

—_— = ’,=' 2‘10
N (g— p)?+ A2 (210
€ M
n-2m= —————. (2.11
k V(e—pw)?+42

There are no higher order corrections to E(.10 and
(2.12), since by constructioriFy(z) yields exact monopole
and dipole moments d¥(z), F9(2), andFY(2).

Note that, according to Eq$2.1) and (2.9), Fy(2) also
describes the fixed charges exactly, since

(2.12

1
lim(z- g)Fo(2 = =.
Zﬂék 2

Higher order corrections to the fielé(z) can be expressed
only in terms ofe,, A, w, and finite zeroes ofFy(2)

i 1

et (X = €V (& — )% + A2 B

0. (2.13

For example,

_ 1 Zte—2n < Z¥X-2p Z-p
Fi(2)= zz(z)(% Z0+2e) % 20+2) 20 )

(2.14

where

ested in a detailed derivation to the original wdfk:

e)=el)+exl), I=1,...n-1,
en(l) = 2(x = w)®+ A?, (2.17)
_ I cel 2, 94 0 2k
ex(l) —2% pr| (FU* = (F)*+ p(Fi=Fy+ -0
(2.18
where
Fi(@=F2+ (2.19

@=x)z- WP+ 8% 7%

ande(l) is the excitation energy relative to the ground state.
Finally, we note that the lowest nonzero order ofiml/
expansionE, and e;(l) for the ground-state and excitation
energies, reproduces the mean fi@€S) results for pairing
Hamiltonian (1.1). Therefore, the mean field for pairing
Hamiltonian (1.1) is exact in the thermodynamical limit,
while contributionsE; ande,(l), Egs.(2.16) and(2.18), are
leading finite-size corrections to the thermodynamical limit.

Ill. GROUND-STATE ENERGY

Here we evaluate the leading finite-size correction to the
ground-state energy of BCS Hamiltoniélhl). First, we note
that, as shown in Appendix A, expressi¢d.16 for the
finite-size correctiorkE; can be cast into a simpler form
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n-1 n EOf(E)
El—)\d(——m>+2 V(% = )2+ A% = > V(g - )2 + A2 E1=-A-2f de=5—=. (3.8
=1 k=1 o VEFA

(3.1 Note thatE; is indeed of ordem® as it should be. The func-

tion a(e) is evaluated in Appendix B. The result, up to terms
To facilitate comparison to the mean-field BCS reg(ld), of order 1/, is

we assume below=2m equally spaced single electron lev- ’, - —

els g=(k-m-1/2)d with energies ranging fromD=(m a(e) = —larccotl In{D\Ez’rA —eyD +A ]
-1/2)d to -D. It should be emphasized, however, that ex- T Ve + A2+ D2+ A2 |
plicit results in terms ofA, u, and the density of statege) (3.9

can be equally well obtained for arbitrary continuas).
Since n=2m and ¢, are distributed symmetrically with Introducing a new variable

respect to zero, Eq2.1]) yields ©=0, while Egs.(2.10, f 7 RZa A2
(2.15, and(3.1) become X= 1 In Dye+A%- e\D?+A
m | DVE+ A2+ D2+ A2
2 N
==y = (3.2 DA sinh(mx/2
AT e+ A? €=—— h(m2) , (3.10
VA? cosi(mx/2) + D?
A2 2m we can cast expressidf.8) into a more convenient form
=2 _ / 2
Eo_xd kl\éiJ’A’ 33 E—_> “ dx AVAZ+D?
! o T (1+x3)VAZ+ D cosimx/2)] 2
2m-1 (3.11
E - 2 Vo + A2 - E Ve + A2, (3.4

To complete the evaluation of the ground-state energy to
orderm®, we also need to calculate the leading teEgwith
Equation(2.13 for x; now reads the same accuracy. The first step is to replace summation in
Egs.(2.10 and (3.3 with integrations according to the fol-
lowing formula:

f(x) = 2 —h =0. (3.5 . o
1 (6~ ) e+ A% d> f(jd)=| dxf(x) + g[f(nld) +f(n,d)]+o(1/m).
j=ny n,d

