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Abstract
We study general quantum integrable Hamiltonians linear in a coupling constant
and represented by finite N × N real symmetric matrices. The restriction on
the coupling dependence leads to a natural notion of nontrivial integrals of
motion and classification of integrable families into types according to the
number of such integrals. A type M family in our definition is formed by
N–M nontrivial mutually commuting operators linear in the coupling. Working
from this definition alone, we parameterize type M operators, i.e. resolve the
commutation relations, and obtain an exact solution for their eigenvalues and
eigenvectors. We show that our parameterization covers all type 1, 2 and 3
integrable models and discuss the extent to which it is complete for other types.
We also present robust numerical observation on the number of energy-level
crossings in type M integrable systems and analyze the taxonomy of types in
the 1D Hubbard model.

PACS numbers: 02.30.Ik, 03.65.Aa, 71.10.Fd, 71.27.+a, 75.10.Dg, 02.10.Yn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum integrability is usually defined as the existence of a sufficient number of nontrivial
operators commuting with the Hamiltonian. Such operators are interchangeably referred to as
‘conserved currents’, ‘families of commuting Hamiltonians’, integrals of motion, ‘dynamical
conservation laws’ or simply ‘dynamical symmetries’, and are distinct from the ordinary
spacetime or internal space symmetries, e.g. momentum and spin conservation, particle–hole
symmetry, etc. Quantum integrable systems are believed to have a range of properties, which
are sometimes proposed as alternative notions or tests of integrability—an exact solution for
their eigenstates, Poissonian energy level statistics, level crossings violating the Wigner–von
Neumann non-crossing rule in parameter-dependent systems and nondiffractive scattering, see
e.g. [1] for a review.
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There are two problems with the above definition. First, it has proved difficult to precisely
formulate what constitutes a nontrivial commuting operator. For instance, any Hamiltonian
commutes with projectors onto its eigenstates, so the mere statement that there exist commuting
operators is not meaningful. In classical mechanics, one requires functional independence of
the integrals of motion [2]. This criterion is not similarly useful in quantum mechanics where
any two commuting matrices are functionally dependent unless there are degeneracies in the
spectra of both of them [3]. Second, in a system with a finite Hilbert space, we clearly cannot
have an infinite number of independent integrals, so we need to specify how many conserved
currents are needed to say that the system is integrable. This is especially problematic in
systems with no well-defined classical limit, e.g. the Hubbard model on a finite lattice
[4, 5], as, unlike the classical mechanics, there is no natural notion of the number of degrees of
freedom. There is a similar lack of clarity in delineating the properties of quantum integrable
systems. For example, there are poorly understood exceptions to the energy level statistics
and level crossing tests [1, 6] as well as no convincing derivation of the exact solution and
other properties from the notion of integrability. This is in sharp contrast to the situation in
classical mechanics where the Liouville–Arnold theorem [2] demonstrates an exact solution
by quadratures and quasi-periodic motion on invariant tori to be direct consequences of
integrability.

In this paper, we show that most of these problems can be resolved if one considers
Hamiltonians and conserved currents that depend on a real parameter in a certain fixed way.
This requirement alone leads to a well-defined notion of quantum integrability allowing us to
classify and explicitly construct various integrable models, obtain their exact spectra, as well as
derive other properties, directly from their integrability. Examples of such a real parameter, call
it u, in condensed matter integrable systems are Coulomb interaction in the Hubbard model,
magnetic field in Gaudin magnets with a boundary term [7], anisotropy in the XXZ Heisenberg
model, interaction strength in the BCS model [9], etc. Dynamical symmetries depend on the
same parameter in contrast to ordinary symmetries which are u-independent. Cases with no
such parameter dependence, e.g. the isotropic Heisenberg magnet and the Gaudin model in
the zero field [9], often correspond to a more general integrable model at a specific value of
the parameter. In the Gaudin and BCS models, the Hamiltonian and all dynamical symmetries
are linear in u [7, 10, 11], while in the Hubbard and XXZ models, the Hamiltonian and the
first conserved current are linear, while higher currents are higher order polynomials in u
[12, 13–17].

Note that in each of the above examples, there is a subset of mutually commuting
operators, including the Hamiltonian, linear in the parameter. Let us therefore consider
N × N Hermitian operators of the form H(u) = T + uV and require the existence of
dynamical symmetries linear in u. A simple but important observation is that this restriction on
u-dependence leads to a natural notion of a nontrivial commuting partner. A typical (‘non-
integrable’) H(u) will commute only with a single (trivial) operator linear in u, namely with
H̃(u) = (a + bu)I + cH(u), where a, b and c are real numbers and I is an identity operator.
The requirement that there exists a nontrivial commuting partner linear in u imposes severe
restrictions on H(u). Indeed, as we will see below, a real symmetric H(u) for which such a
partner exists is uniquely specified by a choice of no more than 4N real parameters, while
for a generic H(u) one needs N(N + 3)/2 real parameters to fix the matrix elements of T
and V .1 Thus, Hermitian operators with fixed parameter dependence separate into two distinct
classes—those that have nontrivial commuting partners and those that do not.

