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Quantum quench spectroscopy of a Luttinger liquid: Ultrarelativistic density wave dynamics due to
fractionalization in an X X Z chain
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We compute the dynamics of localized excitations produced by a quantum quench in the spin-1/2 XXZ
chain. Using numerics combining the density-matrix renormalization group and exact time evolution, as well
as analytical arguments, we show that fractionalization due to interactions in the prequench state gives rise to
“ultrarelativistic” density waves that travel at the maximum band velocity. The system is initially prepared in
the ground state of the chain within the gapless XY phase, which admits a Luttinger liquid (LL) description at
low energies and long wavelengths. The Hamiltonian is then suddenly quenched to a band insulator, after which
the chain evolves unitarily. Through the gapped dispersion of the insulator spectrum, the postquench dynamics
serve as a “velocity microscope,” revealing initial-state particle correlations via space-time density propagation.
We show that the ultrarelativistic wave production is tied to the particular way in which fractionalization evades
Pauli blocking in the zero-temperature initial LL state.
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I. INTRODUCTION

In the labyrinth of one-dimensional (1D) quantum many-
body physics, the Luttinger liquid (LL) lurks around nearly
every corner. It emerges as the low-energy field theory
description of interacting Bose gases, gapless quantum spin
chains, fermion lattice models (Hubbard, etc.), electrons in
metallic carbon nanotubes, and chiral quantum Hall edge
states.1–3 Luttinger liquid physics is universal: it reduces the
complexities of myriad microscopic models to the hydrody-
namics of free bosons.

Despite its apparent simplicity, the LL description of
interacting fermions exhibits a number of rather peculiar
properties, due to the advent of quasiparticle fractionalization.
The elementary excitations of a LL are collective density waves
that carry fractional (electric or number) charge, relative to
the “bare” fermionic constituents; injecting a bare fermion
into a LL causes it to “break up” into many pieces. This
collectivization of the dynamics due to fractionalization leads
to a host of predicted anomalies, including the low bias
suppression of the tunneling density of states, and perfect
insulating behavior at zero temperature due to the presence of
even a single impurity.4 For spinful fermions, fractionalization
induces spin-charge separation.2,5 Interestingly enough, zero
temperature dc transport in a clean quantum wire through ideal
Fermi-liquid leads shows no signature of fractionalization; the
conductance is quantized to e2/h per channel, irrespective of
the interactions.6

In this paper, we describe a “transport” effect that directly
exhibits fractionalization in a LL, observed in the dynamics
of a density fluctuation following a sudden quantum quench.
In a quantum quench, a system is prepared in an eigenstate
of some initial Hamiltonian. In our case, we take the ground
state of an XXZ chain with a nonuniform density profile,
which possesses a low-energy LL description. At the time
of the quench, by external means a sudden deformation is
affected upon the Hamiltonian, which subsequently drives the
unitary postquench dynamics. Here, the postquench spectrum

consists of noninteracting fermions, with a Hamiltonian that
possesses a gapped, band insulator ground state (the XX

chain in the presence of a sublattice staggered external
field). We show that the relative fractionalization of the
prequench system (due to interparticle interactions) leads to
the production of “ultrarelativistic” density waves after the
quench. These waves travel at the maximum band velocity,
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FIG. 1. (Color online) Ultrarelativistic wave generated from an
initial density bump, following an interacting quench. The Luttinger
liquid ground state of an interacting XXZ chain is time evolved
according to a noninteracting, band insulator Hamiltonian. The
density δρ(t,xj ) due to the inhomogeneity is plotted at time slices
t = 0, 12, 24, 36, and 48 after the quench; fainter (bolder) traces
depict earlier (later) times. The evolution is symmetric about xj = 0.
In this figure, red dashed lines were obtained from a combination
of DMRG and exact time evolution for the XXZ chain, while blue
solid lines are the prediction of continuum sine-Gordon field theory.
The curves marked “asymptotic” are the analytical result for the
“regularized supersoliton” in Eq. (3.48). The initial coupling strength
is γ = −0.872, corresponding to σ = 0.7. The initial bump has
width � = 12 and weight Q = 0.10; the mass gap is M = 1/8. The
continuum data is obtained from numerical integration of Eq. (3.47)
with α = 0.75 and ζ = 1.
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and exhibit a particular shape set by the interaction strength.
The propagating density waves are “elementary excitations”
of the postquench nonequilibrium state; they occur because
the fractionalized density inhomogeneity of the initial LL
“injects” high momentum excitations into the postquench band
insulator. By contrast, under the same conditions a quench
from the ground state of the noninteracting Fermi gas (the
XX point of the XXZ chain) into the band insulator yields
only dispersive density dynamics, a consequence of Pauli
blocking. Our setup can be viewed as a “quench spectroscopy”
of fractionalization in a Luttinger liquid.

In the last decade, rapid experimental progress7 in ultracold
atoms and optical lattice gases has transported far-from-
equilibrium many-body physics fully into the quantum realm.
In these systems, the quantum quench has emerged as a
primary tool with which to investigate dynamics. Quenches
have been performed in boson8–11 and fermion12–14 systems,
with and without optical lattices, in one, two, and three
dimensions. An ultracold gas can be very well isolated
from its environment, and provides an unprecedented de-
gree of control in terms of realizing model systems and
manipulating their parameters.7 Theoretical work has focused
primarily on thermalization,15–21 quantum critical scaling and
defect production,22–26 and correlation functions in spatially
homogeneous systems.27–36 Prior art on Luttinger liquid,
sine-Gordon, and XXZ chain quenches includes that of
Refs. 17,19,21,29–34,37–39. Wave packets have been pre-
viously employed in the study of excitations induced by
a local quench,40–42 in which the Hamiltonian deformation
is restricted to a spatial subregion of the larger system.
The characterization of spatially inhomogeneous dynamics
following a global parameter quench (as studied here) is a
more recent development.37–39,43,44

Many of the previous schemes proposed or executed in the
theoretical15,16,20,45,46 and experimental8,9,13,14 literature can be
termed “hard quenches.” In these works, large changes in a
parameter value or trap geometry lead to the excitation of novel
high-energy states8,9,16,45 whose physics has little to do with the
low-energy sectors of either the initial or final Hamiltonians
(for an interesting exception, see Ref. 47). Our goal in this
paper is different: we use a “soft quench” (defined below) as a
low-energy probe of the initial state.

A. Overview

1. X X Z quench protocol; velocity microscope

We study the dynamics following a quantum quench in the
1D spin-1/2 XXZ chain. Working in the equivalent spinless
(or spin-polarized) fermion representation, we investigate
the time evolution of the particle density induced by a
nonuniform initial state. Other works treating XXZ and
sine-Gordon quenches subject to initial-state inhomogeneity
include Refs. 37–39; see Sec. V C for a discussion.

We consider a system initially prepared in the ground state
of the XXZ chain in its gapless XY phase, subject to an
external field. The field induces a localized “bump” in the
density profile of the otherwise spatially homogeneous system.
This state is further characterized by the spin anisotropy
γ of the prequench Ŝz

i Ŝz
i+1 coupling, i.e., the four fermion

interaction strength. The gapless XY phase of the XXZ chain

admits a low-energy Luttinger liquid (LL) description.1,2 At
time t = 0, the system Hamiltonian is deformed discontinu-
ously: γ is set to zero, while a sublattice-staggered external
field is simultaneously applied along the length of the chain,
opening up a gap in the spectrum. In the fermion language,
the ground state of the postquench (“final”) Hamiltonian is a
noninteracting band insulator with a doubled unit cell.

The lattice quench with γ = 0 in the initial XY state
is special, because both the initial and final Hamiltonians
are noninteracting in the fermion language. We dub this the
“noninteracting” quench; the exact solution can be written
for the time evolution of the density expectation value.
By contrast, for γ �= 0 (“interacting” quench) the initial
Hamiltonian is interacting in the fermion language and not
soluble by elementary means. Although the XXZ chain is
integrable, the nonuniform density profile makes difficult the
application of the Bethe ansatz method. Instead, in this paper
we use the density-matrix renormalization group (DMRG) to
numerically compute correlation functions of the initial ground
state. For both the noninteracting and interacting quenches,
the dynamics generated by the noninteracting band insulator
Hamiltonian are determined exactly. This allows us to avoid
the use of more computationally intensive, time-dependent
DMRG calculations. We exploit this advantage to analyze
larger system sizes than previous numerical quench studies
of the XXZ chain.17,34

The idea behind this setup is to use the quench into a gapped,
dispersive phase as a “velocity microscope” on the initial
correlated LL state. The nonuniform initial density profile
creates additional excitations on top of the homogeneous bath
induced by the global parameter quench, leading to real-space
dynamics that can in principle be directly observed. Particles
composing space-time density fluctuations are excited with a
broad range of momenta; these are velocity resolved by the dis-
persive postquench spectrum. By contrast, time evolution with
a generic gapless postquench Hamiltonian in one dimension
(such as that governing a continuum conformal field theory)
produces only pure left- and right-moving ultrarelativistic
waves, regardless of the structure of the initial state.28,29

Throughout this work we make the crucial assumption of
a soft quench, defined as follows. The magnitude of the gap
in the postquench Hamiltonian is specified by a dimensionless
parameter Ma, where 1/M gives the “Compton wavelength”
for the low-energy, massive excitations of the band insulator,
and a denotes the lattice spacing. In addition, we assume a
Gaussian density inhomogeneity in the initial state of width
�. The assumption of a soft quench requires that

a � 1

M
� �, (1.1)

i.e., that the low-energy Compton wavelength dwarfs the lattice
spacing, while the width of the initial-state inhomogeneity
exceeds the Compton wavelength. The first assumption guar-
antees that the gap opens in the low-energy sector of the
band Hamiltonian. The second M� � 1 assures that any
excitation of large-momentum particles postquench arises
from the correlated character of the LL, and not the excessive
“squeezing” of the initial density bump.

Despite the requirement in Eq. (1.1), we will consider
quenches with “intermediate” to “large” values of the initial
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XXZ interaction strength γ , approaching the ferromagnetic
transition at γ = −1. It is far from obvious that a change
from |γ | � 1 to γ = 0 preserves the notion of a soft quench
as articulated above. Because the low-energy description
throughout the gapless phase is a LL, it is nevertheless the case.

2. Sine Gordon and “supersolitons”

The XXZ quench can be interpreted as a lattice version of
the continuum sine-Gordon field theory analyzed previously
in Ref. 43. In that work, spatiotemporal dynamics were
computed in a quench across a quantum critical point. In
Ref. 43, a LL ground state subject to an inhomogeneous density
modulation was time evolved according to a translationally
invariant, postquench Hamiltonian favoring a gapped Mott
ground state. The Mott Hamiltonian generating the dynamics
was chosen to reside at the Luther-Emery48 point of the
sine-Gordon model, where the excitation spectrum consists
entirely of noninteracting, massive Dirac fermions.1,2,49 In the
XXZ chain quench studied here, the final-state band insulator
carriers play the role of the noninteracting Dirac fermions that
compose the sine-Gordon spectrum at the Luther-Emery point;
the Mott gap of the sine-Gordon model is here substituted by
the band gap.

A localized density inhomogeneity in the sine-Gordon
quench launches ultrarelativistic, nondispersing traveling
waves, dubbed “supersolitons” in Ref. 43. The supersoliton
exhibits a rigid shape, propagates at the “speed of light”
vF (the Fermi velocity), and possesses an amplitude that
grows in time as tσ/2. The exponent σ � 0 characterizes the
fractionalization of the initial LL state relative to the final
Mott insulator. For the case σ = 0 (noninteracting quench),
there is no fractionalization and no supersoliton; the density
dynamics of such a quench with M� � 1 show only dispersive
broadening.

In this work, we demonstrate that the supersoliton arises in
the sine-Gordon quench for σ > 0 due to the particular way in
which LL fractionalization evades Pauli blocking. This is made
explicit through a calculation of the local phase space (Wigner)
distribution in the prequench LL. The result is a power-law
occupation of momentum states in the postquench insulator
that translates into a singular peak at vF in the corresponding
(local) velocity distribution. Because velocity is conserved by
the postquench Hamiltonian, the spectral weight associated to
the singularity is translated at vF . By contrast, a noninteracting
quench with σ = 0 and M� � 1 excites only small velocities
v � vF /M�.

A key point is that it is the long-distance behavior of
correlations in the initial state that permits the evasion of Pauli
blocking in the fractionalized case. Although lattice details
can and do modify the ultraviolet behavior of correlations in
the XXZ chain considered here, the fundamental distinction
between noninteracting and interacting quenches remains a
robust feature of the soft quench satisfying Eq. (1.1).

3. Preview of numerical results

We defer a detailed discussion of our XXZ chain quench
results to the main text; the impatient reader may consult
Sec. V for a summary. Instead, we exhibit a few graphs
that demonstrate the qualitative difference between the in-
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FIG. 2. (Color online) Dispersive decay of a density bump
following a noninteracting (γ = σ = 0), nonrelativistic (M� = 3/2)
quench. This is the same as Fig. 1, but for a quench from a
noninteracting Fermi gas to a band insulator. Parameters �, Q,
and M are as in Fig. 1. Red dashed lines are the results of exact
diagonalization of the lattice Hamiltonian, while blue solid lines are
the continuum predictions.

teracting and noninteracting quenches. Figure 1 shows the
ultrarelativistic density wave launched in an interacting quench
satisfying the constraint in Eq. (1.1). (We set the lattice spacing
a = 1). By contrast, Fig. 2 depicts a noninteracting quench;
in this case, only dispersive broadening of the initial density
inhomogeneity is seen. The parameters in these two figures
are the same, except for the interaction strength, quantified
by a parameter σ (γ ). For a noninteracting quench one has
σ (γ = 0) = 0; otherwise σ > 0 and increases monotonically
with |γ |. The evolution of an XXZ chain quench as a function
of the interaction strength σ is depicted as a 3D plot sequence
in Fig. 3.

The blue (dark gray) continuous curves in Figs. 1 and 2 are
obtained using an ultraviolet-regularized version of the sine-
Gordon quench studied in Ref. 43. The regularization models
the effects of neglected lattice scale details in a very crude way.
Because of the close agreement between the field theory and
lattice results, we interpret the ultrarelativistic density wave
appearing in the interacting XXZ quench (Figs. 1 and 3) as a
“regularized” supersoliton. In contrast to the pure sine-Gordon
quench, ultraviolet effects (i.e., irrelevant operators) neutralize
the amplification of the regularized supersoliton, induce time-
dependent deformations of its shape, and ultimately disperse
its weight. The latter effect occurs due to band curvature. By
adjusting system parameters in the XXZ chain, however, the
time scale for dispersion can be made much larger than both the
system traversal and the amplification truncation times, in
the large volume limit. This point is discussed in Sec. IV B 4.
The maximum attainable amplitude of the propagating wave
in the XXZ chain is finite, and fixed by nonuniversal, cutoff-
dependent parameters.

We emphasize that the quench dynamics described in this
paper are fully quantum coherent; the absence of interparticle
scattering in the postquench band insulator prevents dephas-
ing or thermalization. The “fractionalized” density dynam-
ics reflect the many-body entanglement of the initial gap-
less state. Future work incorporating integrability-preserving
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FIG. 3. (Color online) Postquench evolution of a density bump:
dependence on initial-state interparticle interaction strength. Each
subpanel exhibits a three-dimensional view of a lattice quench
(obtained by DMRG + exact time evolution) into the gapped band
insulator; Q, �, and M are the same as in Figs. 1 and 2. The
four frames depict quenches with increasing initial-state interactions,
σ = 0 (noninteracting), 0.4, 0.7, and 1.0 (top to bottom). The cyan
line demarks the maximum band propagation velocity (“speed of
light”), vmax(M = 1/8) ≈ 1.77.

interactions postquench could prove particularly interesting,
as discussed in the Conclusion.

B. Outline

The organization of this paper is as follows. In Sec. II,
we define the pre- and postquench XXZ Hamiltonians and
set up the dynamics to be computed. In Sec. III, we provide
a comprehensive analysis linking the XXZ chain quench
studied here to the corresponding version in the continuum,
low-energy sine-Gordon field theory. We begin in Sec. III A
with a quick review of single-particle relativistic wave-packet
mechanics, where we emphasize the distinction between
“relativistic” and “nonrelativistic” wave-packet propagation.
In Sec. III B, we describe the solution to the pure sine-Gordon
quench. We identify the supersoliton, discussed previously
in Ref. 43. The global and local (Wigner) distributions
induced in the lattice and continuum quenches are discussed
in Sec. III C, wherein the origin of the supersoliton is revealed.
In Sec. III D, the ultraviolet modifications of the sine-Gordon
theory necessary to model the lattice quench are articulated,
and relevant time scales are defined.

Numerical results obtained for the time evolution of the
XXZ chain quench are presented and discussed in Sec. IV.
Results for the noninteracting and interacting quenches are
exhibited and compared to the regularized sine-Gordon theory.
We summarize our conclusions in Sec. V, and finish with
a discussion of open questions. The asymptotic analysis
method used to obtain key analytical results is explicated
in Appendix A. Appendix B recapitulates the notion of
fractionalization in a Luttinger liquid. In Appendix C, we
derive the local (Wigner) velocity distributions induced by
the initial-state inhomogeneity, in the interacting and nonin-
teracting continuum quenches.

II. QUENCH SETUP

A. Lattice model

In a (sudden) quantum quench, one prepares the system in
an eigenstate of an initial Hamiltonian H (i), and subsequently
time evolves under a different final Hamiltonian, H (f ). We
consider the XXZ spin-1/2 Heisenberg chain,

H = −2J
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 − γ Ŝz
i Ŝ

z
i+1

) −
∑

i

μi Ŝ
z
i .

(2.1)

Via the Jordan-Wigner transformation, the spin chain is
equivalent to a model of spinless (or spin-polarized) fermions
whose Hamiltonian is given by

H = −J
∑

i

c
†
i ci+1 + H.c.