Since for eachg, there ise =—¢,, f(2) is an odd function of _
z. Therefore,x =0 is a solution of Eq(3.5), while the re- Equations(2.10 and(3.3) now read

maining n—2=2m-2 nonzero solutions come in pairs xf 2 D ge d
and . Let us labelm-1 positive rootsq with I=1,... .m - :f , st T (3.12
-1 and relabeim positive single electron energieg with N JpVEé+A? JAZ+D
k=0,1... m—1. Then, we can rewrite E¢3.4) as 5
A% 1 :
> m-1 Eo:———J deVe®+A*- A%+ D% (3.13
d ) N d)
Ey=A-2¢/,+A +22 S+ A2 22
I=1 The solution of Eq(3.12 for A to orderm? is obtained by

(3.6 dropping the second term on the right-hand side. Evaluating
the integral, we obtaithy=D/[sinh(1/)\)] in agreement with
where we have separated contributions to the summations &q. (1.4). To compute the correction of orderr/to A, we
x=0 ande:=+d/2. substitute A=Ay+ A into Eq. (3.12 and expand indA.
Becausex is located betweer; and _;=¢—d, we can  Keeping only terms of order I, we find

write it asx =€ —a;d, where 0< @y <1. Expandingyx/+ A2 A

in x in the vicinity of x,=¢ and bearing in mind thad A:A0+d—°. (3.149
~D/m s of order 1/Mm, we obtain 2D

Plugging A into Eg. (3.13 and using JAZ+D?
=D coth(1/\), we obtain up to terms of order &V

1=-A- 22 (3.7
=1 \ 62 + AZ 1

Ep=—(m+ > D coth(1/)). (3.15
where we neglected terms of ordermi./With the same ac-

curacy, we can replace the summation okexith an inte-  Note also that\ in expression(3.11) for E; can be replaced

gration by Ag up to terms of order Ih. Thus, the ground-state en-
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1 [ Em—— The functiona(g) will still be given py Eq.(B2) where now
L —] () has to be included under the integral.
0.8
IV. COMPARISON TO PREVIOUS STUDIES
0.6
= / Here we analyze our result and compare it to previous
04 results. First, we check whether E(.18 reproduces the
’ results of 1A expansioff around\ =o. Expanding the inte-
grand in Eq(3.17) in 1/\, evaluating the resulting integrals,
0.2 / and expanding cotii/)\) in 1/\, we obtain
0 e _pl3 L 19 143 | (i)]
0 0.5 1 1.)\5 2 2.5 3 f.s. — 2 3)\ 360\2 15120\5 )\7 .

FIG. 1. The plot of functiong(\) defined by Eq(3.17. This Compa_ring this expression with terms of orde? in 1/\
function appears in leading finite size corrections to ground stat@)(péms'0.|116 for the ground-state engrgﬁgee Eq(30) of Ref.
(3.16 and excitation(5.10 and (5.13 energies of BCS Hamil- 16], we find that the two results coincide.

tonian (1.1) and to Matveev-Larkin paramet¢6.2). Note the as- Now let us consider the limit of smal. The asymptotic
ymptotics ¢(\)—0 and ¢(\)—1 for A—0 and A—oe, behavior of¢(\) for small X\ is worked out in Appendix C.
respectively. Here we write down the first two terms

d(N) =N +In 222+ O(\3). (4.1

ergy of BCS Hamiltonian(1.1) for m pairs andn=2m
equally spaced levels is Expanding cottl/\)=y1+A2/D? in A,/D and usingD
1 =(m-1/2)d, we obtain from Eq(3.16
Egs=-D cotf(l/)\){m+ > + ¢>()\)} , (3.16 1\ A2
Ege=- D(m+ 5) - 2—3 —DX - In 2DA%+ O(A3).
where

4.2

</>(>x)-2r dx cosH{wx/2) The first t in Eq.4.2) is th f interacti
= 2 - . e first term in Eq.(4.2) is the energy of noninteracting
o M1+ VeosH(mx/2) + sintf(1/\) Fermi ground state to orden®. The second term is the non-

