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Abstract. It is shown that the two-dimensional matrix Toda chain determines the group of discrete
symmetries of the two-dimensional matrix nonlinear Schrodinger equation (the matrix generalization of
the Davey—Stewartson system). The general solution of this chain with definite boundary conditions is

obtained in explicit form.
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1. Introduction -

We shall understand by the matrix Davey—Stewartson equation the following system
of two equations for two unknown s x s— matrix functions u, v:

u, + au,, + bu,, — 2au fdy(uv)x —2b de(uv)y u=20,
(1.1)

—v, + avy, + bv,, — 2a jdy(uv)xv — 2bv de(uv)y =0,
where a, b are arbitrary numerical parameters and x, y are the coordinates of

two-dimensional space. In the particular case s = 1, when the order of multipliers is
not essential, (1.1) is the usual Davey-Stewartson equation in its original form [1].

2. Discrete Substitution

By direct but tedious computations, one can become convinced that the system (1.1)
is invariant with respect to the following transformation of the dependent variables;

1
11=;, b= [vu— (o '), Jv=v[uw— @ 'v,),] 2.1)
The substitution (2.1) is the discrete transformation [2] with respect to which all the

equations of the matrix Davey—Stewartson hierarchy are invariant. In the case of a
one-dimensional space, this substitution was mentioned in [3].
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The substitution (2.1) is invertible and the ‘old’ functions u, v may be represented
in terms of the new ones as

1

V=2,
u

u=[ap— (@,u"),Ji = aldi — w 'i,),] (2.2)

The substitution (2.1) may be rewritten in the form of an infinite chain of equations

((vn)x Un_l)y = Uy Un_—ll — Up+1 Un_la (un+1 = Ur-l_l) (23)

where (v, -1, u,_1) is to be understood as the result of the n-fold application of the
substitution (2.1) to some given matrix-functions (vo, ug).

Generally, the chain (2.3) is infinite in both directions, but it may be interrupted
by appropriate boundary conditions. The case in which the boundary conditions
v_1 =vy+; = 0 are imposed will be called the matrix Toda chain with fixed ends.

In the scalar case s = 1; Equation (2.3) is equivalent to the Toda lattice in its
original form (describing points on the real line with an exponential interaction
between nearest neighbours), when this set of equations is written in terms of the
variables x, defined by v, =expx,. After another change of variables, p, =
X, — Xn—1, this system takes the familiar form

(pn)xy =CXPPn-1 — zexppn 2 CXPPn+1-

These are exactly the equations of the two-dimensional Toda lattice, the general
solution of which with fixed ends was found in [4] for all series of semisimple Lie
algebras except for E,, Eg. In [5], this result was reproduced in terms of invariant
root techniques applicable to all semisimple series.

The goal of this Letter is to obtain the general solution of the matrix Toda chain
with fixed ends in explicit form.

3. General Solution

First let us observe that from (2.1) it follows that

Un+1Up+1 — VU, = _((Un)xvn_l)y'

Keeping in mind that u, = v-} = 0, we immediately obtain

ey = —[ 5 «v,)xv:l)y] = —v,.[i (v:l(v,)y)x]. (3.1)
t=0 t=0

The single equation to determine one unknown function v, (vy+; = 0) takes the
form

Z (vt)x vt—l = AN(x)a Z vt_l(vt)y = BN( y)a (32)

where Ay(x), By(y) are arbitrary s x s matrix functions of the corresponding
arguments.
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We shall employ the following notation:

Xr=(vr)xvr—19 S"= ZXt:

t=0

and the corresponding expressions with respect to the coordinate y.
In this notation, (3.1) may be rewritten as

Upy1 = _(Sn)yvn=(Sn)y(Sn_1)yvn—1 = ... (33)
From (3.3), the following recurrence relation for the determination of X", S” ensues:
X" = (S:;l ot S;—l Xn—l)(S;—l)—l,
n—1 (3.4)
S" = ( Y [SL+ S‘X‘]) (I
t=0 y

Let us first consider solutions of (3.2) for the starting values N =0, 1,2, ... which
allow us to obtain the solution for the general case of arbitrary N by induction.

3. N=0
In the sum (3.2), we have only one term and for the v, we obtain the obvious solution
vo = ¢o(x)Po(¥),

where ¢, ¢, are arbitrary s x s matrix functions of their arguments.

322. N=1
Equation (3.2) may be rewritten with the help of (3.4) as (S° = X©°)
X2+ X°X%,=A4:(x)X9, X204+ X9X%=4,(x)X° + Ao(x).
Keeping in mind the determination of X° (Y °), we obtain
02 = A1(x)v2 + Ao(x)v°, v, =vYBy(y) + v°Bo( y). (3.5)
The system (3.5) has obviously the following general solution:
v = ¢o(x)Po(y) + $1(x)P1( ),

where, as in the previous example, ¢,(x)@,( y) are arbitrary matrix functions of their
arguments.

33. N=2

We reproduce the corresponding steps of the computations in this case without
detailed comments.

S2=A,(x), SO+S°X°+Sl+S'X!=A,(x)S'+ A4,(x)
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From the last equality, with the help of (3.4), we have

XU +2X2X°+ X°X2+ (X%} =A,(X2+ (X9)H) + A, X° + A,.
Keeping in mind the definition of X °, we finally obtain two equations
00 = A% + 4102 + 40°, v, =0 B, +vIB; +v°B,

with the general solution

v = Z, ¢t(x)d_)t( y).

3.4. THE CASE OF ARBITRARY N

Let us define by induction the values of S’ as follows:

S5= 3 [(S3_1), + S5, X7, (.6)

q=0

with boundary condition S§ = 1. Comparing (3.4) with (3.6) we notice that S"
from (3.4) coincides with S from (3.6). Bearing in mind (3.4) and the definition (3.6),
we immediately obtain the recurrence relation

Sp= (S50, [81 1,17 (3.7)

Using (3.7), it is possible to represent all unknown matrix-valued functions of the
chain v, in terms of the function v, alone. The system of two equations which
determine v, (3.2) takes the form

09 = ANX)VY .+ ..+ Ao(x)0°,

(3.8)
Ug...y = Ug...an( y) + ...+ UOBO(y)a
from which we obtain
N p—
v’ =) d(x)h( ). (3.9)
t=0

We have shown (and from the examples for N = 0, 1,2, ... it is absolutely clear) that
v, as a function of a single argument x( y) satisfies the linear equation with constant
coefficients and, for this reason, the form (3.9) for its solution is the only possible one.

4. Conclusion

The main result of this Letter is contained in the previously unknown (3.9) general
solution of the matrix Toda chain (2.2) with fixed ends. In the scalar case (s = 1), this
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solution, as is well known, is closely connected with the theory of representations of
semisimple Lie algebras [6]. In the text of the Letter, we have obtained an expression
for v,. But we are sure that this expression may be rewritten in ‘determinant’ (i.e.
more explicit) form. For us, it is not clear what is the connection of the proposed
solution (3.9) with the theory of group representations (if there is any). We hope to
come back to these interesting questions in further publications.
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