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We study the phase diagram of a three-component Fermi gas with weak attractive interactions, which shows
three superfluid and one normal phases. At weak symmetry breaking between the components the existence of
domain walls interpolating between two superfluids introduces a new length scale much larger than the
coherence length of each superfluid. This, in particular, limits the applicability of the local density approxi-
mation in the trapped case, which we also discuss. In the same regime the system hosts soft collective modes
with a mass much smaller than the energy gaps of individual superfluids. We derive their dispersion relations
at zero and finite temperatures and demonstrate that their presence leads to a significant enhancement of
fluctuations near the superfluid-normal transitions.
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I. INTRODUCTION

In Landau’s approach to phase transitions, conventional
superfluidity and superconductivity are characterized by a
single complex order parameter. However, in certain in-
stances a proper description of a superfluid within this ap-
proach requires the introduction of an order parameter with
several complex components. For example, in the case of
superfluidity in 3He �1� the spin-triplet, p-wave pairing is
described by nine coefficients, and three different superfluid
phases are experimentally realized. Other examples include
unconventional superconductivity �2� in heavy fermion com-
pounds and color superconductivity in nuclear matter �3�,
where different phases could be realized depending on the
chemical potentials—the two-flavor color superconductor
and the color-flavor-locked phase. Many aspects of multi-
component superfluidity in these systems are understood
only on a phenomenolnical level due to their intrinsic com-
plexity. Atomic Fermi gases, on the other hand, provide a
unique avenue to explore these phenomena in a highly con-
trollable way, thanks to the tunability of the interactions be-
tween atoms. Multicomponent superfluidity in atomic fermi-
ons could be realized, for example, by trapping and cooling
multiple hyperfine states of the same atomic species �4,5� or
of different species �6�.

Here we present a study of the phase diagram of a three-
component Fermi gas with weak attractive interactions. In
particular, we consider the situation in which the “color”
symmetry between the components is broken due to differ-
ences in the interaction strengths or chemical potentials,
while the masses are the same. This situation is relevant to
possible experiments involving three hyperfine states of 6Li
atoms. We first develop a Ginzburg-Landau expansion for
this system and use it to confirm the previous results �7–9�
that there are four possible phases: the normal state and three
superfluid states S1, S2, and S3. In each of the superfluid
states two out of three components are paired, while the third
one is in a normal state. First-order phase transitions between
different superfluid states can be driven by varying interac-
tion strengths, chemical potentials, particle densities, or tem-
perature. We construct the phase diagram in grand-canonical

and canonical ensembles at finite and zero temperatures,
shown in Figs. 1–3 and 6; see also Refs. �8,9�.

The canonical phase diagram at fixed temperature �Fig. 2�
contains regions where the homogeneous state is unstable.
When the particle densities are within these regions the two
superfluid states phase separate, as expected for the first-
order phase transition; see, e.g., �10�. We therefore explore
the properties of domain walls between different superfluids;
see Fig. 4. In particular, we explicitly determine the shape
and the thickness � of the domain walls in various regimes.
The case of weak symmetry breaking between two compo-
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FIG. 1. Finite-temperature �T=0.85Tc2
� phase diagram for a

three-component Fermi gas in the h1-h2 plane of chemical potential
differences, Eq. �6�. The two nonvanishing pairwise couplings g1,2

are such that Tc1
/Tc2

=1.04, where Tci
are defined below Eq. �10�.

Note that the normal state �N� is stable at large hi while the super-
fluid states �Si� at lower ones. The stronger interaction ��g1�� �g2��
determines the superfluid state �S1� realized at h1=h2=0. The hori-
zontal �vertical� segments denote second order N-S1 �N-S2� transi-
tions. The dashed curves mark the first-order S1-S2 transitions; see
Eq. �23�. The shaded areas limited by the dotted curves �Eq. �22��
are the metastability regions.
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nents �say, 1 and 2�—i.e., when the couplings of 1 and 2 with
3 and chemical potentials �1 and �2 are close—is especially
interesting. At full symmetry between 1 and 2, �=�. This is
natural as in this case the thermodynamic potential
���1 ,�2�, where �1 and �2 are the order parameters for
superfluid states S1 and S2, respectively, is invariant with
respect to rotations in the �1−�2 space. This implies that the
two minima of the potential ��1 ,�2�= ���1

0 ,0� , �0,�2
0�� de-

scribing superfluids S1 and S2 can be connected by continu-
ous lines of minima. Then, �1 can be continuously deformed
into �2 at no energy cost when moving from one point in
space to another. At weak symmetry breaking, as we demon-
strate below, the thickness of the domain wall � is parametri-
cally larger than the coherence lengths �1 and �2 of superflu-
ids S1 and S2.

For a trapped three-component gas the local density ap-
proximation �LDA� predicts sharp boundaries between su-
perfluid states S1 and S2 �11�. In reality, there is a domain
wall of length � between S1 and S2 where the two superfluids
coexist. Therefore, the characteristic length scale over which
the boundaries predicted by the LDA are smeared is �, rather
than �1 or �2. Moreover, if the radius of the trap, R, is com-
parable to �, the two superfluids coexist throughout the trap,
so that the cases R�� and R�� are qualitatively different.
In particular, this means that the LDA breaks down in the
entire trap when R��. For typical experimental parameters,
the condition R�� translates into Nt�104 �see below�,
where Nt is the total number of fermions of all three species.
Moreover, as we will see, the deviations from the LDA are
significant already for Nt as large as 107.

Another consequence of the weak symmetry breaking dis-
cussed above is the presence of soft collective modes in mul-

ticomponent Fermi gases �7,12�. Suppose, for example, the
system is in the superfluid state S1. By considering the ther-
modynamic potential ���1 ,�2� as above in the case of the
domain wall, we expect fluctuations 	�2�r , t� towards super-
fluid S2 to be massless in the symmetric case. Below we
derive the mass and dispersion relations of the corresponding
collective modes in the general asymmetric case at T=0 and
at finite temperatures. We show that at weak symmetry
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FIG. 3. Finite-temperature �T=0.85Tc2
� phase diagram for a

three-component Fermi gas with pairwise attraction between com-
ponents in the plane of chemical potential differences h1−h2, Eq.
�6�. All three pairwise couplings are finite and such that Tc1

/Tc2
=1.04 and Tc3

/Tc2
=0.97. As in the case of only two nonvanishing

couplings �cf. Fig. 1�, we identify the regions where the normal
state �N� and the superfluid states �Si� are stable. The solid segments
denote second-order N-Si transitions. The dashed curves mark first-
order Si-Sj transitions. Note that at the two points where these
curves meet all three superfluids can coexist.
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FIG. 4. Profiles of the order parameter components �1 �decreas-
ing solid line� and �2 �increasing� in the presence of a domain wall
between two superfluid states of a three-component Fermi gas. Here
T=0.92Tc2

, Tc1
/Tc2

=1.05, and the chemical potential differences
are h2 /�2

0=−0.66 and h1 /�2
0	0.84, where Tci

and �i
0 are defined

below Eq. �10�. Note the overlap of the two components over the
central region of size �, Eq. �38�. We also show the order parameter
in the polar decomposition of Eq. �17�; the dashed line is used for �
and the dotted line for 
� �0.063 / �� /2��.
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FIG. 2. Finite-temperature �T=0.85Tc2
� phase diagram for a

three-component Fermi gas in the plane of particle density differ-
ences ñ1− ñ2, Eq. �30�. As in Fig. 1, the two nonvanishing pairwise
couplings are chosen so that Tc1

/Tc2
=1.04. The horizontal �vertical�

segments denote the second-order phase transition N-S1 �N-S2� be-
tween normal �N� and superfluid state S1 �S2�. Dashed curves rep-
resent the limits of stability for the homogenous superfluids and
enclose the phase-separated �PS� states. The shaded areas are the
supercooling regions where a homogeneous superfluid state is meta-
stable toward phase separation.
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breaking the mass can be much smaller than the BCS gap in
the superfluid S1 in the absence of the third fermionic spe-
cies. At finite temperature these fluctuations result, in par-
ticular, in an enhancement of the Ginzburg-Levanyuk num-
ber NGi by a large factor. In other words, the window of
temperatures around the critical temperature for the normal-
superfluid S1 transition where fluctuations dominate becomes
much larger in the presence of the third component.