(3.17 perturbative mean-fieldBCS) contribution to the ground-
state energy. The first two terms are extensive and survive
the thermodynamical limit. The last two terms give the cor-
rection to the ground-state energy that one would obtain in
the second order of ordinary perturbation theoryiaround

1 noninteracting Fermi ground state.
Egs=Egs +Ers, Ers=-D coth(llk)[é + ¢(>\)] : We see that our resulB.18) yields the leading finite-size
correction to the thermodynamical limit for all values Yof
(3.19 In particular, there is no breakdown in the regime of ultras-

Note thatE; ¢ is different fromE; given by Eq.(3.11) due to mall.grains,_ i'.e" ford>A,. AS we will see in subsequent .
contribution of order® from Eq. sections, this is not a generic feature of our approach, but is

Higher-order corrections to the ground-state energy cal pecific to the ground-state energy an_d _is pr_obably relz_;lted to
also be evaluated explicitly. The first step is to express the e ultraviolet naturésee below of the finite-size correction

in terms of A andx, following the prescriptions of Ref. 10. calculated above.

) %712 ; .
Then,A andx, have to be calculated to appropriate order in A frequently discussed quantfty’?is the d|ffere.nce be-
1/m using methods of this section and Appendix B. Finaltween the ground-state energy and the expectation value of

results for higher order corrections will involve multiple in- BCS Ham|lt_0n|an(1.1) in the un_perturbed_ Fermi ground
tegrations similar to the integration in E¢8.17. For ex- state,|Fg,S), i.e., a state where single particle levels below

ample, the expression for the correction of ordemldon- Fhe Fermi levelg <0 are (_:iou_bly occup!ed, while the remain-
tains a triple integral ing levels are empty. This difference is often called conden-

The general case when the distribution of single electroryation energy, even though this name |s”m|slead|ng for. the
levels in the limitm,n—, m/n=fixed is described by a reasons detailed below. However, to_faC|I|tate a comparison
continuous density of statege) can be treated similarly. with res_ults .Of Ref_s. 7 and 12, we will use the same termi-
Final expressions for corrections will now be in termsAgf nology in this section. We have
u, andv(e). For example, the correction of ordef will be 1
again given by the integral in E¢3.8) where the limits of  Econa= (Fgs|HecsFgs) = Egs.= - D(m+ 5) -2 nmd- Egs.
integration should now beDB- and D, € has to be replaced
with e-u, and the integrand has to be multiplied bfe). Using D=(m-1/2)d and Eq.(4.2), we obtain

The plot of functiong(\) is shown in Fig. 1.
The finite size correction to the mean field BCS result
(1.9 is
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A5 AP=AD=2A,. 5.4
Econa= 5 +In 2DA* + O(\%). 4.3 1= A1= 280 (5.4
2d Since pair-breaking excitations are capable of carrying

Comparison shows that exact restd) for Eqonqto order ~ SPin-1,A% can also be called the spin gap. To calculate cor-
m® is in complete agreement with fits to numerical data.  rections toAj and A7, one needs to go beyond mean-field
Finally, note that the second term in expressidrg) is ~ @Pproximation. _ . _
ultraviolet divergent, since it depends explicitly on the ultra- ~ First, let us determine the energy of lowest lying pair-

