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Abstract
The paper is devoted to the connection between integrability of a finite quantum
system and degeneracies of its energy levels. In particular, we analyse in detail
the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated
that in these systems there are crossings of levels of the same parameter-
independent symmetry. We show that this apparent violation of the Wigner–von
Neumann noncrossing rule follows directly from the existence of nontrivial
conservation laws and is a characteristic signature of quantum integrability.
The energy spectra of Hubbard chains display many instances of permanent
(at all values of the coupling) twofold degeneracies that cannot be explained
by parameter-independent symmetries. We relate these degeneracies to the
different transformation properties of the conserved currents under spatial
reflections and the particle–hole transformation and estimate the fraction of
doubly degenerate states. We also discuss multiply degenerate eigenstates
of the Hubbard Hamiltonian. The wavefunctions of many of these states do
not depend on the coupling, which suggests the existence of an additional
parameter-independent symmetry.

PACS numbers: 71.10.Fd, 02.30.Ik, 03.65.−w

1. Introduction

The close connection between symmetry and degeneracy has been explored since the
foundation of quantum mechanics. Famous examples include degeneracies of spectra in
angular momentum in the hydrogen atom (well known as the accidental degeneracy) [1] and
the 3d harmonic oscillator [2]. In this paper we focus on the implications of the rich symmetry
structure for the spectrum of the 1d Hubbard model as well as for a general class of quantum
integrable systems. We analyse in detail how degeneracies and other spectral properties of the
Hubbard Hamiltonian reflect the symmetries of the model.
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Figure 1. Energies for (P, σ, I (o), S, L) = (3, 1, 1, 0, 1) in units of U − 4T as functions of
u = U/(U − 4T ). Levels marked with crosses are twofold degenerate. They also correspond
to (P, σ, I (o), S,L) = (3,−1, 1, 0, 1). Upside down the figure shows levels for the same set of
quantum numbers with S ↔ L. Asterisks show the sevenfold degenerate level.

Here we restrict ourselves to the case of Hamiltonians that depend on a single real
parameter, referred to as a coupling. In this case one can distinguish between two types of
degeneracy. The first type, often called permanent degeneracy, refers to energy levels which
remain degenerate for all values of the parameter. The appearance of permanent degeneracies
suggests the existence of non-commuting symmetry operators (see, e.g., [2]).

The second type of degeneracy is a crossing of energy levels that occurs at a particular
value of the coupling. Multiple level crossings at a certain point indicate a higher symmetry
of the system at this particular point as compared to other points. For example, the limits of
zero or infinite coupling frequently have enhanced symmetry.

Simple pairwise crossings are also interesting from a different perspective. As is well
known, in the absence of symmetries energy levels repel, or, equivalently, crossings of levels
are prohibited unless the states have different symmetry. This noncrossing rule was suggested
by Hund in 1927 [3], and justified by von Neumann and Wigner [4] two years later. Since then
the level repulsion phenomenon has been revisited and elaborated upon in various contexts
(see, e.g., [5–7] and references therein). Usually textbooks, e.g., [2, 8, 9], present a simplified
version of the justification due to Teller [10].

The mathematical validity of the noncrossing rule depends crucially on the interpretation
of the word symmetry, normally understood as a space (or internal space) symmetry. This
was highlighted by an interesting example by Heilmann and Lieb in 1971 [11]. These authors
pointed out that the noncrossing rule is apparently violated in the case of the 1d Hubbard
Hamiltonian for the benzene molecule if only those symmetries that do not depend on the
coupling constant are taken into account. Indeed, figure 1 illustrates that a substantial number
of crossings can be found even within the subsets of levels characterized by the same set of
quantum numbers. Based on this fact, Heilmann and Lieb concluded that ‘there must be a
natural parameter-dependent group’ to account for these violations.
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The 1d Hubbard model is solvable by Bethe’s ansatz, and usually the applicability of
this ansatz is understood to rest upon quantum integrability of the model, i.e the existence
of an infinite number of mutually commuting operators. Such commuting operators are
often alternately termed as ‘conserved currents’, or ‘dynamical conservation laws’, or simply
‘dynamical symmetries’, and are invariably associated with all known quantum integrable
models. However, it was not until 1986 when the parameter-dependent integrals of motion
(conserved currents) were identified by Shastry [16–18], who constructed a transfer matrix
that commuted with the Hubbard Hamiltonian. The integrability of a quantum Hamiltonian
is usually defined in the thermodynamical limit. In this limit the Hamiltonian is said to be
integrable if it possesses an infinite number of conservation laws. On the other hand, on a
finite lattice all operators are represented by finite matrices and therefore one can only have a
finite number of independent integrals of motion.

The Hubbard Hamiltonian to be considered consists of the kinetic term, which allows
electrons to hop between the nearest neighbours on a regular polygon (i.e. periodic boundary
conditions are assumed) and the Coulomb interaction between electrons of opposite spin on
the same site:

Ĥ = T

N∑
j=1

∑
s=↑↓

(
c
†
jscj+1s + c†j+1scjs

)
+ U

N∑
j=1

(
n̂j↑ − 1

2

) (
n̂j↓ − 1

2

)
(1.1)

where c†js and cjs are the creation and annihilation operators for an electron of spin projection

s on site j and n̂js = c
†
jscjs is the number operator. The goal of this paper is to study

how the interplay between parameter-dependent integrals of motion and ordinary (parameter-
independent) symmetries is manifested in permanent degeneracies and level crossings in the
energy spectrum. Hamiltonian (1.1) is chosen as a tutorial example of a many body system
that has both parameter-dependent and parameter-independent symmetries.

This paper is organized as follows. Section 2 is devoted to parameter-independent
symmetries of the Hubbard model that are later used in section 4 to diagonalize the Hamiltonian
and assign symmetry quantum numbers such as the total momentum, spin, particle–hole
symmetry, etc, to all states. Section 3 discusses the structure and properties of parameter-
dependent conservation laws. Permanent degeneracies are treated in detail in section 5. In the
same section we consider the multiple permanent degeneracies and mention spectral properties
of the dynamical conservation laws.

In section 6 we formulate the noncrossing rule in the framework of adiabatic equations
of motion for matrix elements of the Hamiltonian and higher currents. This language is
useful for understanding the suppression of level repulsion in integrable models. Next,
based on numerical analysis, we discuss a curious behaviour of the transverse matrix element
in the vicinity of crossings specific to the Hubbard Hamiltonian. Finally, to illustrate the
connection between level crossings and integrability we consider in some detail a simple case
of integrable 3 × 3 matrix systems (section 6). In this case we conclude that there are no
‘accidental degeneracies’, i.e. all degeneracies may be associated with dynamical conservation
laws.

The majority of the results do not depend on the number of sites (N) or electrons (M).
However, cases of even and odd N and M have to be treated differently, the latter case being
substantially simpler because of less symmetry that needs to be taken into account. We
therefore take for concreteness that both these numbers are even, N = 2n and M = 2m, with
an equal number of spin-up and spin-down electrons. Throughout the paper analytical results
are illustrated by numerical computations for a special case of benzene (m = n = 3), and a
few other choices of (m, n).
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Figure 2. Regular hexagon (n = 3). Ĉ6 rotates by π/3. σ̂ reflects in a line through vertices 3
and 6.