Let us comment on the experimental realization of super-
fluidity in a three-component Fermi gas. Achieving a stable
gas in this case appears more challenging than in a two-
component one due to the enhanced role of the three-body
scattering. In the two-component Fermi gas three-body re-
combination is suppressed thanks to the Pauli exclusion prin-
ciple �13� and the system is stable over tens of seconds. In
the three-component case there is no such suppression and
the decay time is of the order of milliseconds �5�. Various
proposals are being put forward in order to increase the life-
time of the system, such as, e.g., the stabilization by an op-
tical lattice �14� similar to that for bosonic atoms �15�. We
note that the results presented in this paper are obtained in
the weak-coupling regime, which is expected to be insensi-
tive to the stabilization technique. For example, a lattice
added to the trapping potential affects the single-fermion
spectrum only. This is irrelevant at weak coupling since the
superfluid energy scales are assumed to be much smaller
than the fermionic bandwidth. The single-particle bands con-
tribute only through the density of states at the Fermi energy
irrespective of the details of the spectrum.

The paper is organized as follows. In the next section we
give a brief overview of the mean-field approach and intro-
duce our notation. In Sec. III we present the Ginzburg-
Landau expansion of the thermodynamic potential and dis-
cuss the phase diagram at finite temperatures. We study the
domain walls in Sec. IV, and in Sec. V we describe the zero-
temperature phase diagram. Section VI is devoted to the col-
lective modes. Finally, we summarize our results in Sec. VII.

II. THERMODYNAMIC POTENTIAL

In this section we outline the derivation of the thermody-
namic potential, from which the phase diagram and all ther-
modynamic quantities can be obtained. We will not go into
details, as the derivation is a well-known procedure �16�. Our
starting point is the following Hamiltonian:

H = 

i=1

3

i
†H0i + Hint. �1�

Here H0=p2 / �2m� is the single-particle Hamiltonian �we
assume that all the particles have the same mass�. As dis-
cussed in the Introduction, an optical lattice would modify
the single-particle Hamiltonian. Its effect can be taken into
account by introducing an effective mass meff�m, which in
the weak-coupling regime results only in a renormalization
of the density of states introduced below in Eq. �7�. The
pairwise interaction part is

Hint = 

i,j,k,j�,k�

gi

4
� j

†�ijkk
†��k��ij�k� j�� , �2�

where �ijk is the totally antisymmetric tensor and �i , j ,k�
= �1,2 ,3�. By the Hubbard-Stratonovich transformation,

we introduce the pairing field �� �� ,r�= (�1�� ,r� ,
�2�� ,r� ,�3�� ,r�), and after integrating out the particle fields

i, we obtain the following effective action for �� �� ,r�:

Seff��� � =� d�d3x��� †g−1̂�� −
1

2
ln det Ĝ−1 , �3�

where ĝ−1=diag�gi
−1� and Ĝ−1 is the particles’ inverse

Green’s function, which is a 6�6 matrix in Nambu-Gorkov
space with the structure

Ĝ−1 = ��− �� − H0 + �i�	ij �ijk�k

− �ijk�k
† �− �� + H0 − �i�	ij

� . �4�

Here �i are the chemical potentials for the different species.
In the mean-field approximation the thermodynamic po-

tential is obtained by evaluating the effective action �3� for a

�-independent pairing field �� �r�. This is expected to be an
excellent approximation for the description of a weakly
coupled fermionic superfluid at temperatures not extremely
close to the transition temperature �10�. First, let us consider
the case of a uniform order parameter. Performing a Fourier
transform from real space-imaginary time to the momentum–
Matsubara-frequency space in Eq. �3� we derive

� = − 

i

��i�2

gi
+� d3p

�2��3�

i

1

2
�i −

1

2�

n

�ln�− 2�
i

��n
2 + �i

2� + 

P

��n
2 + �i

2����n + i� j���n − i�k�

+ ��i�2�2 + 

P

��i�2�� j�2���n + i�i���n − i� j� + c.c.�� ,

�5�

where �n=2�T�n+1 /2�, �i=p2 / �2m�−�i, the sum over P
denotes the sum over cyclic permutations of �i , j ,k�
= �1,2 ,3�, and “c.c.” is the complex conjugate. For vanishing

order parameter �� =0, we obtain the sum of the thermody-
namic potentials for three perfect gases, as expected. Also,
for an order parameter with only one nonvanishing compo-
nent �i�0, Eq. �5� reduces to the sum of the potentials of a
normal gas and a two-component Fermi superfluid. Let us
denote the corresponding zero-temperature order parameter
of the two-component superfluid in the absence of the third
fermionic species as �i

0. We note that Eq. �5� is ultraviolet
divergent, and a regularization procedure �e.g., a hard cutoff
as for superconductors �10� or a T-matrix approach �17��
should be implemented. Then all physical quantities can be
expressed in terms of the �i

0’s, as we do in what follows.
The �meta�stable states are given by the �local� minima of

�. This condition determines the mean-field phase diagram.
We will show below that the possible phases fall into two
classes—normal state or a two component superfluid plus a
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normal gas—in agreement with the results of �8,9�. The two
superfluid components can be any two of the three atomic
species; i.e., there are three possible superfluid states, which
we denote as S1, S2, and S3 when the paired species are 2 and
3, 1 and 3, and 1 and 2, respectively. For simplicity, unless
otherwise specified, we assume from now on g3=0, so that
�3=0 and only �1 and �2 components of the order parameter
can be nonzero. This can be a good approximation in the
case of three hyperfine states of 6Li, where two out of three
Feshbach resonances mediating the attractive interactions be-
tween the states are close in magnetic fields �4�. The third
resonance is at a lower field and can be neglected on the BCS
side of the crossover. The inclusion of the case g3�0 in our
formalism is straightforward. We briefly comment on this
case in Sec. III C and show the corresponding phase diagram
in Fig. 3. For concreteness, we take �g1�� �g2� and introduce
the notation

h1 = �3 − �2, h2 = �3 − �1, �6�

for the differences in chemical potentials.

III. GINZBURG-LANDAU EXPANSION

Here we perform a Ginzburg-Landau expansion for the
thermodynamic potential and use it to obtain the finite-
temperature phase diagram of the system in the h1-h2 plane;
see Fig. 1. We determine the superfluid-superfluid and
superfluid-normal transition lines and the metastability re-
gions in both grand-canonical �Fig. 1� and canonical �Fig. 2�
ensembles. In the latter case there is a region of the phase
diagram where a homogeneous state is unstable and a phase
separation between two types of superfluid takes place. We
identify this region as well as the corresponding supercool-
ing lines; see Fig. 2.

According to Landau’s phenomenological approach �10�,
the thermodynamic potential near a second-order phase tran-
sition can be expanded in powers of the order parameter. If
only even powers are present and the coefficient of the
fourth-order term is positive, the vanishing of the coefficient
of the quadratic term determines the second-order transition
point. When the fourth-order term also changes sign, the
transition becomes first order, and higher-order terms should
be included in the power series.

As shown by Gorkov �18�, this phenomenological theory
can be derived by expanding the microscopic theory in

��� � /2�T around �� =0. Using Eq. �3� �or Eq. �5� for the uni-
form part�, we obtain to the fourth order in components of

�� = ��1 ,�2 ,0�

� −�N = �

i=1

2 ��i��i�2 +
�i

2
���i�4 +

vF
2

3
���i�2�

+ ��12��1�2��2�2, �7�

where �N is the normal-state thermodynamic potential of the
ideal gas, � is the density of states at the Fermi energy, and
the coefficients �i, �i, and �12 are

�i = ln
T

Tci

+ Re��1

2
+ i

hi

4�T
� −��1

2
� , �8�

�i = −
1

4

1

�2�T�2 Re���1

2
+ i

hi

4�T
� , �9�

and

�12 =
1

h1 − h2

1

4�T
Im����1

2
+ i

h2

4�T
� −���1

2
+ i

h1

4�T
� .

�10�

Here ��x� is the digamma function and Tci
is the critical

temperature of the superfluid Si at zero chemical potential
difference and in the absence of the third fermionic
species—i.e., for hi=0 and gj�i=0. According to the stan-
dard BCS theory for two species, Tci

is related to the corre-
sponding zero-temperature order parameter �i

0 as Tci
=e�E�i

0 /�, where �E is Euler’s constant. Note that due to our
choice �g1�� �g2� for the coupling constants, Tc1

�Tc2
. We

will comment below on the physical meaning of the tempera-
tures Tci

in the three species case.
Expressions �8�–�10� for the coefficients in the Ginzburg-

Landau expansion �7� were derived in the weak-coupling
limit, which enabled us to approximate the density of states
with a constant �. However, the structure of the potential �7�
is dictated by symmetry and must remain the same at any
coupling. Indeed, since the particle number is conserved
separately for each species, the potential must be indepen-
dent of the phases of the complex components of the order
parameter. Therefore, the only allowed terms in the expan-
sion to the fourth order are ��i�2, ��i�4, and ��1�2��2�2.