+ 2Jγ
∑

i

δniδni+1 −
∑

i

μiδni, (2.2)

where J denotes the nearest-neighbor hopping amplitude, 2Jγ

is a nearest-neighbor density-density interaction strength, and
μi represents a site-dependent chemical potential. In Eq. (2.2),
ci and c

†
j satisfy cic

†
j + c

†
j ci = δij , and δni ≡ c

†
i ci − 1/2. We

will quench from a ground state in the gapless XY phase of this
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Hamiltonian (labeled by the dimensionless interaction strength
γ ) to a noninteracting, band insulator state. The latter is
induced via the application of a unit-cell doubling, sublattice-
staggered chemical potential. Furthermore, by applying a
localized Gaussian chemical potential, we will induce a density
inhomogeneity into the initial state whose dynamics will reveal
the effects of our quantum quench.

The zero-temperature phase diagram for the XXZ chain
in Eq. (2.2) with μi = μ (const) is sketched in Fig. 4. At
zero chemical potential, the chain is in its gapless, power-law
correlated XY phase for −1 < γ � 1. For γ > 1 (γ < −1),
the spin chain assumes long-range Ising antiferromagnetic
(ferromagnetic) order and the spectrum gaps out. We note that
the thickness of the chemical potential window over which
power-law XY order occurs (at fermion densities between
0 and 1 per site) narrows to zero upon approaching the
ferromagnetic transition at γ = −1.

For the quantum quench studied here, the initial and final
lattice Hamiltonians are given by

H (i) = −J

[∑
i

c
†
i ci+1 + H.c. − 2γ

∑
i

δniδni+1

]

−
∑

i

μ
(0)
i δni, (2.3a)

H (f ) = −J

[∑
i

c
†
i ci+1 + H.c. − 2Ma

∑
i

(−1)iδni

]
.

(2.3b)

We assume periodic boundary conditions in a chain of N =
L/a sites, with a the lattice spacing, so that cN+1 = c1. We
always take N to be an even integer. The initial Hamiltonian
H (i) is tuned to reside in its gapless XY phase, so that −1 <

γ � 1.
In Eq. (2.3a) above,

μ
(0)
i = Q

√
π

�

u(γ )

K(γ )
e−x2

i /�2
(2.4)

is the localized chemical potential used to introduce a particle
density inhomogeneity near the center of the chain; we have
introduced the spatial coordinate xi = (i − N/2)a such that

AFM

FM

XY-LL

FM

FIG. 4. (Color online) T = 0 ground-state phase diagram for
the XXZ chain (Ref. 50). Red dashed lines correspond to constant
fermion density contours.

xN/2 = 0 and xN/2+1 = a straddle the chain center. The param-
eters Q and � set the “strength” and width of the Gaussian
potential, respectively. Two additional parameters that enter
into Eq. (2.4) are the sound velocity u and the Luttinger
parameter K . These coefficients completely determine the
character of the low-energy field theory description of the
XXZ chain in its critical XY phase, in equilibrium. In the
absence of an external chemical potential, u and K can be
obtained from the Bethe ansatz, yielding1

u(γ ) = Ja
π
√

1 − γ 2

arccos(γ )
, (2.5a)

K(γ ) = π

2[π − arccos(γ )]
, (2.5b)

such that u(0) = 2Ja ≡ vF and K(0) = 1. Here, vF denotes
the band Fermi velocity at half filling with M = 0. We have
included the ratio u/K in the definition of the local potential
so as to keep the initial induced density inhomogeneity
approximately constant with varying interaction strength γ .

The spectrum of H (f ) [Eq. (2.3b)] is

Ek = ±2J
√

cos2(ka) + (Ma)2. (2.6)

The staggered potential, which doubles the unit cell, introduces
a band gap in the spectrum at kF = π/2a with magnitude
Eg = 4JMa.

Based on the analysis of the continuum sine-Gordon quench
in Ref. 43, we expect the postquench system response to be
governed by the dynamical exponent,

σ (γ ) ≡ 1

2

[
K(γ ) + 1

K(γ )

]
− 1

= 2[arcsin(γ )]2

π2 + 2π arcsin(γ )
. (2.7)

Such an interaction-dependent exponent characterizes the
(critical) power-law behavior exhibited by correlation func-
tions in gapless 1D quantum systems that possess a low-energy
LL description. At γ = 0 (noninteracting quench), σ assumes
its minimum value of zero. At γ = 1, on the precipice of the
instability to Ising antiferromagnetism, σ = 1/4. By contrast,
σ diverges upon approaching γ = −1 from above.

In what follows, we set J = 1 and a = 1, thereby measuring
energies in units of the transfer integral J and distances in units
of the lattice spacing a. Our observable of interest will be the
time-evolved density at each site of the lattice, i.e.,

ρ(t,xi) ≡ 〈δni(t)〉 = 〈0|eiH (f )t c
†
i cie

−iH (f )t |0〉 − 1/2, (2.8)

where |0〉 is the ground state of the initial Hamiltonian H (i).

B. Dynamics; noninteracting quench

For both the interacting (γ �= 0) and noninteracting (γ = 0)
quenches, the dynamics are obtained by solving the Heisenberg
equation of motion for the annihilation operator ci(t) at site i
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using H (f ) [Eq. (2.3b)]. The result is

ci(t) =
N∑

j=1

cj (0){G(1)(t,i − j )

+ [(−1)i + (−1)j ]G(2)(t,i − j )

+ (−1)i+jG(3)(t,i − j )}

≡
N∑

j=1

Gij (t)cj (0), (2.9)

where cj (0) denotes the Schrödinger picture operator, and

G(a)(t,j ) = 1

N

N/2∑
nk=1

exp

(
i
2πnk j

N

)
G̃(a)

(
t,

2πnk

N

)
,

(2.10)

with

G̃(1)(t,k) = cos(Ekt) − i
εk

Ek

sin(Ekt), (2.11a)

G̃(2)(t,k) = −i
2M

Ek

sin(Ekt), (2.11b)

G̃(3)(t,k) = cos(Ekt) + i
εk

Ek

sin(Ekt). (2.11c)

In Eq. (2.11), εk = −2 cos(k) and Ek was defined by Eq. (2.6).
The postquench dynamics of the number density are subse-
quently given by

ρ(t,xi) =
N∑

j,j ′=1

[G∗
ij (t)Gij ′(t) C(xj ,xj ′ )], (2.12)

where all information about the initial state is encoded in the
static correlation function (single-particle density matrix)

C(xj ,xj ′ ) ≡ 〈0|c†j (0)cj ′ (0)|0〉; (2.13)

|0〉 denotes the ground state of H (i).
For the special case of the noninteracting quench, C(xj ,xj ′ )

is obtained by diagonalizing an N × N matrix. We denote the
single-particle Hamiltonian implied in Eq. (2.3a) with γ = 0
by ĥ. In this case, the correlator is given by

C(xj ,xj ′ ) = [Û P̂ (−ĥD)Û †]j,j ′ , (2.14)

where Û †ĥÛ = ĥD diagonalizes the single-particle Hamilto-
nian, and P̂ (−ĥD) projects onto the (filled) negative energy
states of the diagonalized ĥD . Combining Eqs. (2.14) and
(2.12) gives the formal solution to the noninteracting quench.
In practice, because of the inhomogeneity, we compute the
single-particle matrix in Eq. (2.14) numerically.

III. CONTINUUM VS LATTICE

A. Warmup: Relativistic wave-packet dynamics of a single
massive Dirac particle

Before turning to the continuum sine-Gordon quench, we
pause to consider a toy problem: the time evolution of a
Gaussian wave packet for a single, massive Dirac fermion
in one dimension. This material is standard, but we include
it to emphasize several important points regarding disparate

regimes of relativistic wave propagation, and to clarify the
similarities and differences between single-particle wave-
packet mechanics and the many particle quantum quench
problem studied in this paper.

The postquench, band insulator Hamiltonian in Eq. (2.3b)
exhibits a gap Eg = 2vF M , centered at k = kF = π/2. Lin-
earizing and truncating the band structure to modes near kF ,
one obtains

H̄ (f ) =
∫

dx ψ†ĥψ, (3.1)

where the single-particle Hamiltonian is given by

ĥ = vF

[
−iσ̂ 3 d

dx
+ Mσ̂ 2

]
, (3.2)

and the two-component Dirac spinor ψ(x) has the Fourier
transform

ψ(k) ≡
[

ψ1(k)

ψ2(k)

]
=

[
e−iπ/4c(k + kF )

eiπ/4c(k − kF )

]
, (3.3)

with 0 � |k| � � � kF (� is a momentum cutoff). The
components ψ1 and ψ2 denote right and left movers in the
massless limit. In Eq. (3.2), we have introduced a set of Pauli
matrices {σ̂ 1,2,3} acting in the pseudospin space of ψ .51 The
Fermi velocity vF = 2; below we absorb it into the primed
time,

t ′ ≡ vF t. (3.4)

In this section we take the system size L → ∞.
We assume a Gaussian initial wave function for a particle

in its rest frame,

0(x) = 1

(π�2)1/4
e−x2/2�2

[
0,1

0,2

]
, (3.5)

with |0,1|2 = |0,2|2 = 1/2. In this equation and the ones
that follow,  denotes a single-particle wave function; its time
evolution is determined by ĥ in Eq. (3.2) via the Schrödinger
equation. It is useful to write the solution at times t � 0 in two
different ways. One way is

(t,x) ≡ +(t,x) + −(t,x), (3.6)

where the components μ=±(t,x) are defined via

μ(t,x) =
√

�M

(4π )3/4

∫ ∞

−∞
dz e−(M�/2)2[cosh(2z)−1]

× e−iμA(t ′,x) cosh[z−μz0(t ′,x)]

× (0,1 − μie−μz0,2)

[
eμz

μi

]
. (3.7)

An alternative representation for (t,x) is given by

(t,x) = 1

(π�2)1/4

{[
0,1 e−(x−t ′)2/2�2

0,2 e−(x+t ′)2/2�2

]
+

∫ t

−t

dy e
− (x−y)2

2�2

×
[

Ḡ(1)(t ′,y) Ḡ(2)(t ′,y)

−Ḡ(2)(t ′,y) Ḡ(3)(t ′,y)

] [
0,1

0,2

]}
, (3.8)
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where

Ḡ(1)(t,y) = −M

2

[
t + y√
t2 − y2

]
J1[A(t,y)], (3.9a)

Ḡ(2)(t,y) = −M

2
J0[A(t,y)], (3.9b)

Ḡ(3)(t,y) = −M

2

[
t − y√
t2 − y2

]
J1[A(t,y)] (3.9c)

denote the M-dependent components of the Green’s func-
tions [from the continuum limit of Eq. (2.11)]. In
Eq. (3.7), tanh(z0) = x/t ′, while A(t ′,y) = M

√
t ′2 − y2.

Equations (3.6) and (3.7) follow from the momentum
eigenstate expansion for the time evolution operator, while
Eq. (3.8) obtains from the real-space propagation amplitude.
In Eq. (3.9), the symbols J{0,1} denote Bessel functions of the
first kind.

A basic consequence of relativistic quantum field theory is
that a single particle cannot be confined to a region smaller
than its Compton wavelength 1/M . Localization to smaller
scales induces particle energies in excess of the mass gap; in
a many-particle theory, this typically leads to pair production
out of the vacuum.

In single-particle relativistic wave mechanics, one instead
finds qualitatively different behavior for initial confinements
� � 1/M (“nonrelativistic”) and � � 1/M (“relativistic”).
We consider first the nonrelativistic case. For M� � 1, the
argument of the exponential in Eq. (3.7) can be expanded to
quadratic order in z. In this approximation, one obtains

|(t,x)|2

= 1

4
√

π�δ(t ′)
e−x2/�2δ2(t ′)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − 2
δ(t ′) cos[2Mt ′ − φ0(t ′,x)]

+ 2t ′
M�2δ(t ′) sin[2Mt ′ − φ0(t ′,x)]

+ e1/[M�δ(t ′)]2+2t ′x/M2�4δ2(t ′)

×
[

1 + 1
δ(t ′) cos[2Mt ′ − φ+(t ′,x)]

− t ′
M�2δ(t ′) sin[2Mt ′ − φ+(t ′,x)]

]

+ e1/[M�δ(t ′)]2−2t ′x/M2�4δ2(t ′)

×
[

1 + 1
δ(t ′) cos[2Mt ′ − φ−(t ′,x)]

− t ′
M�2δ(t ′) sin[2Mt ′ − φ−(t ′,x)]

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.10)

where the scale factor δ(t) =
√

1 + t2/M2�4; φ{0,+,−}(t,x)
denote some phase factors.52 For the initial spinor com-
ponents in Eq. (3.5), we have made the choice 0,{1,2} =
exp(∓iπ/4)/

√
2, so that 0(x) is invariant under time-reversal

and parity operations.53

To the lowest order in 1/M�, Eq. (3.10) reduces to the
usual nonrelativistic formula

|(t,x)|2 = 1√
π�δ(t ′)

e−x2/�2δ2(t ′).

At smaller values of 1/M�, the oscillatory character of
Eq. (3.10) becomes important, and one observes the “Zit-
terbewegung” phenomenon: the evolving probability density

exhibits an undulatory envelope that beats at the “interband”
frequency ω = 2vF M . These oscillations occur because the
eigenstate synthesis of the initial Gaussian [Eq. (3.5)] requires
larger contributions from negative energy states as the width
� is narrowed.

In the ultrarelativistic limit M = 0, Eq. (3.8) implies that

|(t,x)|2 = 1

2
√

π�
[e−(x−t ′)2/�2 + e−(x+t ′)2/�2

].

By contrast, when 0 < M� � 1, the propagation is relativistic
but dispersive. In the long-time limit, the second term on the
right-hand side of Eq. (3.8) is dominated by the diagonal
Green’s functions. Close to the right light-cone edge |x − t ′| �
�, for t ′ � t ′disp one obtains

(t,x) ∼ 1

(π�2)1/4
e−(x−t ′)2/2�2

f

(
t ′

t ′disp

,
x − t ′

�

)[
0,1

0

]

+ dispersive background, (3.11)

where

t ′disp = 1/2M2�.

The function

f (α,β) =
∫ ∞

0
dw[1 − e−βw2/α−w4/2α2

]J1(w)

vanishes in the limit α → ∞.
In the XXZ chain quantum quench studied in this paper, it

will prove essential to distinguish relativistic vs nonrelativistic
initial conditions using the width � of the Gaussian chemical
potential inhomogeneity in Eq. (2.4) and the band-gap pa-
rameter M in the postquench Hamiltonian Hf [Eq. (2.3b)].
Examples of single-particle nonrelativistic and relativistic
propagation are shown in Fig. 5.

B. Sine-Gordon quench and “supersolitons”

We now consider the continuum limit of the XXZ quench
defined by H (i) and H (f ) [Eqs. (2.3a) and (2.3b)]. This
problem was previously analyzed in Ref. 43. In this section,
we provide the solution to the sine-Gordon quench and a brief
recapitulation of the results found in Ref. 43. In Sec. III D, we
consider the modification of these results due to the presence
of irrelevant operators (i.e., lattice-scale details left out of the
renormalizable continuum field theory).

The massive Dirac continuum limit for the final-state
Hamiltonian H̄ (f ) was derived in the last section, Eqs. (3.1)–
(3.3). Since this Hamiltonian is noninteracting, we can
construct a formal solution to the quench dynamics by solving
the Heisenberg equations of motion for the Dirac spinor ψ(t,x)
[cf. Eq. (2.9)]. The result is

ψ(t,x) =
∫ t ′

−t ′
dy Ĵ (t ′,y) ψ(0,x − y), (3.12a)
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(a)

(b)

FIG. 5. (Color online) Examples of single-particle, massive Dirac
equation wave-packet propagation, obtained via numerical integra-
tion of Eqs. (3.6) and (3.7). Case (a) corresponds to a nonrelativistic
initial condition, the Gaussian in Eq. (3.5) with � = 5/M . The
relativistic case is illustrated in (b), with an initial � = 0.5/M . Here
M ≡ 1, and data are shown at times t = 0, 15, 35, and 55; fainter
(bolder) traces depict earlier (later) times.

where

Ĵ (t,y) ≡ Ĵ0(t,y) + ĴM (t,y), (3.12b)

Ĵ0(t,y) =
[

δ(y − t) 0

0 δ(y + t)

]
, (3.12c)

ĴM (t,y) =
[

Ḡ(1)(t,y) Ḡ(2)(t,y)

−Ḡ(2)(t,y) Ḡ(3)(t,y)

]
. (3.12d)

Equation (3.12) is identical to the propagation amplitude
transcribed in the last section [Eq. (3.8)], after replacing
the single-particle wave function 0(x) with the Schrödinger
picture field operator ψ(0,x). In these equations, t ′ = vF t

[Eq. (3.4)], while the Green’s functions Ḡ(1,2,3)(t,y) were
defined by Eq. (3.9).

The postquench fermion density is given by

ρ(t,x) =
∫ t ′

−t ′
dy1

∫ t ′

−t ′
dy2[Ĵ †(t ′,y1)Ĵ (t ′,y2)] s

r

× Cr
s(x − y1,x − y2), (3.13)

where all information about the initial state is encoded in the
correlation function

Cr
s(x1,x2) ≡ 〈0̄|ψr †(0,x1)ψs(0,x2)|0̄〉. (3.14)

In Eqs. (3.13) and (3.14), the indices r,s ∈ {1,2}; repeated
indices are summed.

The prequench system is described by the ket |0̄〉, which is
taken as the ground state of the Luttinger liquid Hamiltonian

H̄ (i) =
∫

dx

[
− vF ψ†

(
i σ̂ 3 d

dx

)
ψ − μ(0)(x) : ψ†ψ :

+ 2γ vF : ψ†ψ ψ†ψ :

]
. (3.15)

Equation (3.15) gives the continuum limit of H (i) in Eq. (2.3a),
after discarding all irrelevant operators; here, μ(0)(x) repre-
sents the long-wavelength, continuum approximation to the
lattice potential μ

(0)
i .54 The symbol : · · · : denotes normal

ordering.
Using Abelian bosonization rules,1,2,5 we rewrite Eq. (3.15)

as

H̄ (i) =
∫

dx

[
uK

2

(
dφ

dx

)2

+ u

2K

(
dθ

dx

)2

− μ(0)(x)√
π

dθ

dx

]
.