2. U-independent symmetries

The starting point of our analysis of the spectral properties of the Hubbard Hamiltonian (1.1)
is the list of its U-independent symmetries. We will follow closely the paper by Heilmann and
Lieb [11] adopting in most cases their notation.

The role of the U-independent symmetries is twofold. First, they greatly simplify the
diagonalization of the Hamiltonian and integrals of motion and provide a convenient labelling
for various parts of the spectrum. Besides, for the purposes of studying specifically the effect of
parameter-dependent conservation laws, all these symmetries have to be factored out anyway.

U-independent symmetries fall into three major categories—the symmetry of the polygon,
the spin symmetry and the particle–hole symmetry. Spatial symmetries can be generated by
two operators: operator Ĉ2n that rotates the polygon by π/n and operator σ̂ that reflects it in
a line through vertices n and 2n (see figure 2). These operators can be expressed in terms of
on site creation and annihilation operators as

Ĉ2n = σ̂ σ̂ ′ σ̂ =
∏
s=↑,↓

n−1∏
k=1

Ĵks;−ks σ̂ ′ =
∏
s=↑,↓

n∏
k=1

Ĵk−1,s;2n−k,s (2.2)

where Ĵjs,j ′s ′ interchanges the orbitals (js) and (j ′s′):

Ĵjs,j ′s ′ = 1 − n̂js − n̂j ′s ′ + c†jscj ′s ′ + c†j ′s ′cjs. (2.3)

Eigenvalues of Ĉ2n are eiπP/n, where P is an integer 0 � P � 2n− 1 that represents the total
momentum of the state. The reflection operator σ̂ has eigenvalues ±1.

The spin symmetry can be generated by Ŝ2 and Ŝz:

Ŝz = n̂↑ − n̂↓
2

Ŝ+ = (Ŝ−)† =
2n∑
j=1

c
†
j↑cj↓ (2.4)

Ŝ2 = Ŝ−Ŝ+ + Ŝ+Ŝ−
2

+ Ŝ2
z (2.5)

where

n̂s =
2n∑
j=1

n̂js . (2.6)

To describe the particle–hole symmetry we first define operators Ĵ (o)s and Ĵ (h)s . The
operator Ĵ (o)s changes the sign of the wavefunction each time there is a spin-s electron on an
odd site, while the operator Ĵ (h)s interchanges holes and particles for a spin direction s.

Ĵ (o)s =
n−1∏
j=0

(1 − 2n̂2j+1,s) Ĵ (h)s =
2n∏
j=1

(
c
†
js + cjs

)
. (2.7)
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It is convenient to introduce the following combinations of these operators:

Ĵ (o) = Ĵ
(o)

↑ Ĵ
(o)

↓ Ĵ (h) = Ĵ
(h)
↑ Ĵ

(h)
↓ Î (o) = Ĵ (o)Ĵ (h) Ẑ↑ = Ĵ

(o)
↑ Ĵ

(h)
↓ . (2.8)

Note the action of various symmetries on the creation and annihilation operators

Ẑ
†
↑cj↑Ẑ↑ = (−1)jcj↑ Ẑ

†
↑cj↓Ẑ↑ = −c†j↓ (2.9)

Î (o)cjs Î
(o) = (−1)j+1c

†
js (2.10)

σ̂ cjs σ̂ = c−j,s (2.11)

Ĵ (o)cjs Ĵ
(o) = (−1)jcjs . (2.12)

It follows from equations (2.9) and (2.10) that

Ẑ↑|m↑,m↓〉 = |m↑, 2n−m↓〉 (2.13)

and

Î (o)|m↑,m↓〉 = |2n−m↑, 2n−m↓〉 (2.14)

where |m↑,m↓〉 is a state with m↑ spin-up electrons and m↓ spin-down electrons, and 2n is
the number of sites. Thus, operators Î (o) and Ẑ↑ conserve the number of particles only at a
half filling with an equal number of up and down electrons.

Equations (2.9) and (2.10) are used to evaluate various commutation relations for Î (o)

and Ẑ↑:

{Ẑ↑, Ĥ } = 0 [σ̂ , Ĥ ] = 0 (2.15)

[Î (o), Ĥ ] = {Ĵ (o), T̂ } = {Î (o), Ŝz} = [Î (o), Ŝ2] = 0 (2.16)

Î (o)Ĉ2n − Ĉ2nÎ
(o)(−1)n̂ = Ẑ↑Ĉ2n + Ĉ2nẐ↑(−1)n̂↓ = Ẑ↑σ̂ − (−1)n−1σ̂ Ẑ↑ = 0 (2.17)

where {Â, B̂} ≡ ÂB̂ + B̂Â, n̂ = n̂↑ + n̂↓, and T̂ is the kinetic energy operator,

T̂ = T

N∑
j=1

∑
s=↑↓

(
c
†
jscj+1s + c†j+1scjs

)
.

Ẑ↑ is a unitary operator that anticommutes with the Hamiltonian. Therefore, it defines
a mapping from the set of operators that commute with the Hamiltonian onto itself, i.e.
[Â, Ĥ ] = 0 implies [Ẑ†

↑ÂẐ↑, Ĥ ] = 0. Using this transformation, we can construct a new
su(2) algebra (η-pairing su(2)) from the spin su(2) (2.4) [12–15]:

L̂z = n̂↑ + n̂↓
2

− n L̂− =
2n∑
j=1

(−1)j cj↑cj↓ L̂+ = (L̂−)†. (2.18)

The Casimir operator of this new su(2),

L̂
2 = Ẑ

†
↑Ŝ2Ẑ↑ (2.19)

preserves the number of particles, and therefore its eigenvaluesL(L+1) can be included in the
set of quantum numbers used to label the eigenstates. The combination SU(2) × SU(2)/Z2

yields the complete SO(4) symmetry of the Hubbard Hamiltonian [12–15].
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3. Conserved currents

Now let us turn to the parameter-dependent integrals of motion. In principle, an infinite
number of these integrals can be obtained by methods outlined in [16–18]. Clearly, on a finite
lattice only a finite number of these integrals are independent (see section 6 for more details).
The general form of the rth conserved current is

Î r (U, T ) =
l∑

k=0

UkT l−k Î kr

where Î kr are parameter-independent operators. The U-independent part of Î r has a simple
form

Î r (U = 0) = T l Î 0
r = ±(i)r+1T l

N∑
j=1

∑
s=↑↓

(
c
†
j+r,scjs − (−1)rc†jscj+r,s

)
(3.20)

As far as permanent degeneracies are concerned, an important feature of the currents is that
odd (r = 2k + 1) and even (r = 2k) currents transform differently (equations (3.23)–(3.26))
under spatial reflections (σ̂ ) and partial particle–hole transformation (Ẑ↑). Odd currents are
in many respects similar to the Hamiltonian, while properties of even currents are essentially
different.