The terms in curly brackets in Eq. �7� give the thermody-
namic potential �i��i ,hi ,T� of the two component superfluid
Si in the absence of the third species, while the ��1�2��2�2
term represents the interaction between the two superfluids.
The same expression for �i��i ,hi ,T� was previously ob-
tained �19� in a study of the nonuniform superconducting
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state �20�. In thin
superconducting films in a parallel magnetic field the ther-
modynamic potential �i��i ,hi ,T� describes the effect of the
Zeeman splitting. In this case, hi has a meaning of the Zee-
man magnetic field and �i is the superconducting order pa-
rameter. Let us briefly summarize the phases described by �i
in the hi-T plane �21� before we proceed to the phase dia-
gram for three species. For T�Tci

the quadratic coefficient is
positive, �i�0, and the two-component Fermi gas is in the
normal state for any value of hi. At temperatures Ttri

i �T
�Tci

a second-order transition to the superfluid state Si takes
place when �i�hi ,T�=0. For temperatures lower than the tri-
critical temperature,

Ttri
i 	 0.56Tci

, i = 1,2, �11�

the quartic coefficient is negative, �i�0, whenever �i→0
and the normal-superfluid Si transition is first order. The tri-
critical temperature and the corresponding tricritical chemi-
cal potential are determined from the condition �i�htri

i ,Ttri
i �

=�i�htri
i ,Ttri

i �=0. This picture can also be obtained in the
BCS limit from the phase diagram for polarized Fermi gases
in the BCS-BEC crossover �22,23�.
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Now we turn to the analysis of general properties of the
full thermodynamic potential for three species. The
Ginzburg-Landau expansion �7� is a good approximation
only when the polynomial �1��1�4+�2��2�4+2�12��1�2��2�2 is

positively defined. Otherwise, �→−� as ��� �→� along a
certain direction in the �1-�2 plane. Using Eqs. �9� and �10�,
one can show that this condition reduces to

�i = −
1

4

1

�2�T�2 Re���1

2
+ i

hi

4�T
�� 0, i = 1,2.

�12�

These inequalities are equivalent to �hi� /4�T�0.304. Since

Eq. �7� was obtained by expanding in ��� � /2�T, we also

should have ��� � /2�T�1. Thus, the conditions of applicabil-
ity of the expression �7� for the thermodynamic potential are

�hi�
4�T

� 0.304,
��� �

2�T
� 1, i = 1,2. �13�

It follows from the discussion in the previous paragraph that
these inequalities hold only in the “high-temperature” regime
T�Ttri

1 �Ttri
2 . Otherwise, �1�0 when �1 /2�T�1 and the

first condition in Eq. �13� is violated. For the remainder of
this section we restrict ourselves to this range of tempera-
tures. Then, one can show using Eqs. �8� and �9� that the
condition �12� always holds whenever any of the quadratic
coefficients �i is sufficiently small.

Let us discuss the possible phases of the three species
system in the h1-h2 plane as a function of temperature going
from higher to lower temperatures. For T�Tc1

�Tc2
we see

from Eq. �8� that both quadratic coefficients in Eq. �7� are
positive, i.e.,

�i = ln
T

Tci

+ Re��1

2
+ i

hi

4�T
� −��1

2
�� 0, �14�

for any hi and i=1,2. In this case, the only stable state is

�� =0—i.e., the normal state. As the temperature is lowered,
�1 first vanishes at T=Tc1

and h1=0, while �2 remains posi-
tive. Therefore, a phase transition from the normal to the
superfluid state S1 occurs and Tc1

is the actual critical tem-
perature for this transition. Generally, for Tc2

�T�Tc1
, we

have �2�0, while �1 changes sign at a temperature-
dependent critical chemical potential h1

c�T� determined by
the equation �1(h1

c�T� ,T)=0. At h1�h1
c�T� the superfluid

state S1 is the stable one, while at larger h1 the system turns
normal.

The case T�Tc2
is more complicated. Now the conditions

�14� hold for both components only when both �h1� and �h2�
are sufficiently large. In the h1-h2 plane Eq. �14� determines
four normal-state regions; see Fig. 1. A second-order phase
transition from the normal to a superfluid state takes place
when one of the coefficients �i changes sign. For example,
starting from the normal state, keeping h2 fixed, and chang-
ing h1, we get a transition between the normal state and the
superfluid S1, as �1 becomes negative while �2 is still posi-
tive. This argument, however, cannot predict the state of the
system in the central region of the h1-h2 plane where both

�i’s are negative. We will explore this region in more detail
in the following subsection.

A. Phase diagram in the vicinity of critical temperatures

As discussed above, the normal state is the stable phase in
four sectors of the phase diagram, corresponding to the four
corners in Fig. 1. Here we show that in the central region two
different cases are possible: �i� the thermodynamic potential
has only one minimum, which coincides with the superfluid
state Si for one of the two possible condensates �i; �ii� � has
two local minima, such that one condensate is the stable state
and the other one is a metastable one. In the latter situation,
a first-order phase transition separates the two superfluid
states, as identified by the dashed lines in Fig. 1. The two
minima are degenerate along these lines in the h1-h2 plane.
The gray areas around the lines shown in Fig. 1 enclose the
regions where two local minima are present.

In this subsection we obtain the phase diagram for the
case when the two coupling constants g1 and g2 are suffi-
ciently close in magnitude. We also take the temperature to
be near the critical temperatures Tc2

and Tc1
, i.e.,

Tc1
− Tc2

� Tc2
, Tc2

− T� Tc2
. �15�

The first inequality in Eq. �15� holds since Tci
is the critical

temperature for the two component superfluid with coupling
gi �see the text below Eq. �10�� and the couplings are close.

As we will see below, in this case the condition ��� � /2�T
�1 for the validity of the Ginzburg-Landau expansion holds.
Then, it follows from Eq. �13� that expression �7� for the
thermodynamic potential can be used not just near the phase
transition lines, but for all h1 and h2 such that �hi� /4�T
�0.304. Nevertheless, the conclusions we draw regarding
the phase diagram have general validity at sufficiently high
temperatures T�Ttri

1 	0.56Tc1
; see the text below Eq. �13�

and at the end of this subsection.
Let us first consider a homogenous system; i.e., the gra-

dient terms in Eq. �7� vanish:

����1�2, ��2�2� −�N = �

i=1

2 ��i��i�2 +
�i

2
��i�4�

+ ��12��1�2��2�2. �16�

To find the stationary points of �, we pass to a polar coor-
dinate representation

��1� = � cos 
, ��2� = � sin 
 . �17�

Differentiating Eq. �16� with respect to the angular variable

, we find

0 = �2 cos 
 sin 
��2 − �1 + �2
„��12 − �1�cos2 


+ ��2 − �12�sin2 
…� , �18�

where �i, �i, and �12 are defined by Eqs. �8�–�10�, respec-
tively. Equation �18� always admits the three solutions �
=0, 
=0, and 
=� /2. These are, respectively, the normal
state, the condensate �1, and the condensate �2. To deter-
mine the value of the nonvanishing order parameter compo-
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nent, we also need to equate to zero the derivative of the
thermodynamic potential �16� with respect to �:

0 = ���1 cos2 
 + �2 sin2 
 + �2��1 cos4 
 + �2 sin4 


+ 2�12 cos2 
 sin2 
�� . �19�

We obtain

�1
2 = − �1/�1, �2

2 = 0 �20�

for 
=0 and

�1
2 = 0, �2

2 = − �2/�2 �21�

for 
=� /2. We see that � / �2�T� is indeed small near the
second-order N-Si phase transition, since �i→0 at the tran-
sition. This also implies that in the superfluid state Si the
chemical potential difference is such that �hi��4�T, because
the condition �T−Tci

��Tci
, Eq. �15�, makes the first term in

the definition �8� of �i small.
Having found the stationary points, we must check their

stability. For a minimum, the second derivative must be posi-
tive. The second derivative of the thermodynamic potential
�16� at stationary points �20� and �21� vanishes when

�i� j − � j�12 = 0 �i � j� . �22�

These equations define the stability lines enclosing the re-
gions with two minima �gray areas in Fig. 1�. Outside these
regions, there is only one minimum, while the other station-
ary point is a saddle. Note that the fourth solution to Eq. �18�
can be obtained by equating the terms in square brackets to
zero. This solution is present only when the thermodynamic
potential has two minima and corresponds to the saddle point
between them.