violet cutoff D. For pairing by phonons the ultraviolet cutoff breaking excitations to order fn. Breaking a pair changes
D can be identified with the Debye energy,. To properly both the number of pairs t@’=m-1 and also the number .of
take into account any effect that comes from energies condnblocked levels ta'=2m-2=2m’. The lowest energy is
parable tawp, one needs to go beyond the BCS theory whicharchived by blloc'klng' Ievelsa;dlz andgb:—dlz. Since this _
is appropriate only at energies much lower thag. The Ie_aves the distribution of smgl_e partlcle_le_vels symmetric
contribution from energies comparable ég, to finite-size ~ With respect to zero, the chemical potentiain Eq. (2.11)
corrections can be adequately tredfadithin the Eliashberg émains equal to zerqy'=u=0. However, the blocking af-
theory!S In particular, the hard cutoff ab=wp has to be fects the gapA’, since now terms corresponding iq
replaced by a soft effective cutoff due to theaf/decay of = *d/2 have to be excluded from gap E@.10. Using Eq.
the phonon propagator for frequencies> wp. Therefore,  (2.10, we obtain
even though the contribution of the finite size correction in 1 2
Eq. (4.3) becomes important fak,< yDd, the conclusion of == + ’, ,
Ref. 12 that this is an indicationoof any new physical regime VA NdIA+AT AT G+ A2
is not justified. whereA' is the value of the gap with levelsd£2 blocked.
V. EXCITATION ENERGIES Expanding the left-hand side of E(p.5) in SA=A’-A and
using gap equatio(2.10, we obtain
In this section we evaluate leading finite-size corrections 5
to lowest excitation energies. As we will see below, the re- SA=-d~\/1+ A—Z (5.6
sults of this section are accurate only in the regime of rela-
tively large grains,Ay>d, i.e., within terms of order . : -
o(d/Ap). These higher-qrder corrections can also be straightg‘rce(::krs:gge;?:iggéi'sz)ﬁgseotrgg rf;{gv\tir:% Ig\r/]veerztyl:ymg pair
forwardly calculated using methods of Sec. Ill. However, we
will only evaluate corrections of ordet/ A, here. AP=EHA") - Eo(A) + Ej(A", X)) —E4(A,x), (5.7)

As in Sec. Ill, we will perform calculations for the case of :
2m electrons andn=2m equally spaced levelg,=(k-m WhereEO(A) andEl(A_,x|) are given by Eqs_(3.3) and(3.4),
respectively, and primes denote quantities for the ground

-1/2)d with energies ranging fro®=(m-1/2)d to -D. In . .
this case, Eq(2.11) implies ©=0. A more general case when Ztna(;e(gwl'%] ilri\;aelyl/s #l/2 blocked. Equations3.3), (3.4), (5.6),

the single electron levels are distributed with a smooth den-

(5.9

sity of states can be treated similafsee the discussion be- N o SAA
low Eq. (3.18). Bl TRl =2 & @ v ar

Note that Hamiltonian(1.1) conserves the number of
paired electrons. Therefore, the excitations can be grouped dAg Ag
into two types: those that preserve the number of pairs and =240+ D dy/1 +D_2' (5.8
those that break pairs. Energies of low lying pair-preserving
excitatio_ns in the thermodynamical limit are given by Eq. JE4(A) % %

. - ’ VAN - +
(2.17 with ©=0 Ej(A",X) - Ey(A,x) Ao 2 vl

&)= 2\x7 + A2, (5.

(5.9

whereE;(A) is given by Eq(3.11) and X, is the change i,
Bue to blocking levels /2.

We see from Eq(3.5) that the effect of removing levels
g.=+d/2 from the summation in Eq2.13 is strongest for
=€+ €+ Egs(€a ) ~ Egs, (5.2)  the roots closest to the blocked leveld/2. For these roots

, O, ~d. On the other hand, due to an additional factox,ah
whereEq s(e,, ) is the ground-state energy of BCS Hamil- tqn¢ of sy, in equation(5.9), the contribution of each of

tonian(1.1) with levels €, and €, blocked. In the thermody-  hesex, to the right-hand side of Ed5.9) is of orderd?/A.
hamical limit, using Eq(2.19, we obtain By splitting the sum in Eq(3.5) into two sums as in Appen-
b_ 2. 2 dix B, one can show that the contribution of all these roots to
&= Veat Ag+ Ve + A, 5.3 the sum in Eq/(5.9) is of ordero(1/m). For the remaining
Therefore, in the thermodynamical limit both types of exci-roots, 8 /x; is of order 1/m and each term in Eq3.5 can
tations are gapped with the same gag,2.e., be expanded intdx,/ (x,— ¢). We have

wherex; are the roots of Eq2.13. Low lying pair-breaking
excitations are obtained by breaking a single pair and placin
the two unpaired electrons on two single electron lewgls
ande,. The energy of this excitation according to Ef.3) is
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1
!
gt +di2 Ve + A% - €)
B 2m 1 i
k=1 \"/eﬁ +A%(x + X —g) XA
2m 1

k=1 V Eﬁ + Az(X| - Ek) .
Expanding intodx;, we obtain

2

2 !