First few nontrivial currents were derived explicitly in [17, 19–22]. (See also [22] and
[23] for a discussion on the derivation and the structure of the higher conserved currents.) To
analyse the benzene example we will need the explicit form of only the first two nontrivial
integrals of motion. Since Î 1 ≡ Ĥ , these two are

Î 2 = −iT
N∑
j=1

∑
s=↑↓

(
c
†
j+2scjs− c†jscj+2s

)− iU
N∑
j=1

∑
s=↑↓

(
c
†
j+1scjs− c†jscj+1s

)
(n̂j+1,−s + n̂j,−s− 1)

(3.21)

Î 3 = T 3
N∑
j=1

∑
s=↑↓

(
c
†
j+3scjs + c†jscj+3s

)
+ T 2U

N∑
j=1

∑
s=↑↓

{(
c
†
j+1scj−1s + c†j−1scj+1s

)

×
(
n̂j+1,−s + n̂j,−s + n̂j−1,−s − 3

2

)
+

(
c
†
j+1scjs − c

†
jscj+1s

)
× (
c
†
j,−scj−1,−s − c

†
j−1,−scj,−s

) −
(
n̂j+1s − 1

2

) (
n̂j,−s − 1

2

)}

+ T 2U

N∑
j=1

{(
c
†
j+1↑cj↑ − c

†
j↑cj+1↑

)(
c
†
j+1↓cj↓ − c

†
j↓cj+1↓

)

−
(
n̂j↑ − 1

2

) (
n̂j↓ − 1

2

)}
− TU 2

N∑
j=1

∑
s=↑↓

(
c
†
j+1scjs + c†jscj+1s

)

×
(
n̂j+1,−s − 1

2

) (
n̂j,−s − 1

2

)
− U 3/4

N∑
j=1

(
n̂j↑ − 1

2

)(
n̂j↓ − 1

2

)
.

(3.22)

Odd currents have the same U-independent symmetry as the Hubbard Hamiltonian, i.e.
in all commutation relations of section 2 the Hamiltonian can be replaced with any other odd
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current. For even currents two of the commutation relations are different. Namely, for odd
currents one can show that

[σ̂ , Î 2k+1] = 0 (3.23)

{Ẑ↑, Î 2k+1} = 0 (3.24)

while for even currents

{σ̂ , Î 2k} = 0 (3.25)

[Ẑ↑, Î 2k] = 0. (3.26)

In other words, equations (3.23)–(3.26) mean that even and odd currents have different σ̂ and
Ẑ↑ parities. For k = 1, equations (3.23)–(3.26) have been derived in [20]. Note also that
since both σ̂ and Ẑ↑ are unitary and Ir is Hermitian, equations (3.25) and (3.24) imply

Tr Î r = 0. (3.27)

Another property of conserved currents which we will use below is

Ĵ (o)Î r (T ,U)Ĵ
(o) = (−1)r+1Î r (−T ,U). (3.28)

Equations (3.23)–(3.26) and (3.28) for I2 and I3 can be verified by inspection. For higher
currents they can be derived by establishing the transformation properties of the transfer matrix
obtained in [16–18].

Finally, let us measure U, T and all other energies in units of U − 4T . This is equivalent
to the replacement

U − 4T = 1 U = u T = (u− 1)/4. (3.29)

We see from (3.28) that the spectrum and the eigenfunctions of Î r for T � 0 and T � 0 are
related via a simple transformation and it is therefore sufficient to consider T � 0. Thus, we
have to compute the spectra only for 0 � u � 1.

4. Diagonalization

In this section, we outline a method that we use for detailed numerical study of the spectra
of the Hamiltonian and conserved currents. In subsequent sections, we will compare the
computer generated results for benzene (m = n = 3) and several other values of m and n to
general predictions based on symmetry.

From the results of section 2 it follows that the set of quantum numbers that label the
eigenstates of the Hamiltonian and integrals of motion is {P, σ, I (o), S, L}. However, there
are certain restrictions on this set since not all symmetries and integrals of motion mutually
commute. The quantum number I (o) can be assigned only when m = n and σ can be used
only when P = 0 or P = n (see (2.14) and (4.34)). Also, since σ̂ changes P to 2n − P

without affecting the energy and other quantum numbers, the spectrum for 2n > P > n is the
exact copy of that for n > P > 0. Therefore, it is sufficient to diagonalize the Hamiltonian
and the currents for P ranging from 0 to n. Finally, since even currents anticommute with σ̂ ,
their eigenvalues cannot be specified whenever σ is specified.

To utilize the conservation of momentum, we introduce in the usual way the momentum
space creation and annihilation operators d†ps and dps :

d†ps = 1√
2n

2n∑
j=1

eiπpj/nc
†
js dps = 1√

2n

2n∑
j=1

e−iπpj/ncjs (4.30)

where p = 0, 1, . . . , 2n− 1.
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Next, we choose a basis for 2m-electron wavefunctions with m spin-up and m spin-down
electrons,

|r〉 = |p; q〉 = d
†
p1↑ . . . d

†
pm↑d

†
q1↓ . . . d

†
qm↓|0〉 (4.31)

with the following ordering convention:

p1 < p2 < · · · < pm q1 < q2 < · · · < qm. (4.32)

Components of |r〉 that are not in the interval [0, 2n− 1] have to be reduced modulo 2n into
this interval. If the components of a vector are not in the order (4.32) they have to be permuted
to obtain these ordering and the wavefunction should be multiplied by (−1) if the permutation
is odd. The total momentum of the state is

P =
2m∑
k=1

rk (modulo 2n). (4.33)

From (2.9)–(2.11) and (4.30) we identify the action of operators of U-independent
symmetry on basic states (4.31):

σ̂ |r〉 = |−r〉 (4.34)

Î (o)|r〉 = (−1)2m+P |−(r + ne)〉 (4.35)

Ẑ↑|p; q〉 = (−1)(m+Q)|(p + ne); −q〉 (4.36)

where Q = ∑m
k=1 qk is the total momentum of spin-down electrons, r denotes taking the

complement of the set R ≡ {rk} in the set of integers from 0 to 2n − 1. Finally, +ne stands
for adding n to each component of a vector.

The rotation operator Ĉ2n commutes with the Hamiltonian, conserved currents, Î (o), Ŝ2

and L̂
2
. Therefore, these operators split into blocks corresponding to different values of P.

This significantly reduces the size of the matrices to be diagonalized. To generate the blocks
for each value of P we need to derive the matrix elements of the Hamiltonian, integrals of
motion and symmetry operators in the basis (4.31). Equations (4.34) and (4.35) allow us to
write down σ̂ , Î (o) and Ẑ↑ in the matrix notation. Matrix elements of the Hamiltonian and the
operators Ŝ2, Î 2 and Î 3 are summarized in appendix B.

Now we have all ingredients needed to produce a computer program (e.g., on
Mathematica) that generates exact blocks of the Hamiltonian, symmetry operators and first
two currents for any value of the total momentum P.