Finally, the minima �20� and �21� are degenerate �the
dashed lines in Fig. 1� when ��−�1 /�1 ,0�=��0,−�2 /�2�,
which yields

�1
2

�1
=
�2

2

�2
. �23�

This condition can be satisfied only close to both second-
order N-Si transitions, so that �hi��4�T for both i=1 and i
=2; see the discussion after Eq. �21�. Substituting Eqs. �8�
and �9� into Eq. �23� we obtain to leading order in �hi � /4�T

�−
1

2
���1

2
�� h1

2 − h2
2

�4�T�2� = ln
Tc1

Tc2

. �24�

This equation shows that chemical potential differences, tem-
perature, and the asymmetry in the interaction strengths de-
termine the lines of the first-order phase transitions between
different superfluid states. At fixed T, Eq. �24� defines tran-
sition lines h1�h2� in the h1−h2 plane; see the dashed curves
in Fig. 1.

In the presence of a trapping potential V�r�, we can com-
bine our phase diagram of Fig. 1 with the so-called LDA �17�
to predict the formation of different superfluid shells in the
trap. The LDA assumes position-dependent chemical poten-
tials

�i = �i
0 − V�r�, i = 1,2,3. �25�

The differences h1=�3
0−�2

0 and h2=�3
0−�1

0 �see Eq. �6�� re-

main constant throughout the trap and identify a point h�

= �h1 ,h2� on the phase diagram �Fig. 1�. The temperature
Tci

�Tci
��i� depends on the chemical potential �i as in the

standard BCS theory; see the text below Eq. �10�. As �i
decreases from the center to the edge of the trap, Tci

��i� also
decreases. On the other hand, the positions of the lines in the
phase diagram in Fig. 1 are determined by the values of
Tci

��i�; see, e.g., Eq. �24�. Therefore, the “local” phase
diagram—i.e., the phase diagram of the homogenous system
that corresponds to the values of chemical potentials at a
particular point r in the trap—changes, and as we move from
its center towards the edge, the regions where the superfluids
are stable become smaller due to the decrease in Tci

��i�. The
actual values of �i

0 and consequently hi must be determined
self-consistently by fixing particle numbers for species 1, 2,

and 3. Depending on the position of the resulting point h� in
the local phase diagram at the trap center, different configu-

rations are possible. For example, if h� is in the S1 region at
the center, the evolution of the local phase diagram with the
position r can bring this point into the N region or make it
pass through the S2 region first. These two possibilities cor-
respond to a central superfluid S1 core surrounded by a nor-
mal shell or a superfluid S1 core followed by an S2 shell and

a normal shell farther out, respectively. If h� is in the S2
region at the trap center, on the other hand, we obtain a
superfluid S2 core surrounded by a normal shell. Alterna-
tively, for low particle number the normal-state atoms of the
noncondensed species could form a normal core overlapping
with the superfluid one. This qualitative picture is in agree-
ment with numerical results of �11�. However, as we will
discuss at the end of Sec. IV, the LDA has rather limited
applicability in the presence of an S1-S2 boundary.

Let us summarize our observations so far in this section
about the possible phases and phase transitions in the homo-
geneous case. We saw that for T�Tc1

�Tc2
the system is in

the normal state N for any chemical potentials differences
h1=�3−�2 and h2=�3−�1 �recall that we set the coupling
constant g3 between species 1 and 2 to zero, while �g1 �
� �g2��. A second-order phase transition to the superfluid
state S1 where species 2 and 3 condense first happens at h1
=0 and T=Tc1

at arbitrary h2. For Tc2
�T�Tc1

the only pos-
sible states are the normal state and superfluid S1. At lower
temperatures T�Tc2

three states can exist as shown in Fig. 1.
A second-order transition from the normal state to superfluid
S2 first takes place at T=Tc2

, h2=0, and sufficiently large �h1�
�so that S2 wins over S1�; see Fig. 1. The S1-S2 transition is
always first order, while the N-S2 and N-S1 are both second
order provided that the temperature is above the tricritical
temperatures �11�, i.e.,

T�max�Ttri
1 ,Ttri

2 � � Ttri. �26�

For T�Ttri at least one of the transitions N-S1 or N-S2 be-
comes first order and the Ginzburg-Landau expansion �7�
breaks down; see the discussion below Eq. �13�.
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B. Phase separation

In the previous subsections we analyzed the phase dia-
gram in the grand-canonical ensemble. Here we consider the
canonical ensemble; i.e., we fix the densities ni of the three
fermionic species.

The corresponding chemical potentials are found by solv-
ing the equation

ni = −
��

��i
. �27�

If the differences between the densities are large, the chemi-
cal potential differences are also large and the gas is in the
normal state. Let us assume that the densities deviate little
from an average density n0,

ni = n0 + 	ni. �28�

Then, density deviations can be written as the sum of a non-
interacting term and a correction due to the presence of the
superfluid:

	ni = �	�i −
�	�

��i
, �29�

where 	�i=�i−�0, 	�=�−�N, and �0 is the chemical po-
tential for a noninteracting gas with density n0. In Eq. �29�
we neglected finite-temperature corrections to the noninter-
acting contribution �	�i �24�.

For example, if the system is in the superfluid state S1, we
find using Eqs. �29�, �16�, and �20�:

ñ1 � n3 − n2 = �h1 − 2
�	�1

�h1
,

ñ2 � n3 − n1 = �h2, �30�

where

	�1 = − �
�1

2

2�1
. �31�

Using similar equations for the homogenous superfluid S2,
we obtain the phase diagram presented in Fig. 2 by mapping
the lines in the phase diagram in the h1−h2 space of Fig. 1
onto the corresponding lines in the ñ1− ñ2 space of density
differences. In particular, we note that each first-order phase
transition line in the upper and lower half planes of Fig. 1
�dashed lines� maps into two lines. Indeed, according to Eqs.
�31� and �29�, 	� and therefore ñ1 and ñ2 are different on the
two sides of the transition. This means that, as usual in the
case of first-order phase transitions, there is a region in the
phase diagram where no homogeneous state is stable and
phase separation must occur. Between this region and the
stable homogeneous superfluid states, there are supercooling
regions �gray areas� where the homogeneous states are meta-
stable towards phase separation. The limits of these regions
are found by mapping the corresponding limiting metastabil-
ity lines in the grand-canonical phase diagram �dotted curves
in Fig. 1�.

At the end of the previous subsection we argued that,
within the LDA, the two superfluid states can coexist in a

trap. In this section we have shown that the transition be-
tween the two superfluids is necessarily accompanied by a
jump in the density. In this sense, it is similar to the low-
temperature transition between the superfluid and normal
states in the polarized two-component gas �17�. In this sys-
tem, the density jump signals a potential breakdown of the
LDA on the length scale of the coherence length. There is
also evidence that surface tension effects should be taken
into account to explain the shape of the superfluid core in
elongated traps �25�. In the present case of the S1-S2 transi-
tion there are two competing length scales �the two coher-
ence lengths� that can affect the properties of the interface,
which we study in the next section.

C. Phase diagram in the case when all three couplings are
nonzero

Here we briefly discuss the case when the coupling con-
stant g3 between species 1 and 2 is also nonzero. Let �g3 �
� �g2�. Now, in addition to Tc1,2

there is the third temperature
scale Tc3

. Similarly to Tc1,2
, it is defined as the critical tem-

perature of the superfluid with components 1 and 2 in the
absence of 3. Further, additional terms containing ��3�2 ap-
pear in the thermodynamic potential �16�. The coefficient �3
of ��3�2 is defined by Eq. �8� with h3=�2−�1=h2−h1. For
T�Tc3

, we have �3�0 and the phase diagram in Fig. 1 is
unchanged. For Ttri�T�Tc3

, new N-S3 second-order phase
transitions are possible as well as first-order transitions S3-S1
and S3-S2. A phase diagram with these transitions is shown in
Fig. 3. Note that, since h3=h2−h1 is not an independent pa-
rameter, the phase diagram for the general case g3�0 can be
plotted in the same h1−h2 plane as before.