c NE+A2x-g)? XA

The summation here can be evaluated in the same way as the

first sum in Eq.(B1). Recall that roots of Eq(3.5 x and
therefore 8%, are distributed symmetrically with respect to
zero. Using the notation introduced in the text following Egs.
(3.5 and(3.6), we have for, >0

2d2\"6|2 +A?sir? ma(e)

A A

XX ==

wherea(e) is given by Eq.(3.9). Substitutingdxx, into Eq.
(5.9 and using Eqs(5.8), (5.7), (3.9), and(3.11), we obtain

A2 dA
Ab:ZAo—d\/1+D—‘2’+F°[1+¢()\)], (5.10

where we used the change of variab{8s10 and ¢(\) is
defined by Eq(3.17). Expression5.10 yields the energy of

PHYSICAL REVIEW B 71, 094505(2005

1
E [ 2 [ 2
K \,'22+A +Ve§+A
1 B 1
C AN HAZE A2 A+ A2

Fi(2) =

ol
2\s"22+ A2

)

s

(z-x)Z2+ A? Cz-x

Fi(2=Fy(2 +

Summations inF4(2) and in Eq.(5.12 can be evaluated in
the same way as sums in Eg%.9) and (3.6) have been
evaluated. Even though this calculation looks rather different
from the one that lead to Eg5.10, it yields an identical
result, i.e.,

AP = AP+ o{d/(min[D,Ao])}. (5.13

Thus, both gaps coincide up to terms of ordgt/m).
However, this coincidence is not preserved in higher orders.
Indeed, it was shown in Ref. 16 that in the strong-coupling
limit, A>1, the gap for pair-breaking excitations is larger
AP—AP=d?/A,>0. On the other hand, at=0 the gap for
pair-preserving excitations is largex?— AP=—d. Therefore,
the lowest-energy levels of the two types of excitations cross
at certain value ofA,. Equation(5.13 shows that the dis-
tance between the two levels is reduced frdnat A, to
o(d/Ag)d even wherd < Ay<D. However, the knowledge of
higher-order corrections to the gap8 and AP is needed to
determine whether the crossing occurs in the physical regime
A()/D—)O, i.e., atAozd.

VI. MATVEEV-LARKIN PARAMETER

Finally, let us evaluate the Matveev-Larkin paraméter.
This parameter is a measure of a parity effect in the grain and

lowest lying pair-breaking excitations up to terms of orderis defined as follows:

o{d/(min[D,Aq))}.
In the physical limit of weak coupling\,/D — 0 accord-
ing to Eq.(4.1), expression5.10 becomes

AP =2A—d+o(d/Ay). (5.12)

1
(EZT2+ESD),

AML = Eénsﬁl - E (61)

where EL,_S_ is the ground-state energy of BCS Hamiltonian
(1.1) with | electrons.

Next, we turn to excitations that preserve the number of The calculation ofAy, is similar to the one that lead to

pairs. Energies of these excitations to ordem&bfe given by
Egs.(2.17) and(2.18. Equation(5.1) shows that the lowest
lying excitation corresponds t¢=0. We have, up to terms of
ordero{d/(min[D,Aq])}

d _, 2F;
Fo?+ C(Fi-Fo+— |

m J1Z=X,

AP=2A+2 > 1 (FD?—(

Xm#0 Tl

(5.12

whereF,(z) andF(2) are defined by Eqg2.14) and(2.19.
Taking into account that botl, andx, are distributed sym-
metrically with respect to zero and=0, we can rewrite
these equations as

Eq. (5.10, only now we also have to take into account the
change in the chemical potential

Mome2 = Mom = 2(ome1 — Mom) = ~ 2(Agmez — Aom)
A2
=dy/1+ D—g,

Aomiz = Aom= O(dz/Ao) .