After the value of the total momentum P is chosen, the program picks one of the remaining
U-independent symmetries, say σ̂ , and finds a unitary transformation that makes it diagonal.
The columns of the matrix of this transformation are the eigenvectors of σ̂ . Since we know
the eigenvalues of σ̂ exactly (±1), determining the eigenvectors for each eigenvalue reduces
to a set of linear equations which can be solved analytically.

In this way, step by step, we diagonalize all parameter-independent symmetries and split
the Hamiltonian and conserved currents into smaller blocks. If the system is not too large,
this can be done analytically using Mathematica. For example, the complete Hamiltonian for
benzene is a 400 × 400 matrix, while individual blocks range in size from 1 × 1 to 16 × 16.

Finally, when all U-independent symmetry is exhausted, we get exact blocks of the
Hamiltonian and conserved currents with all U-independent symmetry quantum numbers
assigned to each block. Each block is then diagonalized individually at different values of
u ranging from 0 to 1 (see (3.29)). Often, the small size of a block allows for analytical
diagonalization.
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Figure 3. Energies for (P, σ, I (o), S, L) = (0, 1, 1, 1, 1) (cf figure 4) in units of U − 4T as
functions of u = U/(U − 4T ). Levels marked with crosses are twofold degenerate with respect
to σ = ±1. They also correspond to (P, σ, I (o), S,L) = (0,−1, 1, 1, 1) (equation (5.37)). Note
that since S = L the spectrum is symmetric under the reflection E → −E (equation (5.38)).

Table 1. Degrees of degeneracy in the sectors P = {0, n} for n = {3, 4}.
P n m (degree of degeneracy, number of levels)

0 3 2 (1, 12); (2, 12)
3 3 2 (1, 15); (2, 7); (3, 1); (7, 1)
0 3 3 (1, 32); (2, 18)
3 3 3 (1, 30); (2, 12); (7, 2)
0 4 2 (1, 28); (2, 31); (3, 1); (7, 1)
4 4 2 (1, 15); (2, 41); (3, 1)
0 4 3 (1, 70); (2, 150); (3, 2); (8, 2)
4 4 3 (1, 56); (2, 155); (3, 1); (7, 1); (8, 2)
0 4 4 (1, 126); (2, 229); (3, 1), (7, 1); (12, 2)
4 4 4 (1, 126); (2, 229); (3, 1); (7, 1); (12, 2)

5. Permanent degeneracies and other spectral properties

As soon as Hamiltonian (1.1) is diagonalized, we discover numerous cases of permanent
degeneracy (see, e.g., table 1 and figures 3–6). We make the following observations. The
majority of degeneracies are twofold degeneracies with respect to σ = ±1. However, there
are also several multiply degenerate levels. The characteristic feature of these states is that the
energies are linear in U.

First, we analyse the twofold degeneracies. Let ψ(E, I2k+1, σ, S, L), where E is the
energy, be an eigenstate of the Hamiltonian as well as all other odd currents and operators

σ̂ , Ŝ2 and L̂
2
. Being an eigenstate of σ̂ , the state ψ cannot be an eigenstate of any even

current since Î 2k and σ̂ anticommute. Let φ(E, I2k, P, S,L, I2k+1) denote an eigenstate of
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Figure 4. Eigenvalues of Î 3 for (P, σ, I (o), S,L) = (0, 1, 1, 1, 1) (cf figure 3) in units of U − 4T
as functions of u = U/(U − 4T ). All eigenvalues are twofold degenerate with respect to σ = ±1.
They also correspond to (P, σ, I (o), S, L) = (0,−1, 1, 1, 1) (equation (5.37)). The spectrum is
symmetric under the reflection I3 → −I3 (equation (5.38)). Note however that crossings of Î 3
and Ĥ occur at different values of u except u = {0, 1}.

0.2 0.4 0.6 0.8 1
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Figure 5. Energies for (P, σ, I (o), S,L) = (0,−1,−1, 0, 1) (cf figures 6 and 7) in units ofU−4T
as functions of u = U/(U − 4T ). Levels marked with crosses are twofold degenerate with respect
to σ = ±1. They also correspond to (P, σ, I (o), S,L) = (0, 1,−1, 0, 1) (equation (5.37)). Upside
down the figure shows levels for the same set of quantum numbers with S ↔ L (equation (5.38)).
Note the nondegenerate levels.
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Figure 6. Eigenvalues of Î3 for (P, σ, I (o), S, L) = (0,−1,−1, 0, 1) (cf figures 5 and 7) in
units of U − 4T as functions of u = U/(U − 4T ). Levels marked with crosses are twofold
degenerate with respect to σ = ±1. They also correspond to (P, σ, I (o), S, L) = (0, 1,−1, 0, 1)
(equation (5.37)). Upside down the figure shows levels for the same set of quantum numbers with
S ↔ L (equation (5.38)).
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Figure 7. Eigenvalues of Î 2 for (P, I (o), S, L) = (0,−1, 0, 1) in units of U − 4T as functions of
u = U/(U − 4T ). Note the difference as compared to figures 5 and 6. The quantum number σ
cannot be assigned since Î2 anticommutes with σ̂ (3.25). All eigenvalues are twofold degenerate
with respect to S ↔ L and E → −E (equation (5.39)). Since P = −P = 0, the spectrum is
symmetric under the reflection (equation (5.40)).
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Figure 8. Energies for (P, I (o), S, L) = (2, 1, 0, 0) (cf figures 9 and 10) in units of U − 4T
as functions of u = U/(U − 4T ). Since S = L the spectrum is symmetric under the reflection
E → −E (equation (5.38)). Note the level crossings.
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Figure 9. Eigenvalues of Î2 for (P, I (o), S, L) = (2, 1, 0, 0) in units of U − 4T as functions
of u = U/(U − 4T ). All eigenvalues are twofold degenerate with respect to E ↔ −E
(equation 5.39). Note that unlike figures 8 and 10 there is no reflection symmetry since P 	= −P
(equation (5.40)).

all even and odd currents. On the other hand, φ ≡ ψ when σ is not assigned, i.e. when
P 	= {0, n}. We note that equation (3.25) means that either the state ψ is annihilated by the
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Figure 10. Eigenvalues of Î3 for (P, I (o), S, L) = (2, 1, 1, 1) (cf figures 8 and 9) in units of
U − 4T as functions of u = U/(U − 4T ). Since S = L the spectrum is symmetric under the
reflection E → −E (equation (5.38)).

operator Î 2k, Î 2kψ = 0 for all U, or

Î 2kψ(E, I2k+1, σ, S, L) = ψ(E, I2k+1,−σ, S,L). (5.37)

Equations (3.26) and (3.25) imply

Ẑ↑ψn(E, I2k+1, S, L) = ψn(−E,−I2k+1, L, S) (5.38)

Ẑ↑φn(E, I2k, S, L, I2k+1) = φn(−E, I2k, L, S,−I2k+1) (5.39)

σ̂ φn(E, I2k, P, S,L, I2k+1) = φn(E,−I2k,−P, S,L, I2k+1). (5.40)

It follows from equation (5.38) that for each state of energy E and eigenvalues of odd currents
{I2k+1} there is a state with the energy −E and eigenvalues {−I2k+1} (see figures 8 and 10).
According to equation (2.13) these two states have the same number of particles only ifm = n.
Equation (5.39) implies that eigenstates of I2k are doubly degenerate (see figure 9). Finally,
from (5.37) we conclude that any state in the sector P = {0, n} that is not annihilated by all
Î 2k is at least twofold permanently degenerate. This applies to all values of m and n. In other
words, all energy levels in the sector P = {0, n} that are not in the kernel of Î 2k for all U
and k are doubly degenerate (see also [20]). Consequently, all nondegenerate states should be
annihilated by any even current.