(3.16)

In our conventions, the fermion current components are
bosonized as

{J 0,J 1} ≡ {ψ†ψ,ψ†σ̂ 3ψ} =
{

1√
π

dθ

dx
,

1√
π

dφ

dx

}
,

(3.17)

and satisfy [J 0(x),J 1(x ′)] = −(i/π )(d/dx)δ(x − x ′). The
sound velocity u and the Luttinger parameter K in Eq. (3.16)
are given by

u = vF

K
, K = 1√

1 + 4γ

π

. (3.18)

With vF = 2, these agree with the Bethe ansatz results in
Eq. (2.5) only to the first order in γ .

When expressed in terms of the boson variables, the
postquench massive Dirac Hamiltonian in Eq. (3.1) becomes
the sine-Gordon model,

H̄ (f ) = vF

∫
dx

[
1

2

(
dφ

dx

)2

+ 1

2

(
dθ

dx

)2

+ M

πα
cos(

√
4πθ )

]
.

(3.19)

The variable α appearing in the prefactor of the cosine term
carries units of length, and is formally introduced by the
bosonization procedure.1,5

While H̄ (i) [Eq. (3.16)] assumes a noninteracting form
when expressed in boson variables, H̄ (f ) becomes the non-
linear sine-Gordon theory. By contrast, H̄ (f ) [Eq. (3.1)] is
noninteracting in terms of the Fermi field ψ , while H̄ (i)

[Eq. (3.15)] incorporates four fermion interactions. For a
quench with γ �= 0, there is no common language in which
both H̄ (i) and H̄ (f ) can be simultaneously expressed as
noninteracting Hamiltonians. We refer to this generic scenario
as the “interacting” quench in the sine-Gordon theory. We
reserve the appellation “noninteracting” for the exceptional
case with γ = 0, where both H̄ (i) and H̄ (f ) are bilinear in
fermions. The postquench dynamics exhibited for each case
are different, as discussed below.

085146-8



QUANTUM QUENCH SPECTROSCOPY OF A LUTTINGER . . . PHYSICAL REVIEW B 84, 085146 (2011)

Expressing the fermions in Eq. (3.14) as vertex operators
in the bosonic language,1 the initial-state correlation function
components evaluate to

C1
1(x1,x2) = icNασ

2π
exp

[
i
K

u

∫ x2

x1

dy μ(0)(y)

]

× sgn(x1 − x2)

|x1 − x2|σ+1
, (3.20a)

C2
2(x1,x2) = −icNασ

2π
exp

[
−i

K

u

∫ x2

x1

dy μ(0)(y)

]

× sgn(x1 − x2)

|x1 − x2|σ+1
, (3.20b)

C1
2(x1,x2) = C2

1(x1,x2) = 0 (L → ∞). (3.20c)

In these equations, the external chemical potential manifests
in a gauge “string” due to the axial anomaly.2,55 The co-
efficient α was introduced in Eq. (3.19); the parameter cN

is a numerical normalization constant.56 The off-diagonal
components of Cr

s(x1,x2) (r �= s) vanish in the thermodynamic
limit L → ∞.

The essential character of the initial Luttinger liquid state
is encoded in the dynamic exponent σ , defined as

σ ≡ 1

2

(
1

K
+ K

)
− 1. (3.21)

For the noninteracting quench, K = 1 and γ = σ = 0. By
contrast, any K �= 1 (γ �= 0) gives σ > 0.57 Equation (3.20)
implies that σ is twice the anomalous scaling dimension of ψ

in the initial LL ground state.
Using Eq. (3.20), the integrals appearing in the final expres-

sion for the postquench density expectation in Eq. (3.13) are
ultraviolet convergent for 0 � σ < 1. Over this range of initial
conditions, we obtain a cutoff-independent prediction for the
postquench evolution of the number density in the continuum
sine-Gordon field theory. Similar expressions with identical
convergence properties may be obtained for the kinetic- and
potential-energy densities due to the inhomogeneous initial-
state chemical potential.43

The general characteristics of the long-time density dynam-
ics implied by Eq. (3.13) and (3.20) for a generic initial state
μ(0)(x) were discussed in Ref. 43. In this paper, we restrict our
attention to the waves induced by a localized, Gaussian initial
inhomogeneity,

K

μ
μ(0)(x) = Q

√
π

�
e−x2/�2

. (3.22)

Combining Eqs. (3.22), (3.20), and (3.13) gives an exact
integral expression for the postquench density expectation
evolution after the sine-Gordon quench. In the long-time
limit t � 1/vF M , the requisite integrals yield to a systematic
asymptotic analysis, as explained in Appendix A. One thereby

FIG. 6. The right-moving supersoliton obtained in the interacting
sine-Gordon quench. The number density evolution after a Luttinger
liquid to insulator quench is depicted for a Gaussian initial density
profile (heavy black line), with σ = 0.7, � = 3, and M = 15/16,
obtained via numerical integration of the exact bosonization result
[Eqs. (3.13) and (3.20), using Eq. (3.22)]. Time series for two different
Q are plotted; the densities are normalized relative to these. The
evolution is reflection symmetric about x = 0.

obtains the exact leading asymptotic behavior

ρ(t,x) = Q

2
√

π�
e−(x−t ′)2/�2

− Q

2�

�(1 − σ )

�
(

1+σ
2

) [
(Mα)2t ′√

2�

]σ/2

Fσ

(
x − t ′

�

)
+{x → −x}, (3.23)

where

Fσ (z) ≡ exp(−z2/2)Dσ/2(
√

2z), (3.24)

and Dν(x) denotes the parabolic cylinder function. In
Eq. (3.23), we have used the explicit expression for the nor-
malization constant cN .56 Regardless, for σ > 0 (interacting
quench) the prefactor of the second term in Eq. (3.23) is in
some sense arbitrary, due to the α factor. This ambiguity can
be resolved if a conventional normalization is adopted for the
vertex function correlators in Eq. (3.20).58 The derivation of
Eq. (3.23) is sketched in Appendix A.

For the interacting quench with 0 < σ < 1, Eq. (3.23)
describes the propagation of right- and left-moving “super-
solitons” launched from the Gaussian initial condition, in the
long-time limit. A right-moving supersoliton is depicted in
Fig. 6. From the equation, it is evident that the supersoliton
does not disperse. In the long-time limit, the response to the
initial chemical potential (and thus the initial state density
inhomogeneity) is linear, regardless of the strength of Q in
Eq. (3.22). The supersoliton features an amplitude that grows
in time as power law, with growth exponent σ/2; subleading
terms neglected in Eq. (3.23) decay for σ > 0. For a quench in
a microscopic (e.g., lattice) system in which the sine-Gordon
theory provides only the low-energy, effective field theory
description, as for the soft quench [Eq. (1.1)] in the XXZ

chain studied in Secs. II and IV, the amplification effect is
a transient behavior that is eventually cut off after a time
tζ [Eqs. (3.49) and (3.51)] or t3 [Eq. (3.53))]. This point is
elaborated upon in Secs. III C 2 and III D, below. By adjusting
system parameters, both tζ and t3 can be made arbitrarily large
with respect to the system traversal time, in the large volume
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limit, as discussed in Sec. IV B 4. The maximum attainable
amplitude is nevertheless finite, and fixed by nonuniversal,
cutoff-dependent parameters, as in Eq. (3.52), below.

The peculiar shape of the supersoliton implied by Eq. (3.24)
is obtained because the quench kernel effectively takes a
fractional derivative (d/dx)σ/2 of the input profile.43 The
total number fluctuation induced by the inhomogeneity is
conserved by the supersoliton, since the second term in
Eq. (3.23) integrates to zero over x ∈ R.59 Finally, we note that
Eq. (3.23) holds for generic M�: the supersoliton arises for
both “relativistic” (M� � 1) and “nonrelativistic” (M� �
1) initial density profiles (cf. Sec. III A).

By contrast, the noninteracting quench with σ = 0 ex-
hibits no amplification. For M� � 1 (“nonrelativistic” initial
condition), one finds simple dispersive broadening, qualita-
tively similar to the single-particle wave-packet spreading
in Fig. 5(a). Examples of noninteracting quenches with
nonrelativistic initial conditions are shown in Fig. 7. For the
noninteracting quench, the response is given entirely by terms
neglected as subleading (for σ > 0) in Eq. (3.23); indeed, the
right-hand side of this expression vanishes for σ = 0.

Noninteracting quenches with “relativistic” (M� � 1)
initial conditions exhibit a different behavior, qualitatively
similar to the single-particle wave-packet evolution depicted
in Fig. 5(b): the initial Gaussian density bump blows apart into
left- and right-moving wave trains, with leading edges that rip
along the light cone. In this sense, the noninteracting quench
with M� � 1 behaves similar to the supersoliton, which also
propagates relativistically. At short-time scales t � 1/vF M ,
the interacting and noninteracting quenches in fact exhibit
qualitatively similar dynamics for relativistic initial conditions.
However, the noninteracting quench evolution shows no am-
plification in the long-time limit, and the generated wave train
exhibits no static, nondispersing structure. In the numerical
results for the XXZ chain quench presented in Sec. IV, we
will restrict our attention to nonrelativistic initial conditions,
in order to avoid possibly confusing the supersoliton with

FIG. 7. (Color online) The number density evolution as in
Fig. 6, but for the noninteracting quench K = 1 (σ = 0). The initial
bump (heavy black line) has area Q = 0.1 in the main figure and
Q = 1 in the inset; in both cases � = 3 and M = 15/16. The
evolution is reflection symmetric about x = 0. Now there is no
fractionalization of the initial LL quasiparticles with respect to the
insulator and, consequently, the dynamics are simply dispersive with
no supersolitons or inhomogeneity growth.

the trivial (and essentially single-particle) effect of squeezing
the initial density wave packet to a width narrower than the
Compton wavelength.

Finally, we note that setting M = 0 in Eq. (3.23) gives
the result appropriate to a Luttinger liquid to Luttinger liquid
quench—the initial density disturbance is merely propagated
along the light cone without dispersion, as expected for dy-
namics generated by a critical state. This case was previously
considered in Ref. 38.

The physics of the interacting and noninteracting quenches
are fundamentally distinguished by the advent of quasiparticle
fractionalization in the interacting case. The interacting nature
of the prequench initial ground state |0̄〉 relative to the
postquench Hamiltonian H̄ (f ) is implied by Eq. (3.15) with
γ �= 0, which expresses H̄ (i) in terms of the “final-state”
fermion ψ . The presence of interparticle interactions in H̄ (i)

means the fermion ψ is not a “natural” propagating degree
of freedom in the initial-state Luttinger liquid.60 Equivalently,
the “quasiparticles” of the LL carry a fraction

√
K of the ψ

fermion number charge; we say that the initial LL state is
fractionalized with respect to the final band insulating state.
This notion is made explicit in Appendix B. Fractionalization
due to the presence of interparticle interactions is a ubiquitous
feature in one dimension, responsible, e.g., for spin-charge
separation in quantum wires.1,2

We interpret the supersoliton and the amplification effect
that arises in the sine-Gordon quench for the interacting case
as a spectroscopy of the initial LL state.43 The key ingredients
are quasiparticle fractionalization of the initial state relative to
the excitation spectrum of the postquench Hamiltonian, and
fact that the postquench Hamiltonian is gapped. In the next
section and in Appendix C, we show that fractionalization
leads to an anomalous momentum dependence in the Wigner
distribution function of the excited postquench quasiparticles,
due to the inhomogeneity. The low-energy dispersion of the
gapped final state characterized by M translates this into a
divergent velocity distribution, giving rise to the supersoliton.
By contrast, for a nonrelativistic density profile with M� � 1,
Pauli blocking suppresses the excitation of large velocities in
the noninteracting quench. The distinction arises due to the
long-distance behavior of correlations in the initial state, and
is not destroyed by lattice effects. At the same time, we will
see in Sec. III D that the advent of the lattice does modify the
postquench dynamics, but in way that can be parametrically
controlled by the system size (see Sec. IV B 4).

C. Quasiparticle distribution functions: Continuum and
lattice quenches

We consider the postquench distribution of final-state
quasiparticles in the sine-Gordon and lattice quenches. Time
evolution is generated by the final-state Hamiltonian, which
is translationally invariant and noninteracting in terms of
band fermions for both the lattice [H (f ), Eq. (2.3b)] and
continuum [H̄ (f ), Eq. (3.1)] theories. The global momentum
distribution of excited quasiparticles induced by the quench in
each case constitutes a static quantity, which does not encode
information about the density inhomogeneity. The physics of
the supersoliton resides in the local Wigner function, which is
discussed subsequently.
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1. Global distribution function

We consider first the continuum sine-Gordon quench. The
final-state Hamiltonian H̄ (f ) in Eqs. (3.1) and (3.2) can be
rewritten as

H̄ (f ) =
∫

dk

2π
εk[a†

kak + b
†
kbk], (3.25)

where ak (bk) annihilates a particle (hole) with momentum k,
and

εk = vF

√
k2 + M2. (3.26)

The particle and hole operators are related to ψ via[
ψ1(k)

ψ2(k)

]
= ak√

1 + s2(k)

[
1

is(k)

]

+ b
†
−k√

1 + s2(−k)

[
1

−is(−k)

]
, (3.27)

where

s(k) ≡ εk − vF k

vF M
.

We define the occupation numbers

n+(k) ≡ 〈0̄|a†
kak|0̄〉,

(3.28)
n−(k) ≡ 〈0̄|b†kbk|0̄〉,

in which |0̄〉 denotes the ground state of the prequench
Hamiltonian H̄ (i), Eqs. (3.15) and (3.16).

For the translationally invariant case μ(0)(x) = 0, one can
show that

n+(k) = n−(k) = 1

2
+ k

εk

F(k), (3.29)

where

F(k) = 〈0̄|ψ1 †(k)ψ1(k)|0̄〉 − 1
2 (3.30)

and F(−k) = −F(k). The form of Eqs. (3.29) and (3.30)
follows from Eq. (3.27) and the imposition of the sum rule
(canonical anticommutation relations) upon correlators of the
fermion components ψi(k).

In the case of the noninteracting quench (σ = 0), one finds
F(k) = −(1/2)sgn(k), so that

n±(k) = 1

2

(
1 − |k|√

k2 + M2

)
. (3.31)

This occupancy factor peaks to a value of one-half at k = 0,
and decays as M2/k2 for |k| � M . The density of particles or
holes excited by the quench is thus ultraviolet finite and equal
to M/2π . The associated kinetic-energy density is given by the
difference of the pre- and postquench Hamiltonian zero-point
energy densities, and is logarithmically divergent.

The calculation for the interacting case is more subtle, due
to an ultraviolet divergence. We must compute

〈0̄|ψ1 †(k)ψ1(k)|0̄〉 = cNασ

2π

∫ ∞

−∞
dx

eikx(α + ix)(
α2 + x2

)1+σ/2 , (3.32)

which is the Fourier transform of the initial-state correlator
in Eq. (3.20a) with μ(0) = 0, retaining the soft cutoff α.1

FIG. 8. (Color online) Occupancy of momentum states in the
upper (conduction) band after the lattice XXZ quench (obtained by
DMRG), for the four values of the dynamical exponent σ given in
the legend. The occupancies are plotted for four different choices
of the band-gap parameter, M = 3/40 (a), 1/8 (b), 1/4 (c), and
3/8 (d). In each subplot, the dashed vertical line marks the wave
number kmax(M) at which the final-state Hamiltonian band group
velocity is maximized, v(kmax; M) = max [dEk/dk] ≡ vmax(M); see
Sec. IV B 2, Eqs. (4.3) and (4.4).

The prefactor cN appears explicitly in Ref. 56. Performing
an expansion in kα and extracting F(k), we finally obtain

n±(k) = 1

2

[
1 − |k|√

k2 + M2

�
(

1−σ
2

)
�

(
1+σ

2

) ( |k|α
2

)σ
]

+ O (|k|α) , (3.33)

valid for 0 � σ < 1. Equation (3.33) holds only for |k|α small,
where the second term on the right-hand side trails the first. At
such wave vectors, n± is enhanced relative to the noninteract-
ing case in Eq. (3.31), indicating that the interacting quench
induces a stronger excitation of the postquench quasiparticles.
Clearly Eq. (3.33) becomes unphysical for sufficiently large
|k|; the global distribution function cannot be uniquely defined
(i.e., its value will depend upon the regularization procedure)
in the continuum, interacting sine-Gordon quench.

In Fig. 8, we exhibit n+(k) for the lattice quench in a finite-
size system of 202 sites, obtained via numerical density-matrix
renormalization-group calculations (see Sec. IV for details).
The occupancy is defined as in Eq. (3.28), except that the
continuum state |0̄〉 is replaced by |0〉, the ground state of
H (i) in Eq. (2.3a); ak now denotes the lattice conduction-band
annihilation operator.

2. Wigner function, fractionalization, and the origin of
the supersoliton

Equations (3.31) and (3.33) have been calculated for the
case of the homogeneous quench. In the infinite system size
limit, these equations also apply in the presence of an arbitrary
initial-state chemical potential μ(0)(x) that vanishes faster than
1/x as |x| → ∞. The effects of the inhomogeneous density
profile in the initial state can be extracted from the “local”
(Wigner) distribution function.61
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The main idea is conveyed by the ground-state Wigner
function for the right-moving fermion ψ1(x) ≡ R(x) in the
inhomogeneous Luttinger liquid, defined as

nR(k; R) ≡
∫

dxd e−ikxd 〈0̄|R† (R − xd

2

)
R

(
R + xd

2

) |0̄〉

=
∫

dq

2π
eiqR〈0̄|R̃† (k − q

2

)
R̃

(
k + q

2

) |0̄〉.
(3.34)

Here |0̄〉 is the ground state of H̄ (i) in Eq. (3.15), which has
the density expectation 〈0̄|R†(x)R(x)|0̄〉 = ρ0(x)/2, where

ρ0(x) ≡ K

πu
μ(0)(x). (3.35)

The global momentum distribution and the position space
density expectation value can both be extracted from the
Wigner function (Appendix C). Although we employ it here
to gain intuition about the local momentum profile induced
by ρ0(x), strictly speaking nR(k; R) cannot be interpreted as a
probability distribution62 (it can take negative values), because
momentum and position are canonically conjugate quantum
observables.