IV. DOMAIN WALL

Until now we considered a spatially uniform system
where one of the phases occupies the entire space. On the
other hand, we have seen in the previous section that for a
certain range of densities phase separation of the two super-
fluids S1 and S2 occurs, as shown in Fig. 2. This implies the
formation of domain walls between homogeneous phases.
Similarly, domain walls must form at the boundaries between
S1 and S2 in a trapped three-component gas; see the text
below Eq. �25�. Let us analyze the properties of the domain
wall using a grand-canonical thermodynamic potential. Its
minima that correspond to the homogenous states S1 and S2
far from the domain wall must be degenerate for the super-
fluids to coexist in between. Indeed, the entire phase-
separated regions in the diagram in Fig. 2 correspond to the
lines of degenerate minima in Fig. 1 �dashed curves�. To
obtain the domain wall solution, we need to retain the gradi-
ent terms in the thermodynamic potential, Eq. �7�, and mini-
mize it subject to appropriate boundary condition. We first
consider temperatures close to the critical one and later ex-
tend our considerations to lower temperatures.

A. Domain walls at temperatures close to the critical ones

Here, as in Sec. III A, we assume that conditions �15�
hold. As discussed below Eq. �23�, in this case the chemical
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potential differences are such that �hi � /4�T�1. Then, the
prefactors in front of the gradient terms in Eq. �7� can both
be approximated with

�0
2 =

7��3�
12

� vF

2�T
�2

. �32�

We note that we cannot neglect the small differences of order
�hi /2�T�2 in the prefactors of the fourth-order terms �i and
�12, as these differences enter into the equations that deter-
mine the value of the order parameter; see Eq. �18�.

For simplicity, let us assume that the translational invari-
ance is broken only along the x axis, so that the system is in
the homogeneous state S1 at x→−� and in the state S2 at x
→ +�. According to Eqs. �20� and �21�, this means 
→0 for
x→−�, 
→� /2 for x→ +�, and d
 /dx→0 for x→��.
The minimization of the thermodynamic potential �7� yields
a system of two second-order nonlinear differential equations
for ��x� and 
�x� defined in Eq. �17�. These equations admit
a first integral, the conserved “energy” of the domain wall:

− �0
2����2 − �0

2�2��
�2 + �2��1 cos2 
 + �2 sin2 
�

+
�4

2
��1 cos4 
 + �2 sin4 
 + 2�12 cos2 
 sin2 
� . �33�

Our assumption �15� implies that the two homogenous states
S1 and S2 have close values of the order parameter amplitude
�; see Eqs. �20� and �21�. This enables us to neglect the
����2 term in Eq. �33�. This term changes little on the length
scale associated with the width of the domain wall, while the
angular variable 
�x� changes by � /2 on the same length
scale; i.e., the ratio of the ����2 and ��
�2 terms in Eq. �33�
is of order �Tc1

−Tc2
� /Tc1

. Solving Eq. �19� for � in terms of

 and substituting the result into Eq. �33�, we arrive at

���0 � 
�2 −
1

2
��1 cos2 
 + �2 sin2 
�

�
�1 cos2 
 + �2 sin2 


�1 cos4 
 + �2 sin4 
 + 2�12 cos2 
sin2 

= − S .

�34�

The value of the constant S on the right-hand side can be
determined from the boundary conditions 
→0 and d
 /dx
→0 as x→−�:

S =
�1

2

2�1
. �35�

Note that �S is the condensation energy density for the ho-
mogenous state. Indeed substituting, e.g., Eq. �20� into Eq.
�16� we obtain �N−�=�S; see also Eq. �31�.

Using Eq. �23�, we rewrite Eq. �34� as

2d


dx
=

1

�

sin 2

�1 + a cos 2


, �36�

where

a =
�1 − �2

�1 + �2
�37�

and

�2 =
1

2
��1

2 + �2
2��2. �38�

Here we have introduced the coherence lengths of the two
condensates,

�i = �0/�− �i, i = 1,2, �39�

and the scale factor

�−2 =
�12

��1�2

− 1, �40�

where �i, �i, and �12 are defined by Eqs. �8�–�10�, respec-
tively. In particular, to leading order in hi /4�T we have

�	�12

���1

2
�

��4��1

2
�

4�T

h1 − h2
	 0.512

4�T

h1 − h2
. �41�

From Eq. �36�, we obtain an implicit equation for the spatial
dependence of 
:

x − x0

�
= �1 − a arctanh�� 1 − a

1 + a cos 2



− �1 + a arctanh��1 + a cos 2


1 + a
 . �42�

The parameters a and � characterize the asymmetry of the
domain wall with respect to reflection �x−x0�→−�x−x0� and
its width, respectively. The parameter � provides a new
length scale, in addition to the coherence lengths, via the
�large� parameter �; see Eq. �38�. In the next subsection, we
will see that the same parameter also enters the expression
for the surface tension associated with the domain wall.

An example of the spatially nonuniform order parameters
�1�x� and �2�x� in the presence of a domain wall is shown in
Fig. 4. We also plot the angular variable 
�x� �rescaled� and
the amplitude ��x�. Note that ��x� shows little change. This
is consistent with the assumption that gradients of ��x� can
be neglected near the critical temperature Tc1

.
Finally, we note that because the densities on the two

sides of the domain wall are different �see Eq. �30��, it could,
in principle, be detected by imaging the sample. For bosonic
atoms, overlap between two Bose-Einstein condensates was
observed long ago �26� �for theoretical studies of the two-
component bosonic system, see Ref. �27��. Alternatively,
spatially resolved rf spectroscopy �28� could reveal the
different gaps.

B. Surface tension

From the point of view of thermodynamic properties, the
presence of a surface separating the two condensates can be
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taken into account by including a surface tension term in the
thermodynamic potential �10�. Moreover, as mentioned
above, a proper treatment of surface tension effects is neces-
sary to describe correctly the condensate profile in asymmet-
ric traps �25�.

The surface tension � can be calculated by integrating the
difference between the potential in the presence of the do-
main wall ��dw� and the one in the uniform state ��u� over
the direction perpendicular to the domain wall:

� =� dx��dw −�u� . �43�

Using Eq. �36�, we derive

� =
2�S�

�2 � d

4��1�2

�1 + a cos 2
 sin 2


b− cos2 2
 + 2b12 cos 2
 + b+

�
2�S�

�2 f�a,���� , �44�

with S, �, and � defined in Eqs. �35�, �38�, and �40�, respec-
tively,

b� = �1 + �2 � 2�12, b12 = �1 − �2, �45�

and �1, �2, and �12, defined in Eqs. �9� and �10�. Using these
definitions and hi /4�T�1 �see the text below Eq. �23��, we
estimate b+�O�1�, �i�O�1�, b−�O�h2 /T2�, and b12
�O�h2 /T2�. Therefore, we replace the denominator in the
integral �44� by b+ and obtain

f�a,���� 	
1

3a
���1 + a�

3
− ��1 − a�

3
� . �46�

By definition �37�, the asymmetry parameter varies between
−1 and 1. Therefore, 1� f�23/2 /3	0.94. Neglecting this
weak dependence on the asymmetry a, we can write

�	 �S�2��1
2 + �2

2��−1. �47�

This expression shows that the surface tension is determined
by the value of the condensation energy �S for the uniform
system times the �root-mean-square� coherence length di-
vided by the scale factor. As we will see in the next subsec-
tion, this formula for the surface tension is valid in a wider
range of temperatures than the limiting case Tc2

−T�Tc2
considered here.

C. Intermediate temperatures

In the preceding subsections we have considered a do-
main wall near the critical temperature. On the other hand, as
discussed at the end of Sec. III A, the Ginzburg-Landau ap-
proach remains generally valid near second-order phase tran-
sitions even at lower temperatures above Ttri; see Eq. �26�.
So we can in principle analyze the properties of the domain
wall at intermediate temperatures �and for larger differences
in the critical temperatures than in the previous subsections�.
Approaching Ttri, the parameter �1 becomes small by defini-
tion, while in the superfluid state �1 is finite, so we expect
the difference between �1 and �2 to grow; see Eqs. �20� and

�21�. If this is the case, the approximation in which the gra-
dient of � is neglected breaks down. To remedy this, we
construct in this section a variational domain wall solution.

As a starting point for the variational approach, we note
that the approximate domain wall solution is determined by
three parameters: the position x0, the asymmetry a, and the
size �. The first one cannot affect the energy �surface ten-
sion�, as it only reflects the translational invariance of the
infinite system, and henceforth we set x0=0. In the �unphysi-
cal �29�� symmetric limit a→0, we can obtain an explicit
expression for, e.g., the profile of �1:

�1 = ��1

2�1 − tanh� x

�
� . �48�

This suggests the following trial functions for the order pa-
rameters:

�i =�− �i

�i
�1

2�1� tanh� x

�v
�
	

2
� , �49�

where the �i are fixed to their asymptotic values at
x→��. We introduced a parameter 	 which describes the
overlap between the two superfluids and enables us to take
into account the role of the interaction term in Eq. �7�. As
before, we also have a parameter �v related to the domain
wall thickness �30�. Both parameters must be determined by
minimizing the surface tension:

� = �S�v�− 1 − 	 +
�12

��1�2

	„1 + coth�	�… +
�S

2�v
��̃1

2 + �̃2
2� ,

�50�

with the coherence lengths

�̃i
2 =

vF
2

3

�i

− �i
, �51�

which reduce to Eq. �39� as T→Tci
.