A twofold degeneracy is explained on symmetry grounds as soon as we identify an even
current that maps the two degenerate states onto each other. Unfortunately, we do not yet
know how to prove for arbitrary m and n that for any twofold degeneracy there exists such
an even current. For benzene we checked numerically that all doubly degenerate states are
mapped onto each other by Î 2 and therefore no other even currents are needed to explain
twofold degeneracies.

Since nondegenerate states are annihilated by any even current, nondegenerate states exist
only if all even currents have nontrivial kernels. Let us show that this necessary condition
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Table 2. Values of K/D. Note that the upper bound on the number of nondegenerate states
monotonically decreases as m and n increase.

n

m 2 3 4 5 6

2 1.0 0.89 0.79 0.76 0.71
3 – 0.88 0.765 0.70 0.64
4 – – 0.764 0.675 0.62
5 – – – 0.670 0.610
6 – – – – 0.608

is met when m is odd or m 	= n. Indeed, since Î 2k maps the subspace σ = +1 onto the
subspace σ = −1 (5.37), its kernel has to contain at least |d+1 − d−1| states, where d±1 are
the dimensions of σ = ±1 subspaces. Since the eigenstates of σ = ±1 are |r〉 ± |−r〉 (4.34),
d+1 − d−1 is the number of states such that |r〉 = |−r〉 minus the number of states such that
|r〉 = −|−r〉. This is calculated to be

d+1 − d−1 =
{(
n− 1[
m
2

] )
+ (−1)m+1

(
n− 1[
m−1

2

])}2

(5.41)

where [x] is the integer part of x.5

The evaluation of an upper bound on the fraction of the nondegenerate states (f ) in the
sectorP = {0, n} can be reduced to a combinatorial problem. We note that the number of such
states cannot exceed the dimension of ker I2 at U = 0 restricted to the subspace P = {0, n}.
Let us denote this dimension by K. The kernel of I2 at U = 0 consists of all states |r〉 such that

m∑
k=1

[
sin

2πpk
n

+ sin
2πqk
n

]
= 0. (5.42)

Thus we have f � K/D ≡ g, where D is the dimension of P = {0, n} subspace. First, one
can show by explicitly constructing a P = 0 state, such that the left-hand side of (5.42) is
nonzero, that K < D for 2n − 2 � m � 2 and n 	= 2. This means that twofold degenerate
states exist for all values of m and n except n = 2 and m = {0, 1, 2n − 1, 2n}. Numerical
values of g for the first few m and n are tabulated in table 2. Since g(m, n) = g(2n −m,n),
only values form � n are shown.

We see from table 1 that at small m and n a substantial fraction of levels are nondegenerate.
Next, we consider the limit n 
 m. The exact value of D depends on the greatest common
divider of m and n. However, this is not essential for large n, since we can always decrease
or increase n by a small number so that m and n become mutually prime, in which case the
dimension of P = {0, n} subspace is 1/n of the total dimension of the Hilbert space.

D = 1

n

(
2n

m

)2

∼ n2m−1 for n 
 m. (5.43)

To analyse the behaviour of K in the limit n
 m, we note that there are two ways how a number
of terms in (5.42) can cancel. The first option is the pairwise cancellation. Alternatively,
r terms can cancel if their momenta correspond to the vertices of the regular r-gon. This
can happen only if n is divisible by r. For a given p there are at most four other momenta
with which it can cancel pairwise. Therefore, for n 
 m the number of ways in which the
5 The high degeneracy of the zero eigenvalue of even integrals of motion suggests that even conserved currents have
an additional symmetry. An interesting open question is whether the corresponding eigenstates can be chosen to be
independent of U (compare the discussion on multiply degenerate levels of the Hamiltonian below).
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sum (5.42) can cancel pairwise grows slower than nm, while the number of non-pairwise
cancellations grows slower than nm−1. We conclude that

f � const

nm−1
for n 
 m. (5.44)

This asymptotics combined with numerical values from table 2 suggests that almost all states
in the sector P = {0, n} are at least twofold degenerate in the thermodynamical limit.

As for the multiply degenerate states the first observation is that, at least for benzene, all
of their eigenvalues are linear in the coupling parameter u. This seems to suggest that these
states are simultaneous eigenstates of the kinetic (T̂ ) and the potential (Û) energy operators
(3.29). Indeed, this turns out to be the case for the majority of the multiply degenerate levels
for benzene. However, the benzene Hamiltonian also has two eigenstates with E = ±u/2 and
P = 3 that are not simultaneous eigenstates of T̂ and Û .

Some of the multiply degenerate states can be obtained using the prescription of [13].
The idea is the following. We take a state |r〉 that has only one species of electrons, say
2l (l � n) spin-down electrons, and no spin-up electrons:

|r〉 = |0; q〉 = |0; q1, . . . q2l〉. (5.45)

Clearly, |r〉 is an eigenstate of both T̂ and Û :

T̂ |r〉 = u− 1

2

2l∑
k=1

cos
πqk

n
|r〉 Û |r〉 = u(n/2 − l)|r〉. (5.46)

On the other hand, |r〉 is a lowest weight state in the so(4) algebra constructed from S and L:

Sz|r〉 = −l|r〉 S = l
(5.47)

L̂z|r〉 = (l − n)|r〉 L = n− l.

The energy according to (5.46) is

E(u) = u− 1

2

2l∑
k=1

cos
πqk

n
+ u(n/2 − l). (5.48)

Ifm � l, we can get an eigenstate |r̃〉 with m spin-up and m spin-down electrons, by applying
the raising operators of the so(4) algebra:

|r̃〉 = Ŝl+L̂
m−l
+ |r〉. (5.49)

The total number of states that can be obtained in this way is

M =
m∑
l=0

(
2n

2l

)
(5.50)

while the number of states that have the same energy (5.48) cannot exceed
(2n

2l

)
. Form = n = 3

the allowed choices for l are l = {0, 1, 2, 3}. The choice l = 1 yields 15 eigenstates of which
three states have the total momentumP = 3 and are degenerate with the energyE = u/2. By
partial particle–hole symmetry (5.38) the choice l = 2 also gives three states with P = 3 and
the energy E = −u/2. The actual number of states of energy u/2 and P = 3 is 7 (table 1).
Wavefunctions of six of these states are independent of U.