1 Up to an arbitrary u-independent orthogonal transformation (e.g. to a basis where T is diagonal), which adds
N(N − 1)/2 parameters in both cases.
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Further, there is a natural classification of families of parameter-dependent commuting
operators according to the number K of independent members they contain. Families with
the maximum possible number K = N (see below) of such operators are termed type 1, with
one less than the maximum—type 2, etc. The main results of this paper are as follows. First,
we construct type M families of commuting operators Hi(u) = T i + uV i for arbitrary M, i.e.
we solve commutation relations [Hi(u), H j(u)] = 0 for matrix elements of Hi(u). Second,
we obtain exact eigenvalues and eigenstates of each Hi(u). We thus derive the exact solution
from the integrability. Third, we observe that the energy levels of Hi(u) frequently cross and
determine the number of level crossings as a function of N and M. Type 1 (maximal) operators
were previously constructed in [6, 18]. Here we analytically obtain all type 2 and 3 and a
sub-class of type M real symmetric N × N operators for arbitrary M > 3. In our construction,
a type M commuting family is parameterized by 2N + M − 2 real parameters, while, as we
show, a generic type M involves 2N + 2M − 5 parameters.

There are typically u-independent symmetries common to the Hamiltonian and its
dynamical symmetries, e.g. total momentum, particle number, z component of the total spin,
etc. It makes sense to ‘factor’ all these out, i.e. to go to blocks that correspond to a complete
set of quantum numbers. Matrices we construct essentially represent such ‘irreducible’ blocks
of integrable Hamiltonians and their dynamical symmetries. As an example, we consider
irreducible blocks for the Hubbard model with six sites, three spin-up and three spin-down
electrons, and determine their types.

A toy version of the above approach to integrability based on studying parameter-
dependent commuting matrices was discussed in [19] in the context of level crossings in the
Hubbard model. A major breakthrough came with Shastry’s work [18] where he constructed
type 1 matrices. The advantages of this approach are conceptual simplicity, clear meaning
of independent integrals and freedom from specific details of particular integrable systems.
A significant disadvantage is that the Hi(u) correspond to isolated sectors/blocks of the
Hamiltonian and dynamical symmetries and it is difficult to establish a correspondence between
matrices Hi(u) and underlying operators whose blocks they represent. Motivated by Shastry’s
work, we proposed a vector space definition (see section 2) and the above classification of
integrable matrices into types, which allowed us to derive an explicit parameterization for type
1 matrices, map them to Gaudin magnets and obtain an exact solution for their spectra [6].
Further, we demonstrated that u-dependent energy levels of type 1 matrices have at least one
and at most (N − 1)(N − 2)/2 crossings, while levels of integrable matrices of higher types
do not have to cross, even though they frequently do.

In what follows, we first lay out the general strategy for resolving the commutation
relations in section 2. In section 3, we briefly review the type 1 construction of [18, 6]. Next,
we obtain all type 2 matrices in section 4. In section 5, we construct integrable matrices
of arbitrary type M, which includes M = 1 and 2 as particular cases. Exact eigenvalues
and eigenstates of type M are derived in section 6. Next, we present in section 7 ‘gauge’
redundancies in the ansatz parameterization. In section 8, numerical methods for generating
random commuting matrices and determining their type are presented and, thereby, the number
of parameters necessary to specify a type M commuting family is determined. In this section,
we will also discuss whether the construction of section 5 generates all commuting families.
Next, in section 9, we look at the frequent level crossings that occur in type M matrices and
relate their number to the properties of the discriminant of the characteristic polynomial of
those matrices. We analyze the typology of various Hamiltonian blocks of the 1D Hubbard
model in section 10. We conclude the main text with the summary and discussion of open
questions. Finally, various proofs, details and tangential results are relegated to appendices A
through C.
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2. Resolving the commutation relations

We start with primary definitions and general observations. First, we define type M operators.
As outlined in the introduction, the task of identifying commuting operators linear in a real
parameter u in the matrix representation reduces to finding a certain number, K, independent
N × N Hermitian matrices Hi(u) = T i + uV i such that

[Hi(u), H j(u)] = 0 for all u and i, j = 0, . . . , K − 1. (1)

Equating terms at all orders of u, we have

[T i,V j] = [T j,V i], [T i, T j] = [V i,V j] = 0. (2)