We let δnR(k; R) denote the linear response due to ρ0(x),
after subtracting off the homogeneous (global) background.
Using the correlation function in Eq. (3.20a), we find

δnR(k; R) = cNασ

∫
dq

2π

ρ̃0(q)

q
eiqR

×
[

sgn
(
k + q

2

)
Gσ

(∣∣k + q

2

∣∣ ; ζ
)

−sgn
(
k − q

2

)
Gσ

(∣∣k − q

2

∣∣ ; ζ
)
]

,

(3.36)

where

Gσ (|p|; ζ ) ≡
∫ ∞

0

dy

y

1

(y2 + ζ 2)σ/2
sin (|p|y) . (3.37)

The parameter ζ is an ultraviolet regularization length,
introduced here for later use in the context of the lattice quench
defined in Sec. II A (see Sec. III D). The pure continuum theory
has ζ = 0, for which Eq. (3.37) is convergent when 0 � σ < 1.

For the special case of a noninteracting Fermi gas (σ = 0),
G0(|p|; ζ ) = π/2, independent of |p|, so that

δnR(k; R) = π

2

∫
eiqR dq

2π

ρ̃0(q)

q

×
[
sgn

(
k + q

2

)
− sgn

(
k − q

2

)]
.

(3.38)

This expression vanishes for |q| < 2|k|, i.e., unless the creation
and annihilation operators in Eq. (3.34) carry momentum
with opposite signs. This is a simple consequence of Pauli
blocking. The result can be understood via perturbation theory:
let |0̄〉 ≡ |0̄〉0 + |δ〉; |0̄〉0 denotes the homogeneous vacuum,
while |δ〉 gives the response to ρ0(x). To first order in |δ〉,
Eq. (3.34) vanishes unless the product R̃†(k − q

2 )R̃(k + q

2 )
creates a particle-hole pair in |0̄〉0 (acting to the left or to the
right); Eq. (3.38) is obtained from the overlap between this
state and |δ〉.

We consider a ρ0(x) localized in position space, of
characteristic width �. For |k| � 1/�, Eq. (3.38) implies that
the k dependence of the Wigner function is slaved to follow
that of ρ̃0(q), with q ∼ 2k. For a Gaussian inhomogeneity,
this means a Gaussian falloff of the Wigner function in k.
No matter how wide or narrow the initial packet is made, the
large-k asymptotic is always strongly suppressed.

By contrast, the situation for the interacting Luttinger
liquid is quite different, Eq. (3.36) with σ > 0. Then, the
kernel Gσ (|p|; ζ ) depends upon |p|, and allows a contribution
to δnR(k; R) from |q| < 2|k|, violating the Pauli blocking
condition. For |k| � 1/�, the dominant contribution comes
from |q| � 2|k|, and the q integration gives δnR(k; R) ∝
ρ(R). The k dependence comes entirely from dGσ (|k|; ζ )/d|k|,
and is independent of the initial inhomogeneity profile: the
R and k dependencies of the Wigner function factorize. For
0 < σ < 1 and ζ = 0, the leading term in the |k| � 1/� limit
of Eq. (3.36) goes as

δnR(k; R) ∼ c(σ ) ασ |k|σ−1ρ0(R), (3.39)

where the prefactor satisfies c(0) = 0.
In the sine-Gordon quench, the initial “momentum distribu-

tion” implied by Eqs. (3.36) or (3.39) translates into a “velocity
distribution” through the massive postquench dispersion rela-
tion in Eq. (3.26); details are presented in Appendix C. In
the noninteracting case, for a nonrelativistic initial condition
with M� � 1, only small velocities v � vF /M� are excited
[Eq. (C7) in Appendix C]. By contrast, an interacting quench
with Eq. (3.39) induces a nonintegrable divergence in the
velocity distribution at the “speed of light” v = vF [Eq. (C8a)],
signaling the presence of the nondispersing supersoliton (recall
that velocity is conserved by the postquench Hamiltonian).
Thus the supersoliton arises due to the particular way in which
quasiparticle fractionalization evades Pauli blocking in the
initial LL ground state.

To gain further insight, consider a many-particle product
state in a relativistic quantum theory, e.g., N particles are
placed into N plane-wave states with momenta {ki}. In
the thermodynamic limit N → ∞, the system is described
by a continuous distribution function n(k), a well-defined
(classical) observable for a product state. Suppose further
that the corresponding velocity distribution n(v) exhibits a
δ-function-like singularity at v = vF . Then, a fraction of the
density (determined by the weight of the singularity) at each
point in space is translated at the speed of light. In particular,
a fraction of any initial density inhomogeneity will propagate
at v = vF without dispersion.

Even though this intuitive velocity distribution picture
helps reveal the physical origin of the supersoliton, it is
not entirely satisfactory. For example, a finite number of
massive particles traveling at the speed of light implies an
infinite kinetic energy. By contrast, although it propagates
ultrarelativistically, the supersoliton carries finite total energy
beyond that induced by the homogeneous quench.43 The initial
(inhomogeneous) Luttinger liquid is very far from a product
state of the postquench spectrum; indeed, the appearance
of the exponent σ in Eqs. (3.33) and (3.39) indicates that
quantum coherence (entanglement) plays a dominant role in
the fractionalized density dynamics of the quench. Further, the
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Wigner function δn(k; R) is not really a phase-space distribu-
tion function,62 and the nonintegrable velocity singularity in
Eq. (C8a), Appendix C does not imply an extensive mass or
energy flow. Instead, we interpret this divergence as signaling
the supersoliton, an emergent, collective excitation of the
postquench nonequilibrium state that travels with velocity vF .

Let us also note that the Wigner distribution postquench
is not a static object; the spatially varying momentum profile
in Eq. (3.39) implies that the shape of the density wave can
evolve. In the unregularized sine-Gordon quench, this is the
amplification effect exhibited in Fig. 6 and Eq. (3.23).

The ultraviolet effects induced by the presence of a lattice
cannot alter the fundamental distinction between interacting
and noninteracting quenches, because the long-distance be-
havior of 〈0̄|R†(0)R(x)|0̄〉 determines the efficacy of Pauli
blocking in Eq. (3.36) through Eq. (3.37). In the next section,
we will nevertheless see that the modification of the short-
distance structure of the theory [e.g., ζ > 0 in Eq. (3.37)] does
influence the postquench dynamics.

Further details about the postquench Wigner function can
be found in Appendix C, where explicit formulas are given for
the associated velocity distributions in the noninteracting and
interacting quenches, incorporating the effects of ultraviolet
regularization.

D. Irrelevant operators and UV regularization

So far, we have focused primarily on the Luttinger liquid to
band insulator quench in the continuum sine-Gordon model.
For a Gaussian initial density bump, the leading asymptotic
result for the long-time limit [Eq. (3.23)] predicts the emer-
gence of the supersoliton: a nondispersive, relativistically
propagating density wave with an amplitude that grows as
tσ/2. This result applies to the integrable sine-Gordon field
theory, in the absence of additional perturbations. We have
considered only a particular case by assuming the noninter-
acting postquench Hamiltonian in Eq. (3.1). This corresponds
to the special Luther-Emery (LE) point in the sine-Gordon
phase diagram.1,2,43 Away from this point, H̄ (f ) would acquire
a four-fermion interaction as in Eq. (3.15); bosonization links
the sine-Gordon and massive Thirring models in the general
case.55 We postpone a discussion of the effects of interparticle
collisions in the postquench evolution until the end of Sec. V.

The sine-Gordon field theory arises as the low-energy de-
scription of many 1D solid-state and cold atomic systems,1,3,63

including the XXZ chain quench introduced in Sec. II A
between H (i) and H (f ) in Eq. (2.3). Details of the original
“microscopic” formulation are expected to appear in the
effective low-energy field theory as irrelevant operators.64 Ir-
relevant operators typically exert a negligible effect upon low-
energy, long-wavelength properties in a zero-temperature field
theory. Finiteness of correlation functions (up to logarithmic
divergences subsumed by renormalization) and insensitivity to
irrelevant operators go hand in hand.55,64

By contrast, the influence of irrelevant operators upon
the strong nonequilibrium dynamics generated by a sudden
quench remains largely unexplored territory. The incorpora-
tion of generic perturbations destroys some special properties
that may be enjoyed by a given renormalizable theory, such as
conformal invariance or, in the case of the 1D sine-Gordon

model, integrability. On general grounds, a nonintegrable
many-body system prepared in an initial, nonthermal state
is expected to thermalize (presumably due to quantum chaotic
dynamics) in the long-time limit.

In this paper, we do not mount a broad assault upon the
important topics of integrability-breaking perturbations and
thermalization. Even in equilibrium, the impact of irrelevant
operators and integrability on correlation functions at nonzero
temperature remains a contentious issue.42,65–73 Here, we limit
our focus to the postquench wave train dynamics exemplified
by the supersoliton. In particular, we would like to understand
how irrelevant operators, or equivalently, lattice scale details
and the presence of a finite ultraviolet cutoff, modify or
suppress the supersoliton. Our considerations in this section
will be used to interpret the numerical results for the XXZ

chain quench presented in Sec. IV.

1. Irrelevant operators: Some examples

The XXZ chain quench introduced in Sec. II A takes
the ground state |0〉 of the XY phase Hamiltonian H (i) in
Eq. (2.3a), and evolves this state forward in time using
the gapped band insulator Hamiltonian H (f ) defined via
Eq. (2.3b). In the continuum field theory limit, lattice mi-
croscopics induce the addition of irrelevant operators to the
sine-Gordon model Hamiltonians H̄ (i) and H̄ (f ) [Eqs. (3.15),
(3.16), and (3.1), (3.19)]. We now enumerate a few examples.

The least irrelevant operators {Oi(x)} invariant under con-
tinuum versions of all lattice symmetries (time reversal, parity,
lattice translational invariance) carry the scaling dimension
xi = 4 when added to the noninteracting Dirac Hamiltonian in
either Eq. (3.15) (with γ = 0) or Eq. (3.1). We consider first
the umklapp interaction operator5

Ou(x) ≡ 2[(ψ†
1ψ2)2 + (ψ†

2ψ1)2]

= − 1

(πα)2
cos[2

√
4πθ ]. (3.40)

This operator appears as a lattice-induced modification
(via H (i)) of the initial Luttinger liquid Hamiltonian H̄ (i),
Eqs. (3.15) or (3.16).5 The dimension of the umklapp operator
is x1 = 4K , so that the associated coupling constant has
dimension y1 = 2(1 − 2K), where K denotes the Bethe ansatz
Luttinger parameter in Eq. (2.5b).64 Thus the umklapp operator
has y1(K = 1) = −2 at the free fermion point, while y1(K =
1/2) = 0 at the threshold of the Ising antiferromagnetic order
[Eq. (2.5b) with γ → 1]. In our lattice quenches, we will
focus upon γ < 0, so that K > 1 and umklapps are strongly
irrelevant.

As a second example, we consider the effect of band
curvature (at half filling), which gives the operator

O3(x) ≡ −ψ†
(

iσ̂ 3 d3

dx3

)
ψ

= −1

4

[(
d2φ

dx2

)2

+
(

d2θ

dx2

)2
]

− π

23
:

[(
dφ

dx
+ dθ

dx

)4

+
(

dφ

dx
− dθ

dx

)4
]

:

(3.41)
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O3 arises as a modification of both H̄ (i) and H̄ (f ), due to the
cosine dispersion of the lattice model.

We note that while the band curvature operator in Eq. (3.41)
is bilinear in terms of fermions, both the umklapp and
band curvature operators induce interparticle interactions in
the boson language. This complication makes it difficult to
determine the influence of either upon the interacting LL initial
state |0̄〉.

One can in principle treat nonbilinear irrelevant operators
perturbatively, but several difficulties arise in attempting to
account for their effects. First, the perturbation theory is badly
ultraviolet divergent, and depends upon the way in which
these divergences are regularized. A second, more serious
(but intimately related) problem arises because the effects
of irrelevant operators become strong at short distances. In
the context of the quench, the goal is to construct the initial
ground-state correlator in Eq. (3.14), accounting for the effects
of lattice scale details. These details should translate into a
modification of the ideal Luttinger liquid correlation functions
in Eq. (3.20) at short distances. However, the effects of
irrelevant operators become strong in precisely this limit; the
result is that perturbation theory breaks down, and a systematic
accounting is only possible via an exact or approximate
nonperturbative resummation.

Nevertheless, we show that a regularized version of the
continuum sine-Gordon quench can be constructed which
gives a reasonably good match to our finite system size
numerics presented in Sec. IV. To motivate the regularization
scheme that we employ, we consider the effect of a finite-
ranged density-density interaction.1 Instead of Eq. (3.16), one
has the Hamiltonian

H̄ (i) = 1

2

∫
dx

[(
dφ

dx

)2

+
(

dθ

dx

)2
]

+ 1

2π

∫
dx dx ′ v(x − x ′)

dθ

dx
(x)

dθ

dx ′ (x
′),

(3.42)

where v(x) ≡ (2γ /ζ ) exp(−|x|/ζ ) is a Yukawa-type poten-
tial that integrates to 4γ , regardless of the range ζ . The
limit ζ → 0 gives the purely local interaction implemented
in Eq. (3.16).

Unlike the nonbilinear boson operators associated with
umklapp and band curvature effects discussed above, the finite-
range interaction in Eq. (3.42) can be treated nonperturbatively.
The result is a modification of the Luttinger liquid correlator
in Eq. (3.20); in the homogeneous limit with μ(0)(x) = 0, one
obtains

C1
1(x,0) = icN

2π

sgn(x)

|x| C(x), (3.43)

where

C(x) = exp

{∫ ∞

0

dq

q
σ (q) [cos (qx) − 1]

}

∼
[

ζ 2

ζ 2 + β x2

]σ (0)/2

. (3.44)

In this equation,

σ (q) ≡ 1
2

[
K(q) + K−1(q)

] − 1, (3.45a)

K(q) ≡
[

1 + 4γ

π

1

1 + (ζq)2

]−1/2

. (3.45b)

The variable β in Eq. (3.44) is some numerical constant.
The effect of a finite interaction range ζ > 0 is to reduce the
short-range scaling behavior (|x| � ζ ) of the ψ fermion LL
correlation functions in Eq. (3.20) to that of free fermions.

2. Regularized sine-Gordon theory

A systematic approach to incorporating lattice scale details
into the sine-Gordon quench would require the inclusion of
all irrelevant operators with a given scaling dimension, say.
This task is made difficult by the interacting nature of most
such operators. The problem is compounded by the fact that
the influence of all irrelevant operators becomes strong in the
ultraviolet, which is precisely the regime where lattice scale
effects are expected to manifest.74

In the following, we sidestep these difficulties with
a phenomenological approach. Compare the lattice and
continuum initial-state correlation functions C(xj ,xj ′ ) and
Cr

s(x1,x2) defined by Eqs. (2.13) and (3.14). While the long-
distance behaviors of these functions should be compatible,
the short-distance behaviors clearly differ. The continuum
LL correlation functions in Eq. (3.20) exhibit a power-law
divergence as x1 → x2 governed by twice the scaling dimen-
sion (σ + 1)/2; by contrast, the lattice correlator satisfies
C(xj ,xj ) = 〈0|c†j cj |0〉 = 1/2 + O (Q), independent of σ to
lowest order. [|Q| � 1 characterizes the small localized inho-
mogeneity induced by the chemical potential in Eq. (2.4).] To
capture the effects of the lattice, we must cut off the divergence
at zero argument in the continuum bosonization approximation
to the lattice correlation function. We do this by incorporating
a finite range ζ associated with the nearest-neighbor
density-density interactions in H (i) [Eq. (2.3a)]. We obtain

C(xj ,xj ′ ) = 〈0|c†(xj )c(xj ′ )|0〉

∼ cNασ

π (xj − xj ′ )

[
1

(xj − xj ′ )2 + ζ 2

]σ/2

× sin

[
kF (xj − xj ′ ) + π

∫ xj

xj ′
dy ρ0(y)

]
,

(3.46)

where ρ0(y) denotes the initial density profile [Eq. (3.35)], cN

is the normalization constant from Eq. (3.20), and kF = π/2
is the Fermi wave vector at half filling. In Eq. (3.35), K and
u denote the Luttinger parameter and the sound velocity [for
which we will employ the Bethe ansatz results in Eq. (2.5)].
To compare to the lattice quench, we use Eq. (2.7) for the
exponent σ (γ ).

The correlator in Eq. (3.46) depends upon two length scales
α and ζ not defined in the lattice theory. While the pure sine-
Gordon model results from the limit ζ → 0, the parameter α is
always nonzero [cf. Eq. (3.20)]; its evaluation in the context of
the lattice model would require a Bethe ansatz calculation.1 In
comparing to numerics, we will fix ζ = a = 1 (a denotes the
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lattice spacing), consistent with nearest-neighbor interactions,
but we will treat α as a fitting parameter. Our choices for ζ

and α will not prescribe the value C(xj ,xj ) ≡ 1/2 + O (Q),
except for the noninteracting quench σ = 0; rather, we adjust
α to fit the long-range part of the correlator to the lattice
numerics, since the regularized continuum approximation is
still expected to behave the worst at short distances.