The calculation results in

Ab
Ave=—=

d

dag
oL+ o0, (62
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where ¢(\) is defined by Eq(3.17). As before, this expres- tween the fluctuation dominate@>A,) and the bulk(d
sion is accurate up to terms of ordefd/(min[D,Ay])}. In <Ay regimes.

the physical limitAy/D — 0, expressior(6.2), according to

Eq. (4.2), reduces to the one obtained in Ref. 13 ACKNOWLEDGMENTS

Ay =Ap— d + o(d/Ay). (6.3 We are grateful to Akaki Melikidze for showing to us how
expression(2.16) can be simplified to Eq(3.1). We thank
Igor Aleiner for useful discussions. One of the authors, B. L.
A., also acknowledges the support of EPSRC under the
Grant No. GR/S29386.

The first three terms on the right-hand side of E&j2)
come from the mean-fiel@stationary point approximation
(2.15 for the ground-state energy. The last term in B2
represents the contribution of orderni bf quantum fluctua-
tions around the stationary point. The asymptotic behavior of APPENDIX A
this term in the physical limitA,/D—0 is given by Eq.
(4.1). In terms ofd, Ay, andD it readsd In(Ay/D)Agy/D. In
this limit quantum fluctuations will contribute to higher or-

Here we show that expressi¢®.16 for the correction to
the ground-state energy can be simplified to Ej1). In-

ders ind/A, as evidenced by the restiitfor Ay, in the deed, define

regimed<<A,. Therefore, it is of certain interest to use meth-

ods of Sec. Ill to evaluate further correctionsAg, . f2)=> Ay . whered, = ;
We conclude this section with a comment on the range of =1 2~ & V(e — )%+ A?

applicability of 1/m expansion detailed in this paper. It is

clear from Eqs(5.11) and (6.3 that the expansion is appli- Equation(2.13 now readsf(x;)=0. The functionf(z) hasn
cable in the regimé=d. In fact, results of Refs. 16 and 10 -1 finite zeroes ak=x, and also a zero at=c. Its dual
(see also Sec.)lIsuggest that the expansion is in powers offunction,g(z)=1/f(z), hasn—1 poles az=x and also a pole

d/Ag with a convergence radiu/ Ag=1. at z= with a residue(=}_,d,) "%, Therefore, it can be repre-
sented as
VIl. CONCLUSION - n§ Lz " Az
In this paper we have shown that finite-size corrections to g =1 Z— X Ekdk -1z-% 2

the thermodynamical limit for pairing Hamiltonigd.1) can

be evaluated explicitly in terms of the BCS gap chemical | hare we have usedl,d,=2/(\d) in accordance with gap

photerLtiaI,u, dmean .Ievgl sp_acin?, ultraviolet C“tOﬁDé anq equation(2.10. The following equations for the residues of
the thermodynamic density of statee) to any order in g(2) andf(2) are helpful:

d/Ay~1/m. We evaluated leading corrections to the ground-
state and lowest excitation energies, and to Matveev-Larkin

parameter[Egs. (3.18, (5.10, (5.11), (5.13, (6.2, and =lim{(z-x)g(2)] = I|m—XI
(6.3)]. Our results for the ground-state energy are in agree- % z-x 1(2)
ment with previous numerical studies. We saw that the finite- 1 dy 1 1
size correction to the condensation energy is ultraviolet di- = m =" (X - &)2 ~ T
vergent and therefore comparing it to the BCS result is not ! kK !
justified.