We arrive at the conclusion that contrary to what was conjectured in [13], not all
U-independent eigenstates can be obtained using the above prescription. The six
U-independent eigenstates together with the corresponding states that have lowest weight
in so(4) are given in appendix A.
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Clearly, the multiple degeneracies discussed above mean that there is an additional
U-independent symmetry of the Hubbard Hamiltonian that have been overlooked in section 2.
This symmetry seems to be related to the high degeneracy of the spectra of the potential and
kinetic energy operators. However, currently we do not know what is the algebra of generators
of this additional symmetry and how its representations are to be classified.

6. Level crossings

The spectra of the Hamiltonian and conserved currents display numerous cases of crossings
of levels that have the same U-independent symmetry quantum numbers. In this section we
argue that this type of behaviour is in fact expected in integrable models. This is in agreement
with the well-known empirical fact that integrable models exhibit Poisson-like level statistics
(see, e.g., [24]).

Let us first clarify the notion of a nontrivial integral of motion for a quantum system
on a finite lattice. Let H(u) = H0 + uV be a Hamiltonian that, in a certain basis, can
be represented by an s × s matrix. For example, H(u) can be one of the blocks of the
Hubbard Hamiltonian. Clearly, any matrix M that is an analytical function of H(u) and
u,M = f (u,H(u)), commutes with H. Obviously, M is not an independent conserved
quantity. Therefore, we say that J (u) is a nontrivial integral of motion if J (u) is Hermitian,
[J (u),H(u)] = 0 and at the same time J (u) cannot be written as an analytical function of
H(u) and u.

Now let us show that the existence of a nontrivial integral of motion implies at least one
level crossing. Since J (u) andH(u) commute, there is a basis where both these operators are
diagonal. Let E1(u), . . . , Es(u) and J1(u), . . . , Js(u) be the eigenvalues of H(u) and J (u),
respectively. Consider the following set of algebraic equations:

a1E
s−1
1 (u) + · · · + as−1E1(u) + as = J1(u)

...
...

a1E
s−1
s (u) + · · · + as−1E1(u) + as = Js(u)

(6.51)

If equations (6.51) have a solution, J (u) and H(u) are not independent, namely, J (u) =
a1H

s−1 + · · · + as . The system (6.51) has no solutions if and only if Ei(u∗) = Ej (u
∗) and

Ji(u
∗) 	= Jj (u

∗) for some i, j and u∗. Thus, the Hamiltonian can have a nontrivial integral of
motion only if it has a level crossing at some value of the parameter.

Let us analyse the suppression of level repulsion in integrable models in more detail.
Here we consider only real Hamiltonians that depend linearly on the coupling constant
H(u) = H0 + uV . We assume that there is a value of u = ũ at which all eigenvalues of
H(ũ) are nondegenerate. This is true for instance for blocks of the Hubbard Hamiltonian for
benzene. In general, since all integrals of motion mutually commute, permanent degeneracies
occur only with respect to quantum numbers of parameter-independent symmetries. Therefore,
after all these symmetries are factored out, at a certain value of u all states in a given block are
nondegenerate. Hence, we can use the nondegenerate perturbation theory to write down the
variation of the eigenvalues and the matrix elements of the perturbation with u in the vicinity
of ũ:

dEn(u)

du
= Vnn(u) (6.52)

dVnn(u)

du
= 2

∑
j 	=n

V 2
nj (u)

En(u)− Ej(u)
(6.53)
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Figure 11. The block for (P, I (o), S,L) = (1, 1, 0, 1) has been perturbed by adding small random
numbers to Vij (ũ) and Ei(ũ) at ũ = 0.6. Energies at other values of u are determined according
to (6.52)–(6.54) and plotted in units of U − 4T as functions of u = U/(U − 4T ).

dVnm(u)

du
=

∑
j 	=n

Vnj (u)Vmj (u)

En(u)− Ej(u)
+

∑
j 	=m

Vnj (u)Vmj (u)

Em(u)− Ej(u)
(6.54)

where all matrix elements are evaluated in the running basis:

Hψn(u) = En(u)ψn(u) Vij (u) ≡ 〈ψi(u)|V |ψj (u)〉.
Equations (6.52)–(6.54) were used in [25] to derive the distribution of energy eigenvalues

of the irregular spectrum in the semiclassical limit. Note, in particular, that these equations are
not model specific. The model itself is defined by the initial conditions—the values of Vij (ũ)
andEi(ũ). If the initial conditions in any block are slightly perturbed6, the integrability is lost
and the majority of crossings are converted into anticrossings (see, e.g., figures 11 and 12).
At the same time, since the perturbation has the block diagonal structure of the original
Hamiltonian, the perturbed Hamiltonian still has the same U-independent symmetries.

Now consider a pair of levels that get close at u = u0, i.e. we assume that the absolute
value of the energy difference between these two levels �(u) = E1(u) − E2(u) is much
smaller than the energy distance to the remaining levels. Then, from (6.52) and (6.53) we
obtain the following equations for�(u):

d�

du
= V11 − V22 (6.55)

d2�

du
= 4V 2

12

�
+ F(u) (6.56)

where

F(u) = 2
∑
j 	=1,2

[
V 2

1j (u)

E1(u)− Ej(u)
− V 2

2j (u)

E2(u)− Ej(u)

]
.

6 e.g., by adding small random numbers to Ei(ũ) and Vij (ũ).
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Figure 12. Unperturbed energies for (P, I (o), S,L) = (1, 1, 0, 1) in units of U − 4T as functions
of u = U/(U − 4T ).

We can interpret E1 and E2 as coordinates of two one-dimensional particles. Particles
move with a relative velocity (V11 −V22) and interact with a force 4V 2

12

/
�+F(u). If V12 /→ 0

as � → 0, an infinite repulsion prevents the particles from colliding. On the other hand, if
levels 1 and 2 have different U-independent symmetry, V12(u) is identically zero and levels
are permitted to cross. These arguments constitute the essence of the noncrossing rule.

Let us incorporate conservation laws into the picture. Let the corresponding block of the
conserved current be J (u∗) = J (u)+ (u∗ − u)W + (u∗ −u)2W ′ + · · ·. Since J (u∗) commutes
with H(u∗) to all orders in (u− u∗), we get

[H(u∗), J (u∗)] = 0 ⇒ [H(u),W ] + [V, J (u)] = 0. (6.57)

Evaluating the matrix element of the above equation between states 1 and 2, we find

V12(u) = W12(u)
E1(u)− E2(u)

J1(u)− J2(u)
. (6.58)

Therefore, unless J1(u) = J2(u) in the vicinity of u = u0, V12 ≈ const� → 0 as� → 0 and
levels are allowed to cross.

We have checked for benzene that the eigenvalues of the Hamiltonian, Î 2, and Î 3, are
never degenerate at the same value of u except at two points of special symmetry u = 0 and
u = 1. Because Î 2 also connects all doubly degenerate states, we conclude that Î 2 and Î 3

together with U-independent symmetries explain all cases of level crossings and permanent
degeneracies in the spectrum of the Hubbard Hamiltonian for benzene.