Incorporating the same ζ regularization into the com-
ponent correlators in Eq. (3.20) and using the result in
Eq. (3.13), one can analyze the “ultraviolet regularized”
version of the sine-Gordon quench studied in the last section.
The regularized postquench density is expressed as the
integral

ρ(t,x) = 1

2
[ρ0(x − t ′) + ρ0(x + t ′)] + cNασ

π

∫ t ′

−t ′
dy

sin
[
π

∫ x−y

x−t ′ dz ρ0(z)
]

(t ′ − y)[ζ 2 + (t ′ − y)2]σ/2
Ḡ(1)(t ′,y)

− cNασ

π

∫ t ′

−t ′
dy

sin
[
π

∫ x−y

x+t ′ dz ρ0(z)
]

(t ′ + y)[ζ 2 + (t ′ + y)2]σ/2
Ḡ(3)(t ′,y) + cNασ

2π

∫ t ′

−t ′
dy1

∫ t ′

−t ′
dy2

sin
[
π

∫ x−y2

x−y1
dz ρ0(z)

]
(y1 − y2)[ζ 2 + (y1 − y2)2]σ/2

× [Ḡ(1)(t ′,y1)Ḡ(1)(t ′,y2) + Ḡ(3)(t ′,y1)Ḡ(3)(t ′,y2) + 2Ḡ(2)(t ′,y1)Ḡ(2)(t ′,y2)], (3.47)

where Ḡ(1,2,3)(t,y) denote the unregularized continuum Green’s functions in Eq. (3.9); the primed time t ′ ≡ vF t [Eq. (3.4)].
For interacting initial conditions σ > 0 and α not too small, the characteristic “s” shape of the supersoliton appears in

the regularized sine-Gordon quench. The growth of the supersoliton amplitude is terminated after a certain cutoff time tζ ∝
�/vF (Mζ )2 (discussed in more detail below). The regularized supersoliton is depicted in Fig. 9. Interpreting the sine-Gordon
quench as the continuum limit of the lattice model version, we therefore anticipate the existence of at least three different
dynamical regimes: (1) 0 < t < 1/(vF M), transient regime, (2) 1/(vF M) < t < tζ ,“universal” supersoliton regime, (3) t > tζ ,
postcutoff, nonuniversal regime. These are sketched in Fig. 10.

To obtain an estimate for the cutoff time tζ , we analyze the asymptotic behavior of the density response in Eq. (3.47). We can
extract the first correction to Eq. (3.23) in the intermediate time window 1/vF M � t � tζ ; the result is (cf. Appendix A)

ρ(t,x) = Q

2
√

π�
e−(x−t ′)2/�2 − Q

2�

�(1 − σ )

�
(

1 + σ
2

) [
(Mα)2t ′√

2�

]σ/2
[
Fσ

(
x − t ′

�

)
−

[
(Mζ )2t ′√

2�

] 1−σ
2 �

(
σ − 1

2

)
2�(−σ )

F1

(
x − t ′

�

)]
+ {x → −x},

(3.48)

where the function Fσ (z) was defined by Eq. (3.24). The
correction grows as t (1−σ )/2, but with a sign opposite to the

FIG. 9. (Color online) The ζ -regularized supersoliton obtained by
numerically integrating Eq. (3.47). Here we have set ζ = 1, � = 6,
and plotted data for four values of α. The interaction exponent σ =
0.7. We have assigned M = 3/2�, so that the dynamics reside within
the “nonrelativistic” transport regime, as discussed in Sec. III A.
For all but the smallest value α depicted, the characteristic “s”
shape of the supersoliton is identified at sufficiently long times. In
comparison to the pure sine-Gordon model result shown in Fig. 6, the
amplitude of the regularized supersoliton saturates at times t � tζ .
Two inequivalent definitions for tζ are provided by Eqs. (3.49) and
(3.51).

supersoliton. At intermediate times, the dominant effect is
the suppression of the supersoliton growth. The expansion
in Eq. (3.48) is a conserving approximation, because Fσ (z)
integrates to zero (σ > 0).

In the limit σ → 0, the third term in Eq. (3.48) vanishes, as
expected for the noninteracting quench (which is independent
of α and ζ ). By contrast, ignoring the divergent prefactor we
see that the second and third terms precisely cancel for σ = 1.
This result obtains because the prediction of the unregularized
sine-Gordon theory suffers a UV divergence for σ � 1; a
perturbative expansion about the ζ = 0 limit does not exist
there.

We define f1 as the amplitude ratio of the second and third
terms in Eq. (3.48), evaluated on the light cone (x = t ′). At
argument z = 0, Fσ (z) equals 2σ/4√π /�[(2 − σ )/4], a value

FIG. 10. Dynamical regimes of the lattice quench between H (i)

and H (f ) in Eq. (2.3), based on considerations of the regularized
sine-Gordon model, as discussed in the text. The quench occurs at
t = 0. The cutoff time tζ can be defined by either Eqs. (3.49) or (3.51).
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close but not equal to its peak magnitude. For fixed ratio f1,
we then define the cutoff time

t
(1)
ζ ≡ �

vF (Mζ )2

[
2f1 �

(
1
4

)
� (−σ )

�
(

2−σ
4

)
�

(
σ−1

2

)
]2/(1−σ )

. (3.49)

As an alternative, we compare the integral of the absolute
values of the final two terms in Eq. (3.48). We define

�σ ≡
∫ ∞

−∞
dz |Fσ (z)| . (3.50)

Equation (3.50) can be evaluated numerically. Then, we set f2

equal to the ratio of the integrated absolute values associated
with the second and third terms in Eq. (3.48). For fixed f2, we
have

t
(2)
ζ ≡ �

vF (Mζ )2

[
f2 2(5−σ )/4�σ� (−σ )

�1�
(

σ−1
2

)
]2/(1−σ )

. (3.51)

Both t
(1,2)
ζ diverge as σ → 0, as expected for the non-

interacting quench. Equations (3.49) and (3.51) are rapidly
decreasing functions of σ that become ill-defined as σ → 1.
Unfortunately, both definitions are also strongly sensitive to
the value that we assign to arbitrary ratio f1,2. In particular,
with σ = 0.4 or 0.7, for which we present lattice quench data
in Sec. IV, the values of t

(1,2)
ζ change by several orders of

magnitude as f1,2 is swept from 0.1 to 1. The sensitivity reflects
the very slow in time (fractional power law) accumulation
of the final term relative to the second in Eq. (3.48).
Thus while the definition of a cutoff time with a natural
scale �/vF (Mζ )2 is conceptually useful, it proves difficult
to utilize as a practical tool in characterizing finite-size
numerics.

In the ultimate long-time limit t � tζ , Eq. (3.47) has the
leading asymptotic behavior (cf. Appendix A)

ρ(t,x) ∼ Q

2
√

π�

[
1 −

√
π�

(
1 + σ

2

)
�

(
1+σ

2

) (
α

ζ

)σ
]

e−(x−t ′)2/�2

+{x → −x}. (3.52)

In the regularized continuum quench, the supersoliton even-
tually gives way to a pure translation of the initial Gaus-
sian, with a reduced amplitude. This is completely different
from the single-particle evolution resulting from “relativistic”
confinement 0 < M� � 1, discussed in Sec. III A. In that
case, the nondispersive part of the amplitude decays to zero
in the long-time limit [Eq. (3.11)]. Equation (3.52) is not a
conserving approximation for any σ ; the missing density is
distributed in a long tail neglected here. In fact, for ζ = 1
and α � 0.64, the amplitude in Eq. (3.52) is negative for
0 < σ < 1, which applies to Fig. 9. This is the case for the
σ = 0.7 and σ = 1.0 quenches discussed in Sec. IV, although
our lattice numerics are limited to system sizes much too small
to reach this regime.

3. Band curvature lifetime

The sine-Gordon theory presented in the previous section
accounts only for lattice effects on the initial prequench state,

by way of the ζ -regularized correlation function in Eq. (3.46).
This is one ingredient in the postquench evolution of the lattice
density in Eq. (2.12); the other is the set of Green’s functions
G(1,2,3)(t,xi) obtained by Fourier-transforming Eq. (2.11). In-
stead, in Eqs. (3.47), (3.48), and (3.52), we have employed the
continuum Ḡ(1,2,3)(t,x) defined by Eq. (3.9), which assumes
the Lorentz covariant spectrum in Eq. (3.26).

We find that this regularized correlator + continuum
Green’s functions approximation proves adequate to model
most of the lattice quench numerics presented in Sec. IV.
However, to characterize the dynamics in the limit of very
long times (in a correspondingly large system), we would
need to account for the additional effects of band curvature.
This is of particular importance for the interacting quench,
which yields the “regularized” supersoliton in Eq. (3.48)
(t � tζ ) or its ultimate fate as the nondispersing ghost in
Eq. (3.52) (t � tζ ). These disturbances propagate at the “speed
of light” vF , which is replaced by the maximum band velocity
vmax(M) in the lattice model. [vmax(0) = vF ; see Sec. IV B 2
for more details.] As a first correction to the continuum
dynamics, we consider the cubic curvature represented by O3

in Eq. (3.41).
The lifetime t3 is defined as the interval postquench during

which the cubic curvature can be ignored; a crude order-of-
magnitude estimate is given by

t3 ∼ �3

vmax(M)
, (3.53)

where � is the position space width of the initial density
inhomogeneity. Equation (3.53) follows from the expansion of
the band dispersion in Eq. (2.6) about kmax such that v(kmax) =
vmax (Sec. IV B 2):

Ek = Ekmax + vmax

[
δk − 2

3
a2δk3

]
+ · · · ,

where δk ≡ k − kmax; a is the lattice constant. For a Gaussian
packet of width �, the characteristic frequency associated
to the cubic term is vmaxa

2/�3, giving Eq. (3.53) with
a = 1.

IV. LATTICE QUENCH RESULTS

In this section, we present numerical results for the XXZ

chain quench set up in Sec. II. A chain with N (even)
sites and periodic boundary conditions is prepared in the
ground state |0〉 of H (i), Eq. (2.3a). The interaction strength
γ is chosen to reside in the XY range −1 < γ � 0, so that
|0〉 exhibits gapless power-law correlations for the lattice
fermions. This state is evolved forward in time according to
H (f ), Eq. (2.3b). For the Gaussian initial-state inhomogeneity
induced by μ

(0)
i in Eq. (2.4), we calculate the postquench

dynamics of the density expectation value ρ(t,x), Eq. (2.12).
In the generic case of the interacting quench (γ �= 0), the re-
quired initial-state correlation function C(xj ,xj ′ ) is computed
numerically using the density-matrix renormalization-group
(DMRG) technique. All data shown are for a system of
N = 202 sites.

We compare the numerical results for the lattice quench
to the regularized continuum sine-Gordon theory presented
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FIG. 11. (Color online) Time slices of a noninteracting quench
with a gapless final Hamiltonian [M = 0 in Eq. (2.3b), a “Fermi gas to
Fermi gas” quench] at times t = 0, 15, 30, 45, and 60; fainter (bolder)
traces depict earlier (later) times. Blue solid lines are the continuum
prediction [the first term of Eq. (3.48)], and red dashed lines are
the result of exact diagonalization of the lattice Hamiltonian. The
evolution is symmetric about xj = 0. The relevant quench parameters
are Q = 0.10, � = 4.

in Sec. III D 2. That theory is epitomized by the continuum
approximation to the initial-state lattice correlation function
in Eq. (3.46) and the density expectation in Eq. (3.47).
The regularized sine-Gordon model contains two length
scale parameters α and ζ that are not defined in the cor-
responding lattice theory. These parameters enter via the
initial-state correlation function C(xj ,xj ′ ) in Eq. (3.46). The
parameter α determines the amplitude of this correlator,
while ζ acts as an ultraviolet cutoff that renders finite the
on-site value of C(xj ,xj ). For the noninteracting quench
(σ = 0), the continuum predictions are independent of ζ

and α.

A. Noninteracting quench

The special case γ = 0 yields a free Fermi gas ground state
of H (i). Both the initial and final Hamiltonians are trivially
diagonalized, and we solve for the dynamics exactly. For this
“noninteracting” quench, the initial-state correlation function
was transcribed in Eq. (2.14), above.

We first investigate the quench into the gapless XX chain,
M = 0 in H (f ). Since the low-energy field theory description
of both the initial and final states is a free Fermi gas, we
refer to this as a “FG to FG” quench. Thus one prepares a
density wave packet at the origin, then simply removes the
applied potential and tracks the resulting dynamics. Numerical
results are depicted in Figs. 11 and 12 for two different values
of �.

The continuum prediction is a pure translation of half the
initial density profile to the left and to the right, at the “speed of
light” vF = 2. The right-moving part appears as the first term
on the right-hand side of Eq. (3.48). One can see in Figs. 11
and 12 that the agreement between the continuum and the
lattice quenches is very good, and improves with increasing
�. The slight dispersion seen for � = 4 in Fig. 11 can likely be
attributed to the deviation of the band spectrum [Eq. (2.6) with
M = 0] from linearity at wave numbers k ∼ 1/� away from
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FIG. 12. (Color online) The same as in Fig. 11, but with � = 12.

the Fermi wave vector kF = π/2. As discussed in Sec. III D 3,
we can associate a lifetime t3 ∼ �3/vF to the presence of the
cubic nonlinearity in the spectrum. Then t3(� = 12) ∼ 860,
while t3(� = 4) ∼ 32; the latter falls midway in the range of
times plotted in Fig. 11.

We now turn to noninteracting quenches into a gapped
final Hamiltonian. Here, we quench from a free Fermi gas
into a band insulator. The periodic potential in Eq. (2.3b) with
M �= 0 allows for backscattering umklapp processes, which
open up a band gap with magnitude 4M . To compare to the
continuum theory, we would like to reach the scaling limit
where all relevant length scales in the problem greatly exceed
the lattice spacing, e.g., � � a, 1/M � a, while keeping
� � Na. In addition, we restrict our quench parameters to
the “nonrelativistic” transport regime M� > 1, as explained
in Sec. III A, so as to avoid confusing the putative supersoliton
(in the interacting quench, below) with relativistic propagation
induced by excessive “squeezing” of the initial density
disturbance relative to the Compton wavelength. Specifically,
for all data presented subsequently we will fix the product
M� = 3/2, and examine four wave-packet widths � = 4, 6,
12, and 20, yielding the respective band-gap parameters M =
3/8, 1/4, 1/8, and 3/40.

The application of the staggered potential causes adjacent
site occupancies to “polarize” opposite to one another, but this
small-scale density effect is not one in which we are interested;
the staggered potential is merely a tool to induce a gap in
the spectrum. We henceforth present results for the relative
particle density, given by

δρ(t,xj ) ≡ ρ(t,xj )Q − ρ(t,xj )Q=0, (4.1)

i.e., we subtract the time-dependent density profile originating
from a spatially homogeneous (Q = 0) initial state.

Figure 2 (in the Introduction) and Fig. 13 show the resulting
postquench dynamics for two of the four (�, M) pairs given
above. The dynamics are strongly dispersive, in stark contrast
to the ultrarelativistic propagation seen in the FG to FG quench.
We see that the initial Gaussian inhomogeneity broadens
gradually and does so more slowly for larger values of the band
gap; these noninteracting quench dynamics are grossly similar
to the nonrelativistic single-particle wave packet depicted in
Fig. 5(a). The behavior is generic and we find it to occur for
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FIG. 13. (Color online) Time slices of a noninteracting quench
into a gapped final Hamiltonian (a noninteracting Fermi gas to
band insulator quench) at times t = 0, 15, 30, 45, and 60; fainter
(bolder) traces depict earlier (later) times. Blue solid lines are the
continuum predictions and red dashed lines are the result of exact
diagonalization of the lattice Hamiltonian. The continuum data results
from a numerical integration of Eq. (3.47) with σ = 0. The evolution
is symmetric about xj = 0. The relevant quench parameters are
Q = 0.10, � = 4, M = 3/8.

a wide range of noninteracting quench parameters satisfying
the nonrelativistic condition M� > 1.

The dispersion arises from a combination of the strong
band curvature near the (noninteracting) Fermi point and the
relatively weak occupancy of the conduction band induced by
the quench, as evidenced by the corresponding distribution
function plots in Fig. 8 with σ = 0. We emphasize, however,
that the global momentum distribution in Fig. 8 does not
encode information about the inhomogeneity; for this purpose
one should consult the Wigner function, as discussed in
Sec. III C 2 and Appendix C. For the continuum theory, we
find that the “local” velocity distribution for the nonrela-
tivistic, noninteracting quench exhibits a strong suppression
of velocities v � vF /M� [Eq. (C7) in Appendix C], due
to Pauli blocking in the initial Fermi gas ground state
(Sec. III C 2).

The continuum curves in Figs. 2 and 13 are obtained
from the numerical integration of Eq. (3.47), with σ = 0.
The agreement between the lattice and continuum quench
dynamics is generally excellent. For the � values considered,
we observe negligible sublattice staggering in the lattice
δρ(t,xj ); such behavior is a good indicator of the near complete
separation of the smooth and staggered components of the
density. This is consistent with the retention of only the smooth
component of the initial inhomogeneity in the regularized
sine-Gordon theory of Sec. III D 2.54

B. Interacting quench

We turn to the most interesting case of an interacting
initial state, γ �= 0 in Eq. (2.3a). Because the final state
is still noninteracting, the dynamics are exactly given by
Eq. (2.12) above, but the initial-state correlation function
C(xj ,xj ′ ) cannot be obtained via elementary means. To achieve
this task, we employ the density-matrix renormalization
group (DMRG)75–77 due to its ability to treat relatively large

interacting one-dimensional systems. All calculations were
performed on a chain of size L = 202 (so that the number of
fermions at half filling, L/2, is odd) with periodic boundary
conditions (PBCs). In standard DMRG, the relative error
introduced with PBCs is significantly larger than that obtained
with open boundary conditions (OBCs). To achieve the relative
error obtained with m states per block using OBCs, one would
need m2 states when using PBCs. This results in greatly
increased computational times that scale as m6 with PBCs
as compared to m3 with OBCs. Efficient methods to improve
DMRG’s ability to handle PBCs are still ongoing topics of
research (see, e.g., Ref. 78 and references therein). In spite of
the above considerations, we found that the use of PBCs was
necessary to mitigate dynamical boundary effects appearing
during the quench process. In all calculations presented, we
kept up to 200 states and performed eight sweeps in the DMRG
algorithm, yielding a truncation error (discarded weight) on the
order of 10−7. We tested the combination of DMRG and exact
time evolution for the noninteracting quench by comparing to
the results of exact diagonalization, presented in the previous
section.

Although our DMRG calculations are complicated by
the use of PBCs and a spatially inhomogeneous Hamilto-
nian, one could in principle imagine performing DMRG
calculations for larger systems. Unfortunately, although the
(noninteracting) dynamics are trivially written down, they
suffer from quite poor polynomial scaling with system size.
Namely, forward and backward Fourier transforms [each
requiring O(N ) operations] for each of the N sites out to
times scaling with the size of the system yields a dynamics
algorithm that scales as O(N4). Calculating the dynamics for
systems much larger than those considered here is currently
prohibitive.