We found that the gaps for pair-breaking and pair- 1 1 N\
conserving excitations of pairing Hamiltonidh.1) coincide d_k = lim, . [(z- e)f(2)] =9'(a) = 2|: (X — €)° ?

up to terms of order(1/m), where m is the number of

electron pairs on the grain. In higher orders inmlthe tWo  \yhere the prime denotes the derivative with respect.to
gaps are different, the difference being of ord&A,, where Using these equations, we obtain

d is the mean level spacing adqg) is the BCS gagl.4). We

showed that the energy levels of the lowest excitations of n- N n-1n .
two types cross at a certain value of the coupling constant E —=->> v
The range of applicability of 1M expansion detailed in =1 Py =1 k1 (X~ &)
the present paper i4,=d. In fact, we believe that in the n
physical limit Ay/D— 0 the expansion is a power series in => <_ - _>
d/Ag with a convergence radius of order 1. e\ 2
Note that our results significantly simplify in the physical n
limit Ay/D—0 [e.g., compare Egs(5.10 and (5.11)]. — _Adn + \m (A1)
An interesting open problem is to take this limit directly 2 4 kT H '

in Richardson’s equationd.2) and to develop a simplified
version of the 1 expansion for this case. In particular, Finally, substituting Eq(Al) into expression2.16), we ob-
this might help to address the problem of the crossover beain Eq.(3.1).
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APPENDIX B “ dx coshmx/2)
B(\) =2 f

In this Appendix we solve Eq(3.5 for x. As was dis- o m(1+x%) cost(mx/2) + sint?(L/\)
cussed below Eq2.14), each solutiorx lies between two
consecutive single electron levedg. Consider the solution First, we note that up to terms of order*™, one can rewrite
X(e) that lies betweere—d and ¢, where we dropped sub- this integral as
scripts for simplicity.

i ite i * dx 2
Now let us multiply Eq.(3.5) by d and rewrite it as SO0 = 2[  wherexo=—.
d d — M1+ (X+X)T N1 +e™ A
+
f
le—el=<dd (X(€) — fk)\'/fﬁ"’ AZ le-e>3d (X(€) = &) \’fﬁ‘* A2 Let us divide the domain of integration into three intervals
-0 (B1) (-o0,-a), (-a,a), and (a,«), where I<a<x, and denote

the corresponding integrals by, 1,, and 1, respectively.
where 1<J<A=min[A,D]/d. For example, one can choose Each of the integral$, can be expanded into its own small
J=VA. In the first summation in EqB1), \,ez+A2 can be parameter that depends anThe dependence anwill can-
replaced byy/e?+A? with a relative error of ordedd/A. We  cel out when the results are added together. We have
obtain

* dx
: 572 Mo x e
T ml+(x- Vi+e”
leel=ad (X(€) — €)\ € + A2 2 %
; o dxe—ﬂ'XIZ _ e—37TX/2 +.--
1 1 1 =2 —
[1+0<Jd>} E[ - } a ™ lH(x—x)?
VE+ A2 oLp+l-ale) ptale
=0(e™?),
where a(e€) is defined byx(e)=e—a(e)d. To determinea(e)
to the leadingmP) order in 1/m, we can now take the limit a q
m— co. With a suitable choice oJ (e.g.,J=VA), J— and l,= zf X ,
(Jd)/D—0 in this limit, while the second sum in E¢B1) -a 77[1 +(x0+x)2]\"1 +e ™
becomes a principal value integral. Using 2 a wdlx .
* 1 1 /—wx 3 /—wx
> [ - } = - g cof ma(e)] -2Vl *oJ-a mvl
p+tl-ale) p+ale _27Ta+4|n2 (a_g)
we obtain - ﬂzxé ,
D ’
de
7 cof ma(e)] =f —_— (B2) o
B (6_6,)\‘”6,2+A2 | =2 dx
: : : : ) A (x xg) P11 +e™
Finally, evaluating the integral, we arrive at H§.9).
Correctionsda(e) to a(e) of order 1/m and higher can L [Fdxl-e ™2+
also be evalua'ted explici'FIy by expanding E8.5) in da(e). ~°), — + (X + Xg)2
These corrections contribute to terms of ordemléand
higher in the ground-state energy. _ 2 2a O(a—2>
2 3/
APPENDIX C ™o X %o
Here we determine the asymptotic behavior for smalf ~ Addingly, I,, andl, we obtain Eq(4.2). Higher-order terms
the integral can also be calculated by the same method.
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