In the vicinity of a crossing at u = u∗ the transverse matrix element V12(u) can be
expanded in series in the energy difference�(u):

V12(�) = a1� + a2�
2 + · · · . (6.59)
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The coefficient at the linear term can be derived using the degenerate perturbation theory:

a1 =
∑
j 	=1,2

V1j (u
∗)V2j (u

∗)
E1(u∗)− Ej(u∗)

. (6.60)

Here the basis at u = u∗ has to be chosen so that V12(u
∗) = 0 (see, e.g., chapter 4 in [2]).

The surprising feature of the Hubbard Hamiltonian is that, at least for benzene, the linear
term vanishes for all crossings at u 	= {0, 1}, while individual terms in the summation (6.60)
do not. At this point, we do not have an explanation for this seemingly puzzling phenomenon.

To see that this is not a mere consequence of integrability, we study a simple example
of 3 × 3 Hamiltonians. This example also illustrates the connection between crossings and
integrability and is therefore interesting on its own right.

Let

H = H0 + uV I = I0 + uW (6.61)

be two 3 × 3 real symmetric matrices. We call a pair (H, I) integrable if these two matrices
commute:

[H, I ] = 0 (6.62)

Since we can always add multiples of the identity matrix to H and I without affecting
integrability (6.62) or any of the level crossings, with no loss of generality, we can assume
that both H and I are traceless:

TrH = Tr I = 0.

Further, we say that a pair (H, I) is trivial if the u dependence can be eliminated from either
H or I by a u-independent unitary transformation (change of basis) and (or) by taking linear
combinations of H and I.

First, we demonstrate that if (H, I) is a nontrivial integrable pair, both H(u) and I (u)
have a single level crossing. Indeed, one can check that by changing the basis and taking
linear combinations any nontrivial integrable pair can be brought to the following ‘canonical’
form:

H =

1 0 0

0 1 0
0 0 −2


 + u


v11 0 v13

0 v22 v23

v13 v23 −v11 − v22


 (6.63)

I =

1 0 0

0 −1 0
0 0 0


 + u


w11 w12 w13

w12 w22 w23

w13 w23 −w11 − w22


 . (6.64)

Matrix elements of W can be written in terms of vij using (6.62):

w11 = 5v2
11 − v11v22 + 2v2

13 − 4v2
22 − 4v2

23

9(v11 − v22)
(6.65)

w12 = 2v13v23

3(v11 − v22)
w13 = v13/3 (6.66)

w22 = −4v2
11 + 4v2

13 + v11v22 − 5v2
22 − 2v2

23

9(v11 − v22)
(6.67)

w23 = −v23/3 w33 = −w11 −w22. (6.68)
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SinceW has five independent matrix elements, while V has only four,wij are constrained by

w33 +
w13

3w23
+
w23

3w13
− 2

3
w13w23 = 0. (6.69)

H(u) has an apparent crossing at u = 0. Further, it turns out that the matrix I (u) has
a crossing if and only if the constraint (6.69) is met! This can be verified either directly or
using [27], where, among other things, degeneracies of real symmetric 3 × 3 matrices are
analysed in detail. The crossing of I is at

2/u∗ = (w22 −w11) +w12(w13/w23 −w23/w13). (6.70)

Similarly, it can be shown that linear combinations of H and I always have crossings too.
Therefore, if (H, I) is a nontrivial integrable pair, both H(u) and I (u) have a single level
crossing.

Now let us show that the converse is also true, i.e. that any real symmetric 3 × 3 matrix
that has a pairwise crossing is also integrable. We start with a real symmetric 3 × 3 matrix
H = H0 +uV that has a pairwise crossing at u = u∗. By redefining the parameter u → u−u∗

and a suitable choice of basis we can write H in the form (6.63). Therefore, there exists a
matrix I of the form (6.64) such that [I,H ] = 0. In view of this explicit construction of a
‘dynamical conservation law’, we may say that there are no accidental degeneracies in the
case of 3 × 3 real matrices.

Finally, we note that the linear term in expansion (6.59) is non-zero for both H and I
unless specially arranged.

7. Conclusion

7.1. Summary

We have shown that for all m and n except m = {0, 1, 2n − 1, 2n} and n = 2 there are
twofold permanent degeneracies for the values of the total momentum P = 0 and P = n.
These degeneracies are a consequence of different transformation properties of even and odd
currents with respect to spatial reflections (σ̂ ) and partial particle–hole transformation (Ẑ↑)
(equations (3.23)–(3.26)). We have argued that in the thermodynamical limit the fraction of
doubly degenerate states in the sector P = {0, n} approaches 1. For benzene (m = n = 3) we
have checked that all doubly degenerate states are mapped onto each other by the first even
current Î 2. We have also seen that some states can be nondegenerate since all even currents
have nontrivial kernels.

We have learned from the benzene example that there is a number of multiply degenerate
states that are simultaneous eigenstates of the potential and kinetic energy operators. The
wavefunctions of these states do not depend on the coupling U. This suggests the existence
of an additional U-independent symmetry. However, as we have seen in section 5 and
appendix A some of these states cannot be obtained by applying the raising (lowering) operators
of the so(4) algebra to states that have only one species of electrons.

Further, we have demonstrated how the constraints of the noncrossing rule are lifted
in integrable models. In fact, we have argued that in integrable models crossings of levels
with the same parameter-independent symmetry quantum numbers are expected. This was
also illustrated by a simple example of 3 × 3 matrix models where there is a one-to-one
correspondence between crossings and integrability. We have seen that for m = n = 3 the
first two nontrivial conserved currents are sufficient to explain all cases of level crossings. We
have shown numerically that in the case of benzene the transverse matrix element is quadratic
in energy difference in the vicinity of all pairwise level crossings.
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7.2. Open questions

1. What is the symmetry responsible for the multiply (more than twofold) degenerate levels
in the spectrum of the Hubbard Hamiltonian? Are energies of multiply degenerate states
always linear in the coupling parameter? How one can count the degrees of degeneracy
and the number of multiply degenerate states for arbitrary m and n?

2. What is the symmetry responsible for the high degeneracy of the zero eigenvalue of even
integrals of motion?

3. For given m and n what is the exact number of states such that Î 2kψ = 0 for all k and U?
What is the exact number of twofold degenerate states with P = {0, n}?

4. Is the transverse matrix element always quadratic in energy difference in the vicinity
of all pairwise level crossings in the Hubbard model? What is the explanation of this
phenomenon?