After minimization, � can be written as

� = �S�2��̃1
2 + �̃2

2��v
−1, �52�

with the variational scale parameter given by

�v
−2 = 	0„1 + coth�	0�…

�12

��1�2

− �1 + 	0� , �53�

where 	0 is the solution to

coth 	0 −
	0

sinh2 	0
+ 1 =

��1�2

�12
. �54�

Note that near the critical temperature, the right-hand side of
the above equation tends to unity, so that 	0→0 and �v
→�. Since the variational approach gives an upper bound on
the surface tension, it also gives a lower one on the domain
wall thickness:

�v =�1

2
��̃1

2 + �̃2
2��v. �55�
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In Fig. 5 we compare the behavior of the scale factors �
and �v as functions of temperature for Tc1

/Tc2
=1.04. The

curves are computed in the two limiting cases in which the
chemical potential differences hi are the critical ones, hi
=�hi

c�T�; cf. the discussion after Eq. �14�. They correspond
to the points where the first-order transition lines meet the
second-order ones in Fig. 1. There are two inequivalent cases
depending on the relative sign between h1 and h2. We choose
these points in the phase diagrams because the Ginzburg-
Landau expansion �7� is always valid in their vicinity as long
as the temperature is above the tricritical temperature �26�;
see Sec. III. At fixed temperatures close to Tc2

, we find that
the scale parameter � evolves smoothly as a function of the
chemical potential differences along the first-order transition
lines—i.e., going from one limiting case to the other one.
Therefore, the limiting cases displayed in Fig. 5 give upper
and lower bounds on the possible values of the variational
scale parameter �v.

Note that close to Tc2
the two parameters �v and � have

very similar values, and the approximate solution can be
trusted in this regime. At smaller temperatures and chemical
potential differences of opposite signs, the approximations
made in the previous sections become invalid, and � de-
creases more rapidly than �v. The latter remains of order
unity at intermediate temperatures before quickly decreasing
near Ttri

1 . On the contrary, for chemical potential differences
of the same sign, both approaches give similar results. More-
over, �v initially increases with decreasing temperature,
leading to potentially very thick domain walls with signifi-
cant overlap between the two superfluid states. Again, when
approaching Ttri

1 the scale parameter �v quickly decreases.
However, at these temperatures the present approach is
invalid—higher orders in the Ginzburg-Landau expansion
become relevant.

The above observations show the limits of applicability of
the LDA �25� in the presence of a trap. For large �v, the

surface tension is small, and we expect the density profiles to
follow the shape of the trapping potential. On the other hand,
in this case the width �v of the domain wall is large; see Eq.
�55�. The order parameter components vary smoothly on this
scale and density jumps predicted by the LDA cannot be a
good approximation of the actual density profiles. In other

words, the LDA breaks down, not on a length scale �̃i, as
usually assumed, but on a much longer scale. In the opposite
case of small �v, the situation is reversed: the densities vary
quickly on a length scale comparable to the coherence
lengths. However, now the surface tension becomes impor-
tant in asymmetric traps and the densities do not simply fol-
low the profile of the trapping potential as in the LDA. This
is seen, e.g., in the polarized two-component gas at low tem-
peratures �25�.

The above considerations are valid under the assumption
than the sample size R is much larger than the domain wall
thickness � �31�, in which case finite-size effects can be ne-
glected. This requirement also limits the validity of the LDA.
We can estimate how large, in terms of the number N of
trapped atoms for each species, the sample should be in order
to accommodate a domain wall. In the weak-coupling limit, a
good estimate of the sample size is given by the Thomas-
Fermi radius

R 	 aho�48N�1/6, �56�

where aho=�1 /m�ho is the harmonic oscillator length in the
parabolic trap V�r�= 1

2m�ho
2 r2. Next, we estimate the value of

the coefficient �0, Eq. �32�, at T	Tc2
using

Tc2
	 0.28EFe−�/2kF�as�, �57�

where as is the �negative� scattering length and the Fermi
momentum �at the trap center� is

kF 	
1

aho
�48N�1/6. �58�

The previous three expressions �56�–�58� can be found in
Ref. �17�. Substituting Eq. �57� into Eq. �32�, we find

�0 	
1

kF
e�/2kF�as�, �59�

which is a lower bound for the coherence lengths defined in
Eq. �39�. Then, for �, Eq. �38�, we can write

��
1

kF
e�/2kF�as�� . �60�

For kF�as�	1, the requirement R /��1 in terms of the total
particle number Nt�3N becomes

Nt
1/3 � 2� . �61�

For a scale factor ��10, this gives Nt�104. However, due
to the slow growth with Nt of the left-hand side of Eq. �61�,
even for a typical sample size with Nt�107 �28� the ratio
R /��10, and finite-size effects should be taken into ac-
count. Note that these estimates are also sensitive to the in-
teraction strength kf�as� �cf. Eq. �59��, and for a weaker in-

0.6 0.7 0.8 0.9 1.0

1.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

T �Tc2

Η,
Η v

FIG. 5. Temperature dependence of the scale factors �v �solid
lines� and � �dashed lines� relating the domain wall size and the
coherence lengths; see Eqs. �55� and �38�. The coupling constants
are chosen so that Tc1

/Tc2
=1.04. The chemical potential differences

hi are the critical ones; see the text after Eq. �55�. They have oppo-
site signs for the lower curves �h1=�h1

c�T�, h2=�h2
c�T�� and the

same sign for the upper ones �h1=�h1
c�T�, h2=�h2

c�T��. In the
latter case the difference between the two scale factors is not vis-
ible. Note that the scale factors are larger near Tc2

and/or for chemi-
cal potential differences of the same sign.
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teraction �e.g., kF�as�	0.5� we obtain Nt
1/3�9� instead of

Eq. �61� and Nt�106.

V. PHASE DIAGRAM AT T=0

All our previous consideration have been restricted to the
vicinity of second-order phase transitions and hence to the
“high-temperature” regime T�Ttri

1 . There is also a simple
explicit description of the phase diagram at zero temperature,
which we present in this section. In this case, all phase tran-
sitions �N-Si and S1-S2� are first order, and the components of

the order parameter �� at the minima of the thermodynamic
potential are either zero or independent of the chemical po-
tential differences �3�. Our phase diagram is in qualitative
agreement with the numerical results of Refs. �8,32�. Al-
though we consider the weak-coupling regime, we expect
that our results will not qualitatively change at stronger cou-
pling on the BCS side of the crossover. On the BEC side, on
the other hand, the system behaves as a Bose-Fermi mixture
�see, e.g., �33� for the two-component system� and we cannot
exclude the possibility of qualitative differences �see also
�34��. Finally, we note that in constructing the zero-
temperature phase diagram we consider for simplicity only
uniform states, neglecting the possibility that a spatially
varying order parameter may be energetically favored in
some regions of the phase diagram, as is the case for the
FFLO state �20� in a two-component system �35�; see, e.g.,
Refs. �3,22,36–38�.

According to Eq. �5�, the differences 	�i between the
thermodynamic potentials in the condensed and the normal
states at the same chemical potentials is

	�i = −
1

2
��i

0�2 + �hi

2
�2

, i = 1,2. �62�

Equating 	�i to zero, we obtain the first-order transition
lines between superfluids Si and the normal state �the
Clogston-Chandrasekhar �39� critical field�. The condition
	�1=	�2 yields the first-order transition line between the
two condensates. These transitions are plotted as solid and
dashed lines, respectively, in Fig. 6.