As discussed above, we also require that there be no u-independent symmetry common to all
Hi(u), i.e. there is no � �= aI such that [�, Hi(u)] = 0 for all u and i, where I is an N × N
identity matrix. When such symmetry is present, Hi(u) acquire block-diagonal structure and
the problem reduces to that of smaller matrices. Note also that every commuting family
contains the trivial member

H0(u) = (a + bu)I, (3)

where a and b are arbitrary real numbers.
In light of the restriction on the u-dependence, being independent of Hi(u) with

i = 0, . . . , K − 1 simply means linear independence, i.e.
∑

i aiHi(u) with real ai is zero
if and only if all ai = 0. Note that due to the absence of u-independent symmetries linear
independence of Hi(u) is equivalent to that of V i or T i separately. Further, K is defined as the
maximum number of independent commuting matrices in a given family. In other words, any
H(u) = T + uV that commutes with all Hi(u) is linearly dependent on those same Hi(u), i.e.

H(u) =
K−1∑
i=0

aiH
i(u). (4)

We see that a commuting family is a K-dimensional vector space VK where Hi(u) serve as
basic vectors. There is a certain freedom in choosing a basis in the vector space VK , which
will be exploited in sections 3 and 4.

It turns out that a typical matrix of the form T + uV has no nontrivial independent
commuting partners linear in u [6]; it commutes only with H0(u) = (a + bu)I and itself.
Commutation relations (1) impose strong constraints on the matrix elements of each Hi(u)

such that the probability of finding randomly generated matrices T + uV with nontrivial
commuting partners is zero. For example, in the 3 × 3 case, matrix elements of T and V must
meet a single algebraic constraint for such a partner to exist [19] and the number of constraints
increases with the size of the matrix. In our experience, finding an operator with even one
nontrivial commuting partner is quite difficult. A brute force approach to generating all such
operators numerically (see section 8) already becomes computationally prohibitive for N � 6.

Therefore, the minimum (and typical) number of independent Hi(u) in the family is
K = 2. The maximum possible number can be shown [6] to be K = N, i.e. K ranges from 2
to N. Following [6], we term the commuting families with the maximum number N of Hi(u)

type 1, those with N − 1 commuting operators type 2, etc up to type N − 1. An arbitrary type
M family is one with K = N −M +1 independent commuting N ×N matrices Hi = T i +uV i,
which consist of the trivial independent element H0(u) = (a+bu)I and K −1 nontrivial ones.

Thus, our task is to identify nontrivial solutions of commutation relations (2). An important
observation, which considerably simplifies this task, is that we have freedom to choose bases in
two distinct linear spaces without loss of generality. First, we can choose a basis in the ‘target’
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space—the Hilbert spaceHN on which Hermitian operators T i andV i act. Indeed, commutation
relations (2) are invariant with respect to transformations (T i,V i) → (U†T iU,U†V iU ),
where U is any u-independent unitary operator. Second, we have freedom to choose a
basis in the vector space VK of commuting operators, i.e. to make linear transformations
Hi(u) → ∑

j ai
jH

j(u) with any real, u-independent and nondegenerate matrix (ai
j).

It is convenient to choose the basis in the target space to be the common eigenbasis of
the mutually commuting matrices V i. In this basis, V i are diagonal matrices whose nonzero
entries are denoted by di

k, i.e.

diagonal of V i = (
di

1, di
2, . . . , di

N

)
. (5)

The commutation relation [T i,V j] = [T j,V i] in this basis reads (di
k −di

m)T j
km = (d j

k −d j
m)T i

km.
This implies that an auxiliary antisymmetric matrix S whose matrix elements are

Skm ≡ T i
km

di
k − di

m

= T j
km

d j
k − d j

m

(6)

does not depend on i, i.e. is the same for all members of the family. Moreover, it follows from
equation (6) that

T i = W i + [
V i, S

]
, (7)

where W i is a diagonal matrix (the diagonal of T i) [18]. Its nonzero elements are denoted by
f i
k,

diagonal of T i = (
f i
1, f i

2, . . . , f i
N

)
. (8)

Now the commutation relations [V i,V j] = 0 and [T i,V j] = [T j,V i] are automatically
satisfied and equations (2) reduce to a single equation [T i, T j] = 0 or, equivalently, to

[[V i, S], [V j, S]] + [[V i, S],W j] − [[V j, S],W i] = 0. (9)

We have, for fixed i and j, a single matrix ‘master’ equation involving 4N + N(N − 1)/2
variables—4N corresponding to V i,V j,W i,W j and N(N − 1)/2 corresponding to S—and
N(N − 1)/2 constraints. In addition to this master equation, we will find that the quantity

νi jkl ≡ Si jS jkSklSli + SikSklSl jS ji + SilSl jS jkSki (10)

is an important one for determining the matrix type. We will see that for type 1, νi jkl = 0,
and for type 2, νi jkl = Gxix jxkxl , where G is some real parameter and x j, j = {1, . . . , N}, are
related to the matrix elements of V j.