1. Initial-state correlator

As a first analysis, we consider the initial-state correlation
function C(xj ,0) [Eq. (2.13)]. LL theory predicts interaction-
dependent power-law behavior in correlation functions. At
large separations, Eq. (3.46) yields

C(xj ,0) ∼ |xj |−(σ+1), (4.2)

where the exponent σ is taken as the Bethe ansatz result,
Eq. (2.7). Figure 14 compares the correlation function cal-
culated numerically by DMRG to the regularized continuum
prediction for σ = 1.0, with Q = 0. [For the cases of nonzero
inhomogeneity with small |Q| considered below, the Q and
� dependencies of C(xj ,xj ′ ) are very minor.] To fix the
continuum result in Eq. (3.46), we make the physically
motivated choice ζ = a = 1, associated with nearest-neighbor
density-density interactions on the lattice, while we adjust the
scale-setting prefactor α to best match the DMRG calculated
correlation function at large separations. This approach yields
σ -dependent values of α, specifically α = 0.75, 0.64, and
0.50 for σ = 1.0, 0.7, and 0.4, respectively. The agreement
between the lattice and continuum correlation functions is
seen in Fig. 14 to be excellent after such a fitting procedure;
similar agreement is obtained for the other values of σ . The
regularization parameters obtained in this manner are also
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FIG. 14. (Color online) Comparison of the initial-state correlation
function C(xj ,0) defined in Eq. (2.13), as predicted by the regularized
(α = 0.75, ζ = 1) LL theory [Eq. (3.46), blue dots connected by
lines] and as calculated with DMRG (red open circles). The inset is a
closeup of the same data. The relevant parameters are σ = 1.0, Q =
0.0.

employed in the subsequent continuum calculation of the
interacting quench dynamics.

The power-law prediction emerging from LL theory is seen
to be very robust. In Fig. 15, we plot (in log-log scale) the
envelope of the DMRG correlation function for the interaction
strengths yielding exponents σ = 1.0, 0.7, and 0.4.

2. Maximum band velocity

Below we compute the quench dynamics originating from
an interacting initial state characterized by the correlation
function analyzed above. We first pause to discuss a time-
rescaling procedure adopted in the following. In Sec. III C 1,
we considered the static postquench distribution functions
n±(k) for conduction- and valence-band fermions [excitations
of the final band insulating Hamiltonian H (f ) or H̄ (f )] in
the lattice and continuum quenches. Continuum results for
the noninteracting and interacting quenches are given by
Eqs. (3.31) and (3.33). Figure 8 shows lattice quench results
for n+(k) obtained from the DMRG initial-state correlation
function associated with the four values of M considered in
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FIG. 15. (Color online) Envelopes of the correlation function
C(xj ,0) calculated by DMRG for the dynamical exponents σ = 1.0
(black circles), 0.7 (red squares), and 0.4 (green diamonds)—all for
Q = 0.0. The dashed lines are the prediction of Luttinger liquid theory
for a finite-size system with periodic boundary conditions (Ref. 79).

this section. Each subplot exhibits traces for σ = 0, 0.4, 0.7,
and 1.0.

Figure 8 indicates that the final-state distribution of excited
particles for an interacting quench (σ > 0) extends deep into
the conduction band. Although the final particle spectrum in
Eq. (2.6) is quadratic at low energies near the band center, the
distribution induced by an interacting quench stretches into
the linear “relativistic” regime of the spectrum and beyond. In
the ungapped case, the slope vF = 2 for k just above kF = π/2;
with M > 0, the maximum group velocity of the band structure
is modified to vmax(M) < 2. It is this velocity with which we
henceforth rescale time in the continuum calculations, t ′ =
vmax(M)t in Eq. (3.47).

For Ek in Eq. (2.6), the velocity v(k; M) ≡ dEk(M)/dk

evaluates to

v(k; M) = − 2 sin(k) cos(k)√
cos2(k) + M2

. (4.3)

This equation is maximized at a wave vector kmax satisfying

cos(kmax) =
√√

M2 + M4 − M2. (4.4)

Inserting the solution of Eq. (4.4) into Eq. (4.3) yields the
maximal band velocity vmax(M). In Fig. 8, the position of
kmax for each value of M is indicated by a dashed vertical
line.

The velocity rescaling procedure outlined above was not
adopted in the continuum noninteracting quench data exhibited
in Figs. 2 and 13. For the case σ = 0, Fig. 8 indicates that
the linear regime is only weakly populated for all but the
largest value of M = 3/8 considered here; see also Eq. (3.31).
As a consequence, the strongly dispersive dynamics in the
“nonrelativistic” transport regime M� > 1 are dominated by
the low-k band structure. This picture is confirmed by the
excellent agreement between lattice and continuum results
in Figs. 2 and 13, and by the local velocity distribution
obtained for the noninteracting, nonrelativistic quench in
Eq. (C7). For the interacting quenches considered below, the
rescaling of the velocity is not a systematic incorporation of
band-structure effects into the continuum Green’s functions
defined by Eq. (3.9); aspects of ultraviolet band curvature
beyond the linear regime have been neglected. Band curvature
effects are expected to become important at postquench times
t later than t3, defined as the cubic dispersion lifetime via
Eq. (3.53).

3. Coherent relativistic wave propagation: Interacting quench
results

In Figs. 16–24 we present the interacting quench dynamics
associated with three different values of the exponent σ (γ )
defined by Eq. (2.7), which characterizes the initial interacting
spin chain described by H (i). The values we choose are
σ = 1.0 (Figs. 16–19), σ = 0.7 [Figs. 20, 21, and 1 (in the
Introduction)], and σ = 0.4 (Figs. 22–24); these respectively
correspond to interaction strengths γ = −0.913, −0.872,
and −0.790, receding from the ferromagnetic transition at
γ = −1 (Fig. 4). In the unregularized, pure sine-Gordon
theory described in Ref. 43 and in Sec. III B, the quench
yields the prediction of the supersoliton for 0 < σ < 1
[Eq. (3.23) and Fig. 6], while σ = 1 marks the onset
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FIG. 16. (Color online) Time slices of an interacting quench with
σ = 1.0 into a gapped final Hamiltonian (an interacting Luttinger
liquid to band insulator quench) at times t = 0, 15, 30, 45, and 60;
fainter (bolder) traces depict earlier (later) times. Blue solid lines
are the continuum predictions and red dashed lines are the results
of DMRG calculations combined with exact time evolution of the
lattice Hamiltonian. The continuum data obtains from a numerical
integration of Eq. (3.47), with α = 0.75 and ζ = 1. The evolution is
symmetric about xj = 0. The relevant quench parameters are Q =
0.10, � = 4, M = 3/8.

of an ultraviolet divergence that must be regularized, as
in Eq. (3.46).

We show data for � = 4, 6, 12, and 20 in Figs. 16–19,
respectively; except for � = 20, the same values appear in
Figs. 1 and 20–24. We emphasize that all quenches have
M = 3/2�, the same relationship imposed for the noninter-
acting case. This constraint puts all of our quenches in the
nonrelativistic transport regime, as discussed in Sec. III A. A
single-particle wave packet with M� = 3/2 shows only slow
broadening, similar to the noninteracting quench data in Figs. 2
and 13.

The difference in density dynamics for the interacting
quenches shown in Figs. 1 and 16–24 as compared to the
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FIG. 17. (Color online) Interacting quench with σ = 1.0 as in
Fig. 16, but with � = 6, M = 1/4. The continuum result [numerical
integration of Eq. (3.47)] can be obtained for much larger times and
system sizes than is currently practical with the interacting numerics
(DMRG + dynamics). The top panel shows the continuum evolution
over a window of length 600.
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FIG. 18. (Color online) Interacting quench with σ = 1.0 as in
Fig. 16, but at times t = 0, 12, 24, 36, and 48, with � = 12, M = 1/8.

noninteracting versions in Figs. 2 and 13 is remarkable. For
all interacting parameter sets investigated, we observe a strong
separation of dispersive dynamics localized near the origin (the
center of the chain and of the initial Gaussian inhomogeneity),
and well-defined left- and right-moving wave packets that
propagate away from the origin showing minimal dispersion in
their spatial extents. [Only the right-moving packet is depicted;
the left mover is an exact mirror image for the Gaussian initial
condition in Eq. (2.4).] Furthermore, we find empirically that
these wave packets travel relativistically, i.e., at the maximal
band velocity vmax(M) determined above. By tracking the
peak of the right-moving wave packet, we are able to extract
its propagation speed, which we plot in Fig. 25 on top of
vmax(M). The error bars shown there originate solely from the
linear fit (of peak position vs time). The deviation seen at low
M (wide �) for weak interaction strengths likely originates
from the inaccuracy in determining the exact peak location of
such a shallow, wide wave packet as well as from possible
transient distortion of the wave packet’s shape over its initial
time evolution.

The continuum data in Figs. 16–24 was obtained by
integrating the regularized sine-Gordon result in Eq. (3.47)
numerically, using ζ = 1 and the values of α quoted in the
figure captions. Because the velocity renormalization scheme

0 20 40 60 80 100
x

j

0.000

0.001

0.002

0.003

δ
ρ

(t
, x

j)

Continuum
Lattice

FIG. 19. (Color online) Interacting quench with σ = 1.0 as in
Fig. 16, but at times t = 0, 10, 20, 30, and 40, with � = 20, M =
3/40.
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FIG. 20. (Color online) Time slices of an interacting quench with
σ = 0.7 at times t = 0, 15, 30, 45, and 60. The continuum data are
obtained from a numerical integration of Eq. (3.47), with α = 0.64
and ζ = 1. The relevant quench parameters are Q = 0.10, � = 4,
M = 3/8.

employed does not represent a fully systematic incorporation
of lattice dispersion details into the continuum Green’s func-
tions in Eq. (3.9), we anticipate poorest agreement between
lattice and continuum data in the dispersive “tail” dynamics
occurring near the origin. By contrast, we find very good
agreement for the propagating wave packet’s speed and overall
shape, despite the crude phenomenological regularization of
the continuum initial-state correlator.

In the Introduction, we exhibited in Fig. 3 a series of
three-dimensional number density evolution plots for the
lattice quenches with M� = 3/2 and � = 12, with σ ∈
{0,0.4,0.7,1.0}. As a benchmark, Fig. 26 depicts the σ = 0,
M = 0, � = 6 Fermi gas to Fermi gas quench. (In this case,
the quench consists merely of turning off the initial Gaussian
trapping potential in a free Fermi gas.) Figure 27 is the same
as Fig. 3, but for the case � = 6. The weak undulations seen
in the central peak of δρ(t,x) for the noninteracting quenches
(top panels) in Figs. 3 and 27 occur at the “Zitterbewegung”
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FIG. 21. (Color online) Interacting quench with σ = 0.7 as in
Fig. 20, but with � = 6, M = 1/4. The curve marked “asymptotic”
is the analytical result for the “regularized supersoliton” in Eq. (3.48).
The top panel shows the numerical continuum evolution over a
window of length 600.
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FIG. 22. (Color online) Time slices of an interacting quench with
σ = 0.4 at times t = 0, 15, 30, 45, and 60. The continuum data obtains
from a numerical integration of Eq. (3.47), with α = 0.50 and ζ = 1.
The relevant quench parameters are Q = 0.10, � = 4, M = 3/8.

frequency ω = 2vF M = 4M . These oscillations appear in the
nonrelativistic regime for M� not too large, similar to the
single-particle wave-packet dynamics discussed in Sec. III A;
cf. Eq. (3.10).

4. Lattice time scales and the regularized supersoliton

The largest discrepancies between continuum and lattice
predictions occur for the smallest � = 4 (Figs. 16, 20, and 22),
and are particularly pronounced in the parameter set (σ = 1.0,
� = 4, M = 3/8), Fig. 16. In that case, the lattice density
wave exhibits strong dispersion of its leading edge relative
to the continuum prediction, and notable variations in the
“wiggles” trailing the main peak. A significant deviation for
� = 4 is also observed in the noninteracting, M = 0 quench
shown in Fig. 11. Taken together, these results suggest that
band curvature at the ultraviolet scale k ∼ kmax(M) + 1/�

becomes important in the lattice quench for this case. This
behavior is not accounted for in our continuum calculations,
which instead assume the massive Dirac fermion spectrum
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FIG. 23. (Color online) Interacting quench with σ = 0.4 as in
Fig. 22, but with � = 6, M = 1/4. The curve marked “asymptotic”
is the analytical result for the “regularized supersoliton” in Eq. (3.48).
The top panel shows the numerical continuum evolution over a
window of length 600.
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FIG. 24. (Color online) Interacting quench with σ = 0.4 as in
Fig. 22, but at times t = 0, 12, 24, 36, and 48, with � = 12, M =
1/8. The curve marked “asymptotic” is the analytical result for the
“regularized supersoliton” in Eq. (3.48).

εk = vmax(M)
√

k2 + M2 for the final-state Hamiltonian H̄ (f ),
Eq. (3.1) (here k is measured relative to kF ). For � = 4, the
cubic curvature lifetime in Eq. (3.53) t3 ∼ �3/vmax(M) =
46, within the range of plotted time slices in Fig. 16. For
� = 6, our estimate for t3 leaps to 140. Uniform velocity
rescaling may also contribute to propagation lag in tail
oscillations.

What can we say about the supersoliton identified in
the unregularized, continuum sine-Gordon quench studied in
Ref. 43, reviewed in Sec. III B? The supersoliton is defined as
the asymptotic, long-time (t � 1/vF M) result for the pure
sine-Gordon model transcribed in Eq. (3.23), exhibited in
Fig. 6. The supersoliton propagates ultrarelativistically at the
“speed of light” vF , has a particular, nondispersing “s” shape
and an amplitude that grows in time as tσ/2. As articulated
in Sec. III C 2, the supersoliton arises due to quasiparticle
fractionalization. Fractionalization of the initial, interacting
LL state relative to the gas of propagating postquench fermions
induces a power-law excitation of large momenta in the
“local” Wigner distribution function n(k; R), as exemplified
in Eq. (3.39). By contrast, in the noninteracting quench
momenta |k| � 1/� are exponentially suppressed as a conse-
quence of Pauli blocking (Sec. III C 2). Through the massive
postquench dispersion, the Wigner function translates into a
“local” velocity distribution. In the noninteracting quench with
M� � 1, only small velocities v � vF /M� are significantly
excited [Eq. (C7) in Appendix C]; in the interacting case,
a nonintegrable divergence appears at the speed of light vF

[Eq. (C8a)], irrespective of M�, signaling the presence of the
supersoliton. Although regularization of the LL correlation
functions Cr

s(x,x ′) in Eqs. (3.20) or (3.46) at short distances
ultimately cuts off this divergence [Eq. (C8b)], the distinction
between the interacting and noninteracting quenches survives,
because the power-law behavior in Cr

s(x,x ′) at large distances
is enough to undermine Pauli blocking, for σ > 0.

We employ Eq. (3.48) to analyze the interacting lattice
quench data. This equation describes a type of regularized
supersoliton that appears at intermediate time scales: the first
two terms are the pure sine-Gordon theory result, while the
third term is the first correction due to a nonzero ultraviolet
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FIG. 25. (Color online) The maximum band velocity versus the
band-gap parameter M as calculated by Eqs. (4.3) and (4.4) (black
dashed line) and the propagation velocity of the relativistically
moving wave packet in the interacting lattice quench for the values
σ = 0.4 (green diamonds), 0.7 (red squares), and 1.0 (black circles).

regularization parameter ζ . Equation (3.48) obtains from
asymptotic analysis of the “exact” regularized sine-Gordon
result in Eq. (3.47), valid for vF M � t � tζ and 0 < σ < 1;
see also Fig. 10. The cutoff time tζ ∝ �/vF (Mζ )2 ∝ �3 (since
M� = 3/2 here); alternative definitions of the σ -dependent
proportionality constant are provided in Eqs. (3.49) and (3.51).
In Figs. 1, 21, 23, and 24, we have included time series
plots of Eq. (3.48) for the quench parameters transcribed
in the captions. For � = 12, Figs. 1 and 24, there is rough
agreement between the asymptotic result, the lattice quench,
and the numerical continuum integration for the latest time
steps plotted. Equation (3.48) fails at earlier times, where
transient behavior dominates both the lattice and continuum.
The asymptotic result does not fare as well for � = 6,
Figs. 21 and 23, although the lattice data are well-modeled
by the numerical integration of Eq. (3.47). Since the cutoff
time tζ ∼ �3, the failure of Eq. (3.48) for smaller values
of � indicates the need to retain higher-order terms in this
expansion; the closest agreement between Eq. (3.48) and the
lattice and continuum data occurs for intermediate time steps
in Figs. 21 and 23.
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FIG. 26. (Color online) Three-dimensional view of the Fermi gas
to Fermi gas lattice quench (σ = 0, M = 0) with Q = 0.1, � =
6. The cyan line demarks the maximal propagation speed, vmax =
vF = 2.
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FIG. 27. (Color online) Three-dimensional view of lattice
quenches with Q = 0.1 and � = 6, into a gapped final Hamiltonian
with M = 1/4 for four different interaction strengths, σ = 0, 0.4,
0.7, and 1.0 (top to bottom). The cyan line demarks the maximal
propagation speed, vmax(M = 1/4) ≈ 1.56.

We do not detect amplification of the initial inhomo-
geneity predicted for the pure sine-Gordon case43 in the
XXZ quenches. The relativistically propagating wave packet
produced by the interacting quench shows only increasing

diminishment of its amplitude, for all parameter sets consid-
ered. This is consistent with the analysis of the regularized
sine-Gordon theory in Sec. III D 2: at t = tζ , the prefactor of
the second term in Eq. (3.48) is proportional to (α/ζ )σ , which
is less than or equal to 1 for the parameters utilized to model
the lattice quench.