Considering as before the quadratic fluctuations �cf. Eq.
�22�; see also the next section�, we determine the zero-
temperature instability lines

hj�hi − hj� = ��i
0�2 − �� j

0�2, i, j = 1,2, �63�

for Si becoming unstable towards Sj. Using these expres-
sions, we obtain the �dotted� stability curves in the phase
diagram shown in Fig. 6. The horizontal and vertical dotted
lines indicate the instabilities of the superfluid states towards
the normal state, which are identified by the conditions �3�

hi = 2�i
0, �64�

while the dash-dotted lines mark the instability of the normal
state, obtained from the T→0 limit of Eq. �14�:

hi = �i
0. �65�

The resulting zero-temperature phase diagram shown in
Fig. 6 has a richer structure than that at “high” temperatures;

see Fig. 1. For example, a larger region of the phase diagram
is occupied by metastable states due to the first-order nature
of the transition to the normal state. This in turn means that
in the ñ1-ñ2 density-space phase-separated states occupy a
larger region of the phase diagram. Consequently, more com-
plicated domain wall structures are possible that interpolate
between the different superfluid states and the normal state
as well, as is the case for a two-component Fermi gas �25�.
As remarked before, the phase separation translates into den-
sity jumps in the LDA treatment of the trapping potential.
However, the validity of the LDA should be confirmed by
estimating the effects of domain walls and surface tension, as
in the finite-temperature case.

VI. COLLECTIVE MODES

In the absence of an external potential, the existence of
thick domain walls is a manifestation of the presence of soft
collective modes. While the former are possible only in the
presence of degenerate ground states, the latter are a more
general feature of the multicomponent Fermi gas. In this sec-
tion we present the dispersion relations for these modes and
comment on their role in limiting the applicability of the
BCS mean-field approach. In trapped Fermi gases the collec-
tive modes are known to affect the experimentally accessible
�hydrodynamiclike� response of the system �40�.

N N

NN

S1S1

S2

S2

�2 �1 0 1 2

�2

�1

0

1

2

h2��2
0

h 1
��

20

FIG. 6. Zero-temperature phase diagram for a three-component
Fermi gas in the plane h1-h2 of chemical potential differences, Eq.
�6�. The two nonvanishing couplings constants are such that
�0

1 /�0
2=1.05, where �0

i are defined below Eq. �5�. As at high tem-
perature �see Fig. 1�, the normal state �N� is stable for large hi.
Horizontal �vertical� solid segments denote first-order N-S1 �N-S2�
transitions between normal and superfluid states �in contrast, at high
temperatures these transitions are second order�. The dashed curves
identify first-order S1-S2 transitions. The dotted curves represent the
superfluid-state stability limits and the dot-dashed lines the normal-
state stability limits. Shaded areas are regions where both superfluid
states are �meta�stable. Note that these regions are much larger than
the corresponding ones at high temperature in Fig. 1 and overlap
with the normal-state stability regions.
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For concreteness we assume that the ground state is the
superfluid S1 with homogeneous order parameter �1 and con-
sider small fluctuations around this state:

�1�r,t� = �1„1 + �r,t�…ei �r,t� + 	�2�r,t� . �66�

The phase fluctuations described by  correspond to the
well-known soundlike Anderson-Bogoliubov mode �41�,
while the amplitude fluctuations  have a mass equal to 2�1
�42�. These two modes have also been studied in the BCS-
BEC crossover �43�. Here we are interested in the fluctua-
tions 	�2�r , t� due to pairing in the noncondensed channel.

The propagator D�� ,q� of the 	�2�r , t� field is obtained
by expanding Eq. �3� around the stationary point with �1
�0, �2=0:

��D��,q��−1 = ln
�1

0

�2
0 + �� + h1 − h2�H��,q;h1,h2�

+ J��,q;h1,h2� , �67�

where functions H and J are given in the Appendix and �i
0

are the values of the zero-temperature order parameter com-
ponents; see the text below Eq. �3�. Here we concentrate on
the cases of zero temperature and vicinity to second-order
phase transitions. Moreover, we consider only long-
wavelength fluctuations—i.e., q→0.

A. Collective modes at T=0

In the limit T→0, the propagator in Eq. �67� becomes

��D0�−1 = ln
�1

0

�2
0 + H��� + ��h1 − h2�

1

2

�2

�h2
2 −

�

�h2


�� 1

h1 − h2
H�0��vF

2q2

3
, �68�

with

H��� =
1

2
ln�1 + �h2 − h1/2

�1
0 �2

− �� + h1/2
�1

0 �2 . �69�

Note that

��D0�0,0��−1 �
1

2
ln���1

0�2 + h2
2 − h2h1� − ln �2

0 = 0

�70�

yields the stability condition �63� for i=1. Indeed, since the
contribution of 	�2 fluctuations to the action is
	�

2
*�� ,q��D�� ,q��−1	�2�� ,q�, the condition �D�0,0��−1

�0 determines the stability of the superfluid S1 with respect
to static uniform fluctuations.

Consider, e.g., the stability �or lack of it� of the superfluid
S1 with respect to shifts in the chemical potentials in the case
of equal interaction strengths. For h1=0 and small h2 we get

��D�0,0��−1 	
1

2
� h2

�1
0�2

� 0, �71�

which shows that the superfluid S1 is stable, as expected,
since fluctuations toward condensation in the 1-3 channel

need to overcome the “Zeeman energy;” cf. Eq. �62�. This is
contrary to the claim in Ref. �12� that this chemical potential
shift causes the system to become unstable. In contrast, for
h2=0 the inverse propagator D�0,0�−1 is zero for any h1,
which indicates an instability. In this case the stable state is
the superfluid S2, as can be seen by repeating the above
analysis with 1↔2.

Now let us determine the dispersion relation of collective
modes. For simplicity, we consider the case h1=0. We have

�2 = m2 + v0
2q2, �72�

where

m2 = ��1
0�2 − ��2

0�2 + h2
2, �73�

v0
2 =

vF
2

3
��2

0

�1
0�2

f� h2

�1
0� , �74�

and

f�x� =
1 − x2

�1 + x2�2 . �75�

There are two branches with positive, ��0, and negative,
��0, energies. Similarly to the case of a polarized normal
two-component gas �44�, we can identify these excitations as
bifermions and biholes. We note that the mass of these
modes explicitly depends on symmetry breaking due to a
difference in coupling constants �first two terms on the right-
hand side of Eq. �73�� or chemical potentials. In the U�2�-
symmetric case �h1=h2=0 and g1=g2, so �1

0=�2
0�, the mass

vanishes due to particle-hole symmetry. This result is inde-
pendent of the weak-coupling assumption and holds at any
coupling as long as particle-hole symmetry is present. More-
over, in the symmetric case the collective mode speed �74�
reduces to the known result for the phase mode �41�, v0
=vF /�3. In other words, in the symmetric limit in addition to
the phase mode, there are two more modes with the same
dispersion. This is expected in the framework of spontaneous
symmetry breaking from U�2� down to U�1�. Due to conden-
sation into the superfluid state, the system is invariant only
under rotations that change the phase of the order parameter
and not under rotations transforming one of the components

of �� = ��1 ,�2 ,0� into the other. Then, to the three broken
generators correspond three massless Goldstone bosons. On
the other hand, in the absence of particle-hole symmetry, the
dispersion relation is modified �12�, and two of the massless
modes split into a massless mode with quadratic dispersion
relation and a massive one �45�.

B. Collective modes at finite temperatures

Let us consider the vicinity of the second-order phase
transition N-S1, so that �1→0. In this case, the inverse
propagator has a form similar to the quadratic term in the
Ginzburg-Landau expansion �7� to which it reduces in the
static limit �→0. For ��0 the only difference is that the
coefficients �i, �i, and �12 depend on �. The frequency de-
pendence of �2 and �12 can be neglected since they multiply
small quantities q2 and ��1�2, respectively. Using Eq. �3�, we
obtain
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��D��,q��−1 = ln� T

Tc2

� +
�2

2

vF
2q2

3
+ �12��1�2 −��1

2
�

+
1

2
���1

2
+

− i�� + h2�
4�T

�
+��1

2
+

− i�� − h2�
4�T

� . �76�

The general structure of this propagator is the standard one
for superconducting fluctuations �46�, with overdamped fluc-
tuations typical of the time-dependent Ginzburg-Landau ap-
proach. What is peculiar here is that the mass term is pro-
portional to ��1�2. This makes the decay of fluctuations in the
1-3 channel �i.e., towards superfluid S2� faster than those
toward the normal state. Nonetheless, they play an important
role in causing deviations from mean-field theory. To show
this, we employ the Ginzburg-Levanyuk criterion �10� for
the simple case h1=h2=0 and T�Tc1