Appendix A

Here we write down U-independent eigenstates that haveE = u/2. See section 4 for notations.

|r1〉 = −|0, 1, 2; 1, 2, 3〉 − 1/2|0, 1, 3; 0, 2, 3〉 + 1/2|0, 3, 4; 0, 3, 5〉 + |0, 4, 5; 3, 4, 5〉
− 1/2|1, 2, 4; 1, 2, 5〉 + 1/2|1, 4, 5; 2, 4, 5〉 + (↑↔↓)
S = 0 L = 2 Sz = 0 Lz = 0 (8.71)

|r2〉 = |0, 2, 5; 1, 3, 4〉 + |0, 3, 4; 1, 2, 5〉 + |0, 3, 5; 1, 2, 4〉 − |1, 4, 5; 0, 2, 3〉
− |2, 3, 5; 0, 1, 4〉 − |2, 4, 5; 0, 1, 3〉 + (↑↔↓)
S = 0 L = 1 Sz = 0 Lz = 0 (8.72)

|r3〉 = −|0, 2, 5; 1, 3, 4〉 + 1/2|0, 3, 4; 0, 3, 5〉 + 1/2|1, 2, 4; 1, 2, 5〉 + 1/2|1, 4, 5; 2, 4, 5〉
+ 1/2|0, 1, 3; 0, 2, 3〉 + |0, 1, 4; 2, 3, 5〉 − (↑↔↓)
S = 1 L = 2 Sz = 0 Lz = 0 (8.73)

|r4〉 = −|0, 1, 3; 0, 2, 3〉 − |0, 3, 4; 0, 3, 5〉 + |1, 2, 4; 1, 2, 5〉 + |1, 4, 5; 2, 4, 5〉 + (↑↔↓)
S = 0 L = 2 Sz = 0 Lz = 0 (8.74)

|r5〉 = |0, 1, 2; 1, 2, 3〉 + |0, 1, 4; 2, 3, 5〉|0, 1, 5; 2, 3, 4〉 + |0, 2, 4; 1, 3, 5〉
+ |0, 2, 5; 1, 3, 4〉 + |0, 4, 5; 3, 4, 5〉 − (↑↔↓)
S = 1 L = 2 Sz = 0 Lz = 0 (8.75)

|r6〉 = 1/2|0, 1, 3; 0, 2, 3〉 + |0, 1, 5; 2, 3, 4〉 − |0, 2, 4; 1, 3, 5〉 − 1/2|0, 3, 4; 0, 3, 5〉
− 1/2|1, 2, 4; 1, 2, 5〉 + 1/2|1, 4, 5; 2, 4, 5〉 − (↑↔↓)
S = 1 L = 2 Sz = 0 Lz = 0. (8.76)

The corresponding lowest weight eigenstates of the Hamiltonian are

|r̃1〉 = −|1; 2〉 − |2; 1〉 + |4; 5〉 + |5; 4〉 Sz = 0 Lz = −2 (8.77)
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|r̃2〉 = |0, 1; 2, 3〉 − |0, 2; 1, 3〉 − 2|0, 3; 1, 2〉 − 2|0, 3; 4, 5〉 − |0, 4; 3, 5〉
+ |0, 5; 3, 4〉 − 2|1, 2; 0, 3〉 − |1, 3; 0, 2〉 + |2, 3; 0, 1〉 + |3, 4; 0, 5〉
− |3, 5; 0, 4〉 − 2|4, 5; 0, 3〉 Sz = 0 Lz = −1 (8.78)

|r̃3〉 = |; 1, 2〉 + |; 4, 5〉 Sz = −1 Lz = −2 (8.79)

|r̃4〉 = −2|0; 3〉 − 2|3; 0〉 + |1; 2〉 + |2; 1〉 + |4; 5〉 + |5; 4〉 Sz = 0 Lz = −2 (8.80)

|r̃5〉 = |; 0, 3〉 Sz = −1 Lz = −2 (8.81)

|r̃6〉 = |; 1, 2〉 − |; 4, 5〉 Sz = −1 Lz = −2. (8.82)

States |r̃3〉, |r̃5〉 and |r̃6〉 describe one species of electrons (spin down). The remaining
states cannot be obtained by the prescription detailed in the end of section 5.

Appendix B

In this section we collect the expressions for the matrix elements of the Hamiltonian, Î 2, Î 3

and Ŝ2. Let p̃1 < · · · < p̃t be the momenta of spin-up electrons that are in P = {pk} but
not in P ′ = {p′

k}, p̃t+1 < · · · < p̃2t be the momenta that are in P ′ but not in P . Similarly,
we can define Q = {qk}, q̃1 < · · · < q̃u, and q̃u+1 < · · · < q̃2u. The number of elements
in the intersection of P with P ′ and Q with Q′ is therefore L(P ∩ P ′) = m − t and
L(Q ∩ Q′) = m− u. We also define

ε(r′, r) = 〈r′|d†p̃t+1↑dp̃1↑ . . . d
†
p̃2t↑dp̃t↑d

†
q̃u+1↓dq̃1↓ . . . d

†
q̃2u↓dq̃u↓|r〉 = ±1. (9.83)

In this notation the matrix elements of S2,H, Î 2 and Î 3 take the following form:

〈r′|S2|r〉 =


n− L(P ∩ Q) if |r〉 = |r′〉
ε(r′, r) if R = R′ and u = t = 1
0 otherwise

(9.84)

〈r′|H |r〉 = u− 1

2

2m∑
k=1

cos
πrk

n
δr′,r − u

2n
ε(r′, r)δu1δt1δPP ′ (9.85)

〈r′|Î 2|r〉 = u− 1

4

2m∑
k=1

sin
2πrk
n
δr′,r − u

2n
ε(r′, r)δu1δt1δPP ′ (9.86)

〈r′|Î 3|r〉 = (u− 1)3

128

2m∑
k=1

sin
3πrk
n
δr′,r − u2(u− 1)

8n2


 m∑
k,j,l=1

cos
πpk

n
cos

π(qj − ql)

n
δr′,r

+ p ↔ q


 − u(u− 1)2

8

m∑
k=1

sin
πpk

n
cos

πqk

n
δr′,r + ε(r′, r)

u2(u− 1)

8n2

×
m∑
k=1

[
cos

π(p̃2 + q̃2 − p′
k)

n
+ cos

π(p̃2 − q̃1 − p′
k)

n
+ p ↔ q

]
δu1δt1δPP ′

+ ε(r′, r)
u2(u− 1)

4n2

[
(cos

π(q̃4 − q̃2)

n
− cos

π(q̃4 − q̃1)

n

]
δPP ′
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×
m∑
k=1

cos
πp′

k

n
δu2δt0 + (p ↔ q, u ↔ t)

]
+ ε(r′, r)

u2(u− 1)

8n2

×
[(

cos
π(q̃4 − q̃2 − p̃1)

n
+ cos

π(q̃4 − q̃2 − p̃2)

n
+ cos

π(q̃3 − q̃2 − p̃1)

n

+ cos
π(q̃3 − q̃2 + p̃2)

n

)
δu1δt2 + (p ↔ q, u ↔ t)

]
δPP ′ − ε(r′, r)

u(u− 1)2

16n

×
[

cos
π(p̃1 + p̃2)

n

(
2 cos

π(q̃1 − q̃2)

n
+ 1

)
+ cos

π(p̃1 + q̃2)

n
+ p ↔ q

− cos
π(p̃1 − q̃1)

n
− cos

π(p̃2 − q̃2)

n
− cos

π(p̃2 − p̃1)

n
+ cos

π(p̃1 + q̃1)

n

− cos
π(p̃2 − q̃1)

n
− 1/2

]
δu1δt1δPP ′ . (9.87)
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