In the XXZ lattice quench studied here, we also do not
observe the characteristic “s” shape of the supersoliton in any
of the lattice data. In particular, the density fluctuation δρ(t,xj )
appears strictly positive for the interacting quenches, although
negative excursions are observed for noninteracting quenches,
Figs. 2 and 13. In each Fig. 17, 21, and 23 (σ = 1.0, 0.7, and
0.4, respectively, all with � = 6), the slim upper panel shows
the continuum evolution [numerical integration of Eq. (3.47)]
over a window of length 600, corresponding to a system size 6
times larger than that used for the lattice quench. For σ = 1.0
and 0.7, the continuum data show the emergence of a negative
peak at times and positions much larger than could be accessed
in the numerical lattice study. The relatively good agreement
between the lattice and continuum results over the 100-site
windows in Figs. 17 and 21 suggests the possibility that the
“s” shape can appear in the lattice quench. Indeed, the ultimate
long-time behavior of the regularized sine-Gordon result in
Eq. (3.47) is provided by the pure Gaussian translation in
Eq. (3.52). Given the values of α and ζ employed above, for
σ = 1.0 and 0.7 the amplitude of the Gaussian is negative
[compensated by a long positive density tail neglected in
Eq. (3.52)]. In this case, an “s” shape will appear in the
crossover, so long as the effects of band curvature can be
ignored (tζ � t3).

We have discussed the influence of two cutoff-dependent
time scales upon the lattice density dynamics: the band
curvature lifetime t3 [Eq. (3.53)], responsible for the dispersive
deviation of the lattice versus continuum results, and the cutoff
time tζ [Eqs. (3.49), (3.51)], responsible for the truncation
of amplification and the deformation of the regularized
supersoliton shape in Eqs. (3.48) and (3.52). Consider the
ratios

tζ

t3
= cσ

(M�)2
, (4.5a)

t3

tL
= f 3

(
L

a

)2

, (4.5b)

where tL ≡ L/vmax(M) is the system traversal time, f ≡
�/L < 1, a denotes the lattice spacing, and cσ is some
positive dimensionless constant. We have set ζ = a and vF =
vmax(M) for simplicity. To accentuate the difference between
noninteracting vs interacting quenches, we can choose M� �√

cσ (cf. Appendix C); then we have tζ � t3. On the other
hand, for fixed f , we have t3 � tL for L sufficiently large,
so that band curvature can be neglected. With the residual
freedom in choosing M�, L, and �, we can obtain tζ much
less than, much greater than, or of the same order as tL.

V. SUMMARY AND CONCLUSION

A. Summary of results

In this work, we have performed a systematic study of
spatiotemporal density dynamics in a 1D model of lattice
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fermions (equivalent to the spin-1/2 XXZ chain), following
a quantum quench. The ground state of the XXZ chain in
the gapless XY phase, parametrized by the Ŝz

i Ŝ
z
i+1 coupling

strength |γ | < 1, is time-evolved by the noninteracting, band
insulator Hamiltonian obtained by setting γ = 0, while si-
multaneously turning on a sublattice staggered magnetic field
(chemical potential). As a probe of the quench dynamics,
we introduced an additional localized inhomogeneity into
the spin (fermion) density of the initial state, and computed
the subsequent evolution of the density profile expectation
value ρ(t,xj ) under the postquench dynamics generated by a
translationally invariant Hamiltonian.

All quenches studied in this work feature the special
property that the dynamics are generated by a simple,
noninteracting band insulator Hamiltonian, characterized by
a band gap 4M . By contrast, the prequench initial condition
is the ground state of a system of interacting fermions
possessing a low-energy Luttinger liquid description, ex-
cept for the special case of a free Fermi gas with γ =
0, referred to as the “noninteracting” quench. We used
the density-matrix renormalization group (DMRG) to nu-
merically compute the initial-state correlation function re-
quired to determine the quench evolution in the interacting
case, studying chains of 202 sites with periodic boundary
conditions.

We identified a qualitative difference in the density
dynamics generated by the initial-state inhomogeneity for
the noninteracting versus interacting (γ �= 0) quenches. For
an initial state seeded with a Gaussian density bump of
width �, in the nonrelativistic transport regime (M� > 1)
we found only dispersive broadening for the noninteracting
quench. By contrast, an interacting quench with the same
value of M� generates coherently propagating left- and
right-moving density waves, which travel ultrarelativistically
at the maximum band velocity vmax(M) of the postquench
spectrum.

We showed that the lattice quench data obtained here could
be well-captured by a regularized continuum sine-Gordon
model. The continuum theory is an ultraviolet-modified
version of the pure sine-Gordon quench previously studied
in Ref. 43. In that work, an ultrarelativistically propagating
density wave dubbed the “supersoliton” was identified as
the leading asymptotic contribution to the exact result for
ρ(t,x), in the case of the interacting quench. The supersoliton
exhibits a rigid shape and an amplitude that grows in
time according to tσ/2, where σ > 0 (σ = 0) for an initial-
state possessing (lacking) interfermion interactions. In the
sine-Gordon quench, the supersoliton arises due to the rel-
ative quasiparticle fractionalization of the initial and final
(pre- and postquench) Hamiltonians, quantified by the anoma-
lous scaling dimension σ/2 of the postquench fermions in
the initial state. In this paper, we showed that fractional-
ization leads to a divergence at vF in the local (Wigner)
velocity distribution induced by the density inhomogeneity,
for the interacting quench. By contrast, in the noninteracting
(σ = 0), nonrelativistic (M� � 1) quench we demonstrated
that Pauli blocking limits the excitation to small velocities
v � vF /M�.

In the interacting lattice quenches studied here, we did not
observe amplification of the initial density profile, nor did

we find the characteristic “s” shape of the supersoliton. We
nevertheless established that the propagating density waves
produced by an interacting lattice quench are well-described
by the regularized sine-Gordon theory. For several of the lattice
parameter sets studied, we demonstrated that the traveling
waves of the corresponding continuum theory do exhibit the
characteristic supersoliton shape at length and time scales
much larger than we can access in the lattice version, owing to
computational limitations. We interpret the waves produced
by the interacting quench as “elementary excitations” of
the nonequilibrium state; in the XXZ quench, these waves
are regularized supersolitons. Using an appropriate lattice
definition for σ (γ ), we exhibited the strong crossover of
the postquench dynamics as a function of the interaction
strength.

B. On field theory methods in quantum quenches

Beyond the particular dynamical phenomena uncovered
in this paper, our work provides additional support to the
idea that standard quantum field theory tools can be useful
in studying strongly out-of-equilibrium physics in “realistic”
microscopic models. This is nontrivial, because field theoretic
methods are typically employed in condensed matter to
capture low-energy, long-wavelength equilibrium phenomena
such as that observed near a quantum critical point. In
such established settings, lattice scale details in the form of
irrelevant operators are often safely ignored, and field theory
tools can be used to make robust, sometimes even exact
predictions, as a consequence of universality. On the other
hand, a sudden quantum quench in a global parameter of a
many-particle system typically injects an extensive quantity
of energy; it is not a priori clear that long-wavelength,
continuum methods can provide a useful description of the
resulting dynamics. Indeed, in the context of a quench,
irrelevant operators encoding lattice-scale details present a
serious formal difficulty: under far-from-equilibrium condi-
tions, renormalizability of the low-energy field theory is not
necessarily a barrier against their effects. The problem is that
long-time dynamics can become sensitive to ultraviolet details,
even if the renormalizable field theory (i.e., the model obtained
by discarding all irrelevant operators) gives an ultraviolet
finite prediction. The difficulty is compounded by the fact that
operators irrelevant in the infrared become relevant in the ultra-
violet, rendering perturbative treatments useless for long-time
predictions.

In the lattice quench studied in this paper, irrelevant
operators suppress the amplification effect seen in the pure
sine-Gordon model, an integrable field theory in 1 + 1
dimensions. A systematic improvement of the pure sine-
Gordon theory in order to describe a particular “parent”
microscopic model would require a nonperturbative resum-
mation of irrelevant operator effects, a difficult task. Nev-
ertheless, we have demonstrated that a phenomenological
regularization of the sine-Gordon theory (equivalent to the
“resummation” of a particular irrelevant operator, charac-
terizing the finite range ζ of the nearest-neighbor density
interactions on the lattice) gives good agreement with the
XXZ chain dynamics, at least for the system sizes considered
here.
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C. Open questions and extensions

A key question is the survivability of the ultrarelativistic
density packet dynamics for longer times and larger system
sizes. We identified two lifetimes tζ and t3 that characterize
the temporal duration, postquench, over which lattice effects
on the dynamics in the initial and final Hamiltonians can be
safely ignored. For fixed M� > 1 (nonrelativistic quench),
both tζ,3 ∝ �3, which implies that the lattice effects can
be systematically reduced by working with larger system
sizes L and wave-packet widths �, such that L/� is held
constant.

Finally, the effects of interparticle interactions in the
dynamical evolution pose a particularly interesting question;
would the presence of a nontrivial S matrix for the mas-
sive, postquench spectrum of quasiparticle excitations tend
to encourage or retard the formation and/or decay of the
“regularized” supersoliton? The answer likely hinges upon the
presence or absence of integrability for the postquench Hamil-
tonian. In particular, it would be interesting to study the density
dynamics of an XXZ chain quench from the XY phase to the
gapped, Mott-insulating Ising AFM that occurs for γ > 1.

The considerable flexibility afforded to tune control
parameters in ultracold atom experiments, coupled with the
excellent decoupling of these systems from the environment,
has brought quench physics in (near) integrable models
within observational reach.9,80 Despite the powerful methods
developed to solve equilibrium properties, so far only
limited analytical progress on nonequilibrium dynamics
in integrable models has been made,26,30–32,80–82 with the
exception of systems that possess an underlying description
in terms of free particles.23,24,27,29,33,35 Numerical work using
the time-dependent density-matrix renormalization group
(t-DMRG) by Manmana et al. in Refs. 17 and 34 on XXZ

chain quenches between and within the XY and Ising phases
has revealed the “light-cone effect” predicted by Cardy
and Calabrese,28 as well as evidence for topological defect
formation22,26 upon quenching into the gapped Ising phase.
These studies were limited to relatively small system sizes
(50 sites). A variant of t-DMRG was used in Ref. 19 to
investigate the decay of Néel order in XXZ quenches, while
a hybrid Bethe ansatz/numerics approach was used in Ref. 37
to determine the evolution of a ferromagnetic domain-wall
state. Given the complexity of the pure analytical approaches,
it seems likely that a numerical (or hybrid) scheme has the
best chance of addressing the effects of interactions on the
postquench dynamics articulated in this paper.

We emphasize that even in equilibrium, the effects of
integrability and irrelevant operators on correlation functions
at nonzero temperature T > 0 remain subjects of some
controversy.42,65–73 For massive 1D systems, Sachdev and
Damle71 gave well-reasoned arguments that transport at T > 0
should be diffusive. This is also the naive expectation for a
1 + 1-D theory, in the absence of other special properties. How-
ever, Bethe ansatz results on integrable models appear to sup-
port the possibility of a nonzero Drude weight at nonzero tem-
perature, indicative of ballistic transport.72,73 One might expect
that the incorporation of an integrability breaking perturbation
(such as an irrelevant operator) introduces an additional time
scale, beyond which the space-time retarded Green’s function
for the appropriate observable (e.g., a spin-spin correlation

function) would transition from ballistic to diffusive
behavior.

Lancaster and Mitra38 have investigated a quench deep
into the Mott insulating breather regime of the sine-Gordon
model,2,49 starting from a LL with an inhomogeneous domain-
wall density profile. In this case, the postquench spectrum can
be approximated by massive free bosons; because there is no
fractionalization, the supersoliton does not occur. Quenches of
an inhomogeneous LL with a domain-wall density profile into
the breather regime of sine-Gordon, incorporating interactions,
were further investigated in Ref. 39, using the semiclassical
truncated Wigner approximation (TWA).83 In this case, the
authors uncovered a persistent current, which could signal the
preservation of ballistic postquench transport. Previous work83

has shown that the TWA provides a good approximation
for quenches into the breather-dominated regime studied in
Ref. 39.

With respect to the phenomena discussed in the present pa-
per, the TWA is known to fail83 in the “quantum” (breatherless)
regime of the sine-Gordon model,2,49 where fermionic solitons
and antisolitons compose the spectrum. The supersoliton has
been found at the special Luther-Emery point separating
the semiclassical and quantum regimes, where there are no
breathers and the fermions do not interact.43 In the Ising phase
of the XXZ chain, there are also no breathers, and the spectrum
consists solely of interacting, fermionic spinons. Moreover, the
postquench dynamics of massive, interacting fermions may
differ between the continuum sine-Gordon and lattice XXZ

models.
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APPENDIX A: ASYMPTOTIC ANALYSIS

In this Appendix, we sketch the method used to obtain the
long-time asymptotic results of Eqs. (3.23), (3.48), and (3.52)
in the text. All three derive from the exact expression for the
regularized sine-Gordon quench, Eq. (3.47).

All component integrals in Eq. (3.47) feature oscillatory
Bessel function kernels; these enter through the Green’s
functions Ḡ(1,2,3)(t,y), Eq. (3.9). Defining γ ≡ Mt ′, Eq. (3.47)
can be expressed as

ρ(t,x) = ρ0(x − t ′)
2

− cNασγ

2t ′σ+1
[I1(t ′,x) + I2(t ′,x)]

+{x → −x}. (A1)

For simplicity, we consider here only the linear response to
the initial inhomogeneity ρ0(x), for the unregularized case
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with ζ = 0. Then the integrals I1,2 are

I1 =
∫ 1

−1

√
1+z
1−z

J1(γ
√

1 − z2) dz

(1 − z)1+σ

∫ x−zt ′

x−t ′
dy ρ0(y), (A2)

I2 = γ

2

∫ 1

−1
dZ

∫ 2(1−|Z|)

0

dzd

z1+σ
d

∫ x−t ′Z−t ′(zd/2)

x−t ′Z+t ′(zd/2)
dy ρ0(y)

⎧⎨
⎩

√
(1 + Z)2 − z2

d/4

(1 − Z)2 − z2
d/4

J1

[
γ

√
1 −

(
Z + zd

2

)2]

× J1

[
γ

√
1 −

(
Z − zd

2

)2]
+ J0

[
γ

√
1 −

(
Z + zd

2

)2]
J0

[
γ

√
1 −

(
Z − zd

2

)2]⎫⎬
⎭ . (A3)

The basic method is to slice up the domain of each
integral into pieces belonging to one of two varieties: type (i)
regions throughout which one can employ the large argument
asymptotic series for the Bessel functions, and type (ii)
crossover domains where one cannot. For type (i) regions,
the Bessel functions are replaced by cosines; in the absence
of a point of stationary phase or some other obstruction,
these integrals can be systematically evaluated by repeated
integration by parts. Successive integrations bring inverse
powers of γ = Mt ′ from the cosine argument, which tend
to suppress the contribution of the remainder in the long-time
limit. To ensure the convergence of the series obtained for
a type (i) region, it is necessary to carefully consider the
specification of its boundary.

Type (ii) regions, as well as points of stationary phase
appearing in type (i) domains must be isolated and evaluated by
expanding the rest of the integrand in the local neighborhood.
A useful trick to extract the long-time, leading asymptotic con-
tributions is to let each region boundary vary with γ according
to a power law. For example, the dominant contribution to
I1 in Eq. (A2) in the limit γ → ∞ comes from the narrow
type (ii) region 1 − δz0 � z � 1, where 0 < δz0 � 1. We let
δz0 ≡ γ −ψ , with ψ > 0. Then we perform iterated integration
by parts upon the neighboring type (i) region with −1 +
δz′

0 � z < 1 − γ −ψ (assuming δz′
0 > 0). To ensure that this

series converges and produces a subleading contribution, one
leverages an additional constraint (an upper bound) upon the
exponent ψ ; for Eq. (A2), 0 < ψ < 2 does the job. Knowing
the allowed range of ψ in turn determines the character of the
type (ii) 1 − γ −ψ � z � 1 integration. In this way, we isolate
and evaluate the leading contributions to I1,2 in the long-time
limit, obtaining the asymptotic behavior of Eq. (A1).

Execution of the above-described program is straightfor-
ward, but tedious; details are omitted here. In the remainder
of this appendix, we indicate the results by identifying the key
elements leading to the unregularized supersoliton formula,
Eq. (3.23).

As discussed above, I1 is dominated by the contribution
near z = 1. Expansion of the rest of the integrand gives

I1 ∼ t ′γ 2σ−1 ρ0(x − t ′) 21+σ

∫ 2γ

0

dy J1(y)

y2σ

∼ t ′γ 2σ−1 ρ0(x − t ′)
21−σ �(1 − σ )

�(1 + σ )
. (A4)

The I2 integration is dominated by the region with 1 − δZ0 �
Z � 1, where 0 < δZ0 � 1. For the initial density profile, we
assume the Gaussian bump in Eqs. (3.35) and (3.22). Making
the change of variables Z ≡ 1 − u/2γ 2 and zd ≡ ur/γ 2, one
finds

I2 ∼ −t ′γ 2σ−1ρ0(x − t ′)[Ī2,a + Ī2,b], (A5)

where

Ī2,a =
∫ 2γ 2

0

du

uσ
K(u), (A6a)

Ī2,b =
∫ 2γ 2

0

du

uσ
K(u)

×
{

exp

[
− (x − t ′)

M�2

u

γ
− 1

(2M�)2

u2

γ 2

]
− 1

}
,

(A6b)

with

K(u) =
∫ 1

0

dr

rσ

1√
1 − r2

J1[
√

u(1 − r)]J1[
√

u(1 + r)].

(A7)

To leading order,

Ī2,a ∼ 21−σ �(1 − σ )

�(1 + σ )
. (A8)

The dominant contribution to the kernel K(u) relevant to the
evaluation of Ī2b is obtained from the large-u behavior of the
nonoscillatory term,

K(u) ∼ 1

π
√

u

∫ 1

0

dr cos[
√

u(
√

1 + r − √
1 − r)]

rσ (1 − r2)3/4

∼ u
σ−2

2

π

∫ ∞

0

dx

xσ
cos (x)

∼ u
σ−2

2

π
�(1 − σ ) sin

(πσ

2

)
. (A9)

Assuming the Gaussian bump in Eqs. (3.35) and (3.22),
Eq. (A6b) then evaluates to

Ī2,b ∼ γ −σ/2 2�(−σ )

�( σ
2 )(

√
2M�)σ/2

exp[(x − t ′)2/2�2]

×Dσ/2

[√
2

(
x − t ′

�

)]
. (A10)
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In this equation, Dν(z) denotes the parabolic cylinder function.
Combining Eqs. (A5), (A8), and (A10) yields

I1 + I2 ∼ −
2Q

(
M2t ′3√

2�

)σ/2
�(−σ )

M
√

π��
(

σ
2

) Fσ

(
x − t ′

�

)
, (A11)

where Fσ (z) was defined by Eq. (3.24). We obtain Eq. (3.23)
from Eqs. (A1) and (A11), using Ref. 56.