.
As is well known in the theory of second-order phase

transitions, fluctuations strongly modify the mean-field be-
havior at temperatures close to the critical one �10�. The
temperature window around the critical temperature where
the fluctuations dominate can be characterized by the
Ginzburg-Levanyuk number NGi, so that for ���T−Tc� /Tc
�NGi fluctuations are small. In three dimensions, due to am-
plitude fluctuations, NGi! �Tc /EF�4. This result can be ob-
tained by writing the Ginzburg-Levanyuk criterion as �10�

Tc"

�3 � ���2, �77�

where

"� D�0,0� ! 1/�� �78�

is the pair susceptibility and

�2 � �D�2D−1/�q2��0,0� ! vF
2 /Tc

2� �79�

is the coherence length squared. In both equations above the
last term on the right is due to fluctuations of the order pa-
rameter �1 itself, whose propagator has the form similar to
Eq. �76� up to the replacement of indices 2→1, but without
the term �12��2�2; see �46�. Using �!m3/2EF

1/2 and �!Tc
��,

we obtain NGi! �Tc /EF�4.
In the present case, we can use the same approach. Sub-

stituting the value of the order parameter �1, Eq. �20�, into
Eq. �76� and using the definitions in Eqs. �78� and �79�, we
derive for the susceptibility and the coherence length

" ! �� ln
Tc1

Tc2

�−1

, � ! vF�Tc1
�ln

Tc1

Tc2

�−1

. �80�

Using these expressions, we obtain for the three-component
case

NGi! �Tc1

EF
�2�ln

Tc1

Tc2

. �81�

We see that the fluctuations in the uncondensed �1�–�3� chan-
nel shrink the region of applicability of mean-field theory as

soon as ln Tc1
/Tc2

� �Tc1
/EF�4—i.e., even for very small dif-

ferences in the critical temperatures.
In the context of the BCS-BEC crossover, we recall that

as the strength of the interaction grows, the ratio Tc /EF
grows too. This signals the breakdown of the mean-field ap-
proximation as the unitary limit is approached from the BCS
side. The above estimate Eq. �81� for the Ginzburg-
Levanyuk number indicates that this breakdown happens
much sooner in the presence of a third interacting
component.

VII. SUMMARY AND OPEN PROBLEMS

In this paper, we considered a three component �species�
Fermi gas with attractive interactions between fermionic spe-
cies in the weak-coupling regime. We confirmed that there
are four possible homogeneous phases: the normal state �N�
and superfluids Si for i=1, 2, and 3 where species j� i and
k� , i , j are paired. For simplicity, for most of the paper we
restricted our analysis to the case when the components 1
and 2 do not interact with each other. In this case, the homo-
geneous phases of the system are N, S1 �2 and 3 are paired�,
and S2 �1 and 3 are paired�. The extension of our findings to
the general case of nonzero interaction between all compo-
nents is straightforward; see Fig. 3 and Sec. III C.

We constructed the “high”-temperature T�Ttri �see Eq.
�11�� and zero-temperature phase diagrams for arbitrary dif-
ferences between chemical potentials of the three species
�Figs. 1 and 4�. In particular, we identified the regions where
different superfluid states and the normal state are
�meta�stable and determined the lines of first-order S1-S2 and
second-order N-S1 and N-S2 phase transitions. We also ob-
tained the phase diagram in the canonical ensemble in the
space of particle density differences �n3−n2� and �n1−n3�
�Fig. 2�. This phase diagram displays regions where the uni-
form superfluid states are unstable. Phase separation between
superfluids S1 and S2 occurs for particle densities within
these regions; i.e., the system becomes spatially inhomoge-
neous.

We analyzed the properties of the domain walls between
superfluid states S1 and S2. The domain walls are present in
the phase-separated region and at an interface between layers
of S1 and S2 in a trapped three-component gas; see the text
below Eq. �25�. We determined the shape of the domain wall
�see Fig. 5 and Eq. �42�� and demonstrated that its thickness
�, Eq. �38�, provides a new length scale that can be para-
metrically larger than the coherence lengths �1,2 of superflu-
ids S1,2, ����1

2+�2
2. In particular, this means that the two

order parameters of superfluids S1 and S2 can overlap signifi-
cantly over extended regions of space. It also imposes severe
restrictions on the LDA for evaluating the configuration of
superfluid and normal layers in a trap �17�; see the discussion
below Eq. �25� and in the end of Sec. IV C. The sharp
boundaries between the superfluids predicted by the LDA
have to be smeared over the length scale � �rather than the
coherence lengths �1 or �2�. Furthermore, the LDA is valid
only when the size of the trap, R, is much larger than the
domain wall thickness, R��. Otherwise, the two superfluids
coexist throughout the trap. For experimentally attainable
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systems, the condition R�� translates into the total number
of atoms Nt�104 with corrections to the LDA being signifi-
cant even for typical numbers in experiments, Nt�107; see
Eq. �61� and the text after it. We also evaluated the surface
tension associated with the domain wall, Eqs. �47� and �52�,
which needs to be taken into account when considering the
shape of the interface between superfluids S1 and S2.

Finally, we studied the collective modes �fluctuations�
specific to our system in Sec. VI. Namely, in the superfluid
state S1 with order parameter �1 there are fluctuations
	�2�r , t� of the order parameter of superfluid S2 and vice
versa. We evaluated the mass and the dispersion relations of
these collective modes at zero temperature and in the vicinity
of the N-S1 transition. At T=0 the mass is determined by
perturbations that break the U�2� symmetry between species
1 and 2—the difference in chemical potentials and coupling
constants for the interaction with 3. In the symmetric case
the mass vanishes. At small symmetry breaking the collec-
tive modes soften and their mass can be parametrically
smaller than the BCS energy gaps of superfluids S1 and S2.
Similarly, near the critical temperature of the N-S1 these fluc-
tuations can significantly increase the Ginzburg-Levanyuk
number �see Eq. �81�� in comparison to the two-component
system. This indicates that stronger deviations from mean-
field theory are possible in a three-component system.

The results outlined above were obtained in the weak-
coupling BCS limit. A natural question is how they are modi-
fied in the BCS-BEC crossover regime and in particular at
the unitary limit for two of the three components when the
corresponding scattering length diverges. In the two-
component case, there is a single length and energy scale at
unitarity at T=0. This is not so in our case if the symmetry
between the components is broken. Therefore, we expect
qualitatively the same picture such as extended domain
walls, soft modes, etc., as long as no true bound states are
formed. It is also interesting to study these phenomena at
lower temperatures close and below the tricritical tempera-
ture �26� which limits the applicability of our Ginzburg-
Landau approach.

Let us also emphasize that to make more quantitative pre-
dictions about the possible experimental realization and de-
tection of coexisting multiple superfluid states, it is necessary
to go beyond or at least improve the LDA. Further work is
also required to understand the effects of fluctuations in the
unpaired channel on experimentally accessible quantities
such as critical temperatures and the frequencies of collective
oscillations in trapped gases in the hydrodynamic regime
�47�.
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APPENDIX

In this appendix we present the expressions for the func-
tions H and J introduced in Eq. �67� for the fluctuation
propagator. The method to derive these functions is ex-
plained in �12�. So here we limit ourselves to the final re-
sults, which are straightforward extensions of those found in
�12�:

H =
1

2�
� d3p

�2��3

1

2Ep
�1 − f�Ep − h1/2� − f��p−q − h1/2 + h2�

� − Ep − �p−q + h1 − h2

−
f�Ep + h1/2� − f��p−q − h1/2 + h2�

� + Ep − �p−q + h1 − h2
+ �q → − q� , �A1�

J =
1

2�
� d3p

�2��3

�p − �p−q

2Ep

��1 − f�Ep − h1/2� − f��p−q − h1/2 + h2�
� − Ep − �p−q + h1 − h2

−
f�Ep + h1/2� − f��p−q − h1/2 + h2�

� + Ep − �p−q + h1 − h2
 + �q → − q� ,

�A2�

where

�p =
p2

2m
−
�2 + �3

2
, Ep = ��p

2 + �1
2. �A3�

In the limit hi→0, Eqs. �A1� and �A2� reduce �up to a nor-
malization factor� to the functions H and J obtained in �12�.

We note that in deriving, e.g., Eq. �68� we linearize the
spectrum near the Fermi surface and assume particle-hole
symmetry. Namely, we parametrize the momentum as p
=n�pF+� /vF�, where pF is the Fermi momentum, vF the
Fermi velocity, and n the unit vector on the Fermi sphere.
Then, the integral over momentum is replaced with the inte-
gral over � and the vector n:

� d3p

�2��2 → �� d�� dn

4�
, �A4�

where � is the density of states at the Fermi energy. Going
beyond this approximation would enable the study of
particle-hole asymmetry effects.
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