APPENDIX B: FRACTIONALIZATION IN THE
SINE-GORDON MODEL

In this Appendix, we demonstrate that the natural quasi-
particle degrees of freedom in the continuum Luttinger
liquid Hamiltonian defined by Eqs. (3.15) and (3.16) are
fractionalized with respect to the ψ fermions that appear in the
continuum insulator Hamiltonian H̄ (f ), Eqs. (3.1) and (3.19).

We begin by defining canonically rescaled boson variables

� ≡
√

Kφ, � ≡ θ/
√

K, (B1)

so that Eq. (3.16) can be written as

H̄ (i) =
∫

dx

[
u

2

(
d�

dx

)2

+ u

2

(
d�

dx

)2

−
√

Kμ(0)(x)√
π

d�

dx

]

=
∫

dx

[
−uχ †

(
i �̂3 d

dx

)
χ −

√
Kμ(0)(x) : χ †χ :

]
.

(B2)

On the second line of this equation, we have refermionized
to obtain an expression in terms of some new, effectively
noninteracting Dirac spinor χ .1 The field χ carries scaling
dimension 1/2 in the Luttinger liquid with Luttinger parameter
K , and creates or annihilates the “natural” propagating
quasiparticle degrees of freedom in that phase. The χ particles
propagate at the sound velocity u, rather than the bare Fermi
velocity vF .

Comparing Eqs. (3.15) and (B2), we see that the chemical
potential μ(0)(x) has been rescaled by a factor of

√
K in

the χ language. This indicates that the χ fermion carries a
fraction

√
K of the conserved ψ fermion number charge. We

can see this explicitly by considering the bosonic expressions
for the components of ψ and χ ; in terms of the original boson
variables φ and θ in Eq. (3.16), these read

ψ(x) ≡
[

ψ1

ψ2

]

= 1√
2πα

[
exp{i√π [φ(x) + θ (x)]}
exp{i√π [φ(x) − θ (x)]}

]
, (B3)

χ (x) ≡
[

χ1

χ2

]

= 1√
2πα

[
exp

{
i
√

π
[√

Kφ(x) + 1√
K

θ (x)
]}

exp
{
i
√

π
[√

Kφ(x) − 1√
K

θ (x)
]}

]
.

(B4)

Number charge conservation is associated with the U(1)
transformation

φ → φ + 1√
π

�, θ → θ.

so that

ψ → ei�ψ, χ → ei
√

K�χ.

Finally, we note that χ is nonlocal when expressed in terms
of ψ (and vice versa) for any K �= 1, since the right-hand side
of Eq. (B4) must then involve a “string” in the argument of
the exponential, i.e., an integral of the ψ current components
{J 0,J 1} from −∞ to the argument x; see Eq. (3.17).

APPENDIX C: WIGNER FUNCTIONS FOR THE
POSTQUENCH QUASIPARTICLES

In this appendix, we define the Wigner functions for the
particle ak and hole bk operators of the massive, postquench
Hamiltonian H̄ (f ) [Eq. (3.25)], in the (regularized) continuum
sine-Gordon quench. We then transcribe results for the local
velocity “distributions” induced by the inhomogeneous ρ0(x)
[Eq. (3.35)] for the noninteracting and interacting quenches.
To simplify notation we set the Fermi velocity

vF ≡ 1 (C1)

in what follows.
The particle and hole Wigner distribution functions at time

t = 0 (immediately postquench) are defined by

n+(k; R) ≡
∫

dxd e−ikxd

×〈0̄|a† (R − xd

2

)
a
(
R + xd

2

) |0̄〉, (C2a)

n−(k; R) ≡
∫

dxd e−ikxd

×〈0̄|b† (R − xd

2

)
b
(
R + xd

2

) |0̄〉, (C2b)

where |0̄〉 denotes the ground state of H̄ (i), Eq. (3.15). Both the
real-space density profile ρ0,±(R) (at time t = 0) and the global
distribution function n±(k) can be extracted from Eq. (C2):

ρ0,+(R) =
∫

dk

2π
n+(k; R)

= 〈0|a† (R) a (R) |0〉, (C3a)

n+(k) =
∫ ε

−ε

dQ

2π

∫
dR exp (−iQR) n+(k; R)

=
∫ ε

−ε

dQ

2π
〈0|a† (k − Q

2

)
a
(
k + Q

2

) |0〉. (C3b)

For a translationally invariant system, the “point-split” in-
tegration in Eq. (C3b) picks up the δ-function contribu-
tion at Q = 0; we are to take ε → 0 at the end of the
calculation.

From Eq. (3.27), a and b are related to the right (ψ1) and
left movers (ψ2) via

a(k) = β(k)ψ1(k) − iβ(−k)ψ2(k), (C4a)

b(k) = β(k)ψ†
1(−k) − iβ(−k)ψ†

2(−k), (C4b)
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where

β(k) ≡
√

1

2

[
1 + k

ε(k)

]
, (C5)

and ε(k) = √
k2 + M2.

We define δn±(k; R) as the linear response to ρ0(x),
subtracting the homogeneous (global) distribution. Using the
correlation functions in Eq. (3.20) and incorporating the
ultraviolet regularization ζ as in Eqs. (3.46) and (3.47), we
obtain

δn+(k; R) = −δn−(k; R)

= cNασ

∫
dq

2π

ρ̃0(q)

q
eiqRB(k; q)

×
[

sgn
(
k + q

2

)
Gσ

(∣∣k + q

2

∣∣ ; ζ
)

−sgn
(
k − q

2

)
Gσ

(∣∣k − q

2

∣∣ ; ζ
)
]

, (C6)

where

B(k; q) = β

(
k − q

2

)
β

(
k + q

2

)
+ β

(
q

2
− k

)
β

(
−q

2
− k

)
.

The kernel Gσ (|p|; ζ ) is defined by Eq. (3.37). Equation (C6)
is identical to the Wigner distribution for the right mover ψ1

in Eq. (3.36), except for the M-dependent “structure factor”
B(k; q).

We consider first the noninteracting quench (σ = 0),
wherein Gσ (|p|; ζ ) = π/2. We assume the Gaussian density
profile ρ0(x) in Eqs. (3.35) and (3.22). As discussed below
Eq. (3.38), for the nonrelativistic (M� � 1), noninteracting
quench, Pauli blocking slaves the k dependence of δn+(k; R)
to that of the initial density profile ρ̃0(q = 2k), suppressing
the contribution of momenta |k| � 1/�. Using the dispersion
in Eq. (3.26) to convert momentum to velocity, we obtain the
local velocity “distribution” at R = 0 (the center of the density
bump),

δn+(v; R = 0) ∼ QM

2v2(M�)2

exp
[ − v2(M�)2

1−v2

]
√

1 − v2
. (C7)

This equation applies when v � 1/M�, for the nonrelativistic
regime (M� � 1) of the noninteracting quench (σ = 0). The
exponential strongly suppresses velocities v � 1/M�.

For the interacting case, we are interested in a “soft quench”
(Sec. I A 1), defined as the regime where 1/� � M �
1/ζ , i.e., a nonrelativistic initial condition, and an effective
Compton wavelength much larger than the ultraviolet scale ζ ,
which is of order of the lattice spacing. As in Eq. (3.39) the
position and momentum dependencies factorize. Converting
to velocity, we obtain

δn+(v; R)

ρ0(R)
∼ c1(σ ) vσ−1

(1 − v2)1+σ/2

×
[

1 + 2σ−1

(
vMζ√
1 − v2

)1−σ �
(

σ−1
2

)
�

(
1−σ

2

)
]

,

(C8a)

valid for (1/M�) � v � 1 − (Mζ )2/2, and

δn+(v; R)

ρ0(R)
∼ c2(σ ) vσ/2−1

(1 − v2)1+σ/4
exp

(
− vMζ√

1 − v2

)
, (C8b)

valid for 1 − (Mζ )2/2 � v � 1. The prefactors in these
equations are given by

c1(σ ) = (Mα)σ σπ�
(

1−σ
2

)
2σ+1 �

(
1+σ

2

) ,

c2(σ ) =
(

Mα2

ζ

)σ/2
σπ3/2

21+σ/2 �
(

1+σ
2

) .

Equations (C8a) and (C8b) apply to the interacting quench with
0 < σ < 1. For Mζ � 1, i.e., a Compton wavelength much
larger than the lattice spacing, Eq. (C8a) exhibits a strong
nonintegrable singularity approaching v = 1. For any ζ > 0,
this divergence is ultimately cut off, as in Eq. (C8b). The ex-
ponential velocity suppression in the latter equation is weaker
than that in Eq. (C7), and originates in the ultraviolet behavior
of the regularized Luttinger liquid correlation function, rather
than the initial density profile.
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16C. Kollath, A. M. Läuchli, and E. Altman, Phys. Rev. Lett. 98,
180601 (2007).

17S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu, Phys.
Rev. Lett. 98, 210405 (2007).

18M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008);
Ann. Phys. (NY) 324, 2146 (2009); M. Eckstein, M. Kollar, and
P. Werner, Phys. Rev. Lett. 103, 056403 (2009).

19P. Barmettler, M. Punk, V. Gritsev, E. Demler, and E. Altman, Phys.
Rev. Lett. 102, 130603 (2009); New J. Phys. 12, 055017 (2010).

20M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).
21J. Sabio and S. Kehrein, New J. Phys. 12, 055008 (2010).
22T. W. B. Kibble, J. Phys. A 9, 1387 (1976); W. H. Zurek, Nature

(London) 317, 505 (1985).
23W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701

(2005); A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005);
S. Deng, G. Ortiz, and L. Viola, Phys. Rev. B 80, 241109(R) (2009).

24L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek, Phys. Rev.
A 75, 052321 (2007).

25A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477 (2008).
26C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev. B 81,

012303 (2010); 81, 224301 (2010).
27E. Barouch, B. McCoy, and M. Dresden, Phys. Rev. A 2, 1075

(1970).
28P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006);

J. Stat. Mech.: Theory Exp. (2007) P06008.
29M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006); A. Iucci and

M. A. Cazalilla, Phys. Rev. A 80, 063619 (2009); New J. Phys. 12,
055019 (2010).

30V. Gritsev, A. Polkovnikov, and E. Demler, Phys. Rev. B 75, 174511
(2007).

31V. Gritsev, E. Demler, M. Lukin, and A. Polkovnikov, Phys. Rev.
Lett. 99, 200404 (2007).

32M. B. Hastings and L. S. Levitov, e-print arXiv:0806.4283 (unpub-
lished).

33G. S. Uhrig, Phys. Rev. A 80, 061602(R) (2009); B. Dóra,
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41C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger, Phys.

Rev. A 71, 053606 (2005).
42S. Langer, F. Heidrich-Meisner, J. Gemmer, I. P. McCulloch, and

U. Schollwöck, Phys. Rev. B 79, 214409 (2009).
43M. S. Foster, E. A. Yuzbashyan, and B. L. Altshuler, Phys. Rev.

Lett. 105, 135701 (2010).

44Z. Cai, L. Wang, X. C. Xie, U. Schollwöck, X. R. Wang, M. Di
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(2011).

47F. Heidrich-Meisner, M. Rigol, A. Muramatsu, A. E. Feiguin, and
E. Dagotto, Phys. Rev. A 78, 013620 (2008).

48A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
49For a review, see, e.g., R. Rajaraman, Solitons and Instantons

(North-Holland, Amsterdam, 1982).
50For a review, see, e.g., B. Sutherland, Beautiful Models (World

Scientific, Singapore, 2004).
51We employ the standard basis for all Pauli matrices.
52The functions φ{0,+,−} in Eq. (3.10) are given by

φ0 = tx2

M�4δ2(t)
, φ± = t[(Mx)2 − 1]

M3�4δ2(t)
± 2x

M�2δ2(t)
.

53We employ the following definitions of the time-reversal T and
parity P transformations in the low energy Dirac theory outlined in
Eqs. (3.1)–(3.3):

(T ) : (x) → σ̂ 1∗(x), i → −i, (P) : (x) → σ̂ 2(−x).

The time-reversal transformation T is antiunitary and squares
to one (spinless/spin-polarized fermions). These conventions are
consistent with appropriate “microscopic” definitions for the lattice
model in Eq. (2.3b).

54Technically, the lattice potential μ
(0)
i in Eq. (2.3a) appears in the

continuum as

μ
(0)
i ∼ μ(0)(xi) + (−1)xi μ(0)

s (xi).

In this equation, μ(0)(x) [μ(0)
s (x)] gives the slowly varying envelope

for the smooth (sublattice-staggered) component of μ
(0)
i . We

have neglected the sublattice-staggered component in Eq. (3.15),
because the initial Gaussian “bump” assumed in Eq. (2.4) gives
a negligible contribution to μ(0)

s (x) for � larger than a couple of
lattice spacings.

55See, e.g., J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena, 4th ed. (Clarendon, Oxford, 2002).

56The normalization constant cN is determined by enforcing the
fermionic sum rule (canonical anticommutation relations) on the
correlation function Ci

j in Eq. (3.20). The result is

cN = √
π

�
(
1 + σ

2

)
�

(
1+σ

2

) .

57We note that Eq. (3.21) is slightly different from a corresponding
expression in Ref. 43. In the language of that paper, the fermion ψ

appearing in Eqs. (3.1) and (3.15) denotes the LE point quantum
soliton; by applying the bosonization transformation directly to H̄ (i)

as expressed in terms of ψ , the LE point is effectively shifted from
K = 1/4 to K = 1.

58Vertex operators are primary fields in the free boson conformal field
theory; a conventional normalization scheme sets the coefficient of
the two-point correlator in Eq. (3.20) equal to 1 (Ref. 85).

59While the exact asymptotic expression in Eq. (3.23) conserves the
particle number, it is not strictly causal. The function Fσ (z) in
Eq. (3.24) exhibits a power-law tail ∝z−1−σ/2 for z → −∞, induc-
ing a finite (i.e., not exponentially suppressed) density disturbance

085146-29

http://arXiv.org/abs/arXiv:1005.3545
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1038/nature09989
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1016/j.aop.2009.03.009
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1103/PhysRevLett.102.130603
http://dx.doi.org/10.1088/1367-2630/12/5/055017
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1088/1367-2630/12/5/055008
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevB.72.161201
http://dx.doi.org/10.1103/PhysRevB.80.241109
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1103/PhysRevA.75.052321
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1103/PhysRevB.81.012303
http://dx.doi.org/10.1103/PhysRevB.81.012303
http://dx.doi.org/10.1103/PhysRevB.81.224301
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevLett.96.136801
http://dx.doi.org/10.1088/1742-5468/2007/06/P06008
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1088/1367-2630/12/5/055019
http://dx.doi.org/10.1103/PhysRevB.75.174511
http://dx.doi.org/10.1103/PhysRevB.75.174511
http://dx.doi.org/10.1103/PhysRevLett.99.200404
http://dx.doi.org/10.1103/PhysRevLett.99.200404
http://arXiv.org/abs/arXiv:0806.4283
http://dx.doi.org/10.1103/PhysRevA.80.061602
http://dx.doi.org/10.1103/PhysRevLett.106.156406
http://dx.doi.org/10.1103/PhysRevB.79.155104
http://dx.doi.org/10.1103/PhysRevB.79.155104
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevLett.102.127204
http://dx.doi.org/10.1103/PhysRevB.82.144302
http://dx.doi.org/10.1103/PhysRevA.81.033605
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1103/PhysRevE.81.061134
http://dx.doi.org/10.1103/PhysRevB.82.235124
http://dx.doi.org/10.1103/PhysRevB.70.121302
http://dx.doi.org/10.1103/PhysRevA.71.053606
http://dx.doi.org/10.1103/PhysRevA.71.053606
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/PhysRevLett.105.135701
http://dx.doi.org/10.1103/PhysRevLett.105.135701
http://dx.doi.org/10.1103/PhysRevB.83.155119
http://dx.doi.org/10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1103/PhysRevLett.106.206401
http://dx.doi.org/10.1103/PhysRevLett.106.206401
http://dx.doi.org/10.1103/PhysRevA.78.013620
http://dx.doi.org/10.1103/PhysRevLett.33.589


FOSTER, BERKELBACH, REICHMAN, AND YUZBASHYAN PHYSICAL REVIEW B 84, 085146 (2011)

at arbitrarily large |x| in Eq. (3.23) for any t ′ � 1/M . This is an
artifact of the asymptotic analysis, not the exact bosonization result,
because neglected terms in Eq. (3.23) (which feature amplitudes that
decay in time) cancel these tails, shifting the acausal contribution
inside the light cone. The causal response of the exact result can be
seen from the numerical integration depicted in Fig. 6.

60Although the natural quasiparticle degrees of freedom in the
interacting Luttinger liquid H̄ (i) [Eq. (3.15) with γ �= 0] are “frac-
tionalized” with respect to the postquench fermion ψ [Eq. (3.1)],
the latter remains an eigenoperator of the renormalization group
(Ref. 85).

61E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon,
London, 1981).

62M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer-Verlag, New York, 1990).

63J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett. 105,
190403 (2010).

64See, e.g., N. Goldenfeld, Lectures on Phase Transitions and the
Renormalization Group (Perseus Books, Reading MA, 1992);
J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, England, 1996).

65S. Sachdev, T. Senthil, and R. Shankar, Phys. Rev. B 50, 258
(1994); S. Sachdev, ibid. 50, 13006 (1994).

66H. Castella, X. Zotos, and P. Prelovšek, Phys. Rev. Lett. 74, 972
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