Next, let us discuss the choice of basis in the vector space VK of K commuting operators.
Note from equation (7) that a linear transformation Hi(u) → ∑

j ai
jH

j(u) translates into the
same transformation on diagonal matrices V i and W i and does not affect the matrix S, i.e. S
is independent of the choice of basis in VK and in this sense is a universal characteristic of
the commuting family. Moreover, we will see that for types 1 and 2, the master equation (9)
reduces to a single equation on matrix elements of S. Once S is fully parameterized, V i and W i

can be determined from equation (9). For type M > 2 families, we do not attempt to resolve
equation (9) generally, but use type 1 and 2 resolutions to formulate a working ansatz that
generates such families.

As mentioned above, linear independence of Hi(u) is equivalent to that of V i. Given
equation (5), this means that K = N − M + 1 vectors �di are linearly independent. Then, via a
linear transformation V i → ∑

ai
jV

j, we can go to a canonical basis in the operator space VK

such that K − 1 = N − M of diagonal matrix elements di
k are zero for every i. This is the basis

we will use for type 1 and type 2 families in sections 3 and 4, respectively.
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All Hermitian type 1 matrices were explicitly parameterized in [6]. In constructing
higher types, here we will restrict our analysis to the real symmetric as opposed to general
Hermitian matrices for simplicity. Specifically, we will choose the defining parameters of type
M commuting families to be real and such that the resulting matrices are real symmetric. We
note however that all other properties of type M operators we construct in this paper—i.e.
commutation relations (2) and exact solution for the spectra of Hi(u) (see below)—persist
even when the parameters are unrestricted complex numbers.

3. Review of type 1 matrices

Here we review the main results for type 1 [18, 6] families of N × N commuting operators,
linear in a parameter u that have a maximum number (N) of linearly independent members,
which were also termed ‘maximal operators’ in [6]. As discussed in the previous section,
we can go from a general operator basis to a convenient canonical basis by taking linear
combinations of Hi(u) = T i + uV i. Since there are N linearly independent diagonal matrices
V i in the case of type 1, we can choose the basis so that all di

k in equation (5) are zero except
one, i.e. V i

kk ≡ di
k = δik for all i.

Consider equation (9) in the type 1 canonical basis. It turns out that the left-hand side of
this equation is an explicitly mostly empty matrix. Evaluating its nonzero matrix elements, we
obtain after some algebra

f i
j − f i

k = −Si jSik

S jk
, (11)

where i, j, k are distinct and f i
k are the diagonal matrix elements of T i, see equation (8).

Consistency requires that a triangular sum of such relations itself vanish, i.e. ( f i
j − f i

k)+ ( f i
k −

f i
l ) + ( f i

l − f i
j) = 0, from which follows

νi jkl = 0, (12)

where νi jkl is defined in equation (10). This is the main equation defining type 1 matrices
[18]. The key insight in [6] is the understanding that equation (12) necessarily implies the
parameterization

S jk = γ jγk

ε j − εk
, (13)

with unrestricted real parameters γ j and ε j characteristic of the commuting family (see also
[20] for an elegant alternative derivation of equation (13) with the help of Plúcker relations).

Once the matrix S is known, it is straightforward to calculate f i
k and matrices T i with the

help of equations (9) and (11). A general type 1 matrix H(u) = ∑N
i=1 diHi(u) with arbitrary

real di takes the form

[H (u)]mn = γmγn

(
dm − dn

εm − εn

)
, m �= n,

[H (u)]mm = u dm −
∑
j �=m

γ 2
j

(
dm − d j

εm − ε j

)
.

(14)

Equation (14) provides a complete explicit parameterization of all type 1 matrices. Note also
that the parameterization (14) is independent of the choice of basis in the operator space VK .

In [6], we further show that type 1 operators map onto a sector of Gaudin magnets in the
presence of the external magnetic field and as a consequence of this correspondence, we use

6
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the well-known exact solution of the Gaudin model [7, 9, 11] to furnish an exact solution for
type 1. The components of eigenvector �vm(u) of the type 1 matrix H(u) are

[�vm(u)] j = γ j

λm − ε j
, (15)

corresponding to the eigenvalue

Em(u) =
N∑

k=1

dkγ
2
k

λm − εk
, (16)

where the λi, i = 1, . . . , N, are subject to a single algebraic equation

N∑
j=1

γ 2
j

λm − ε j
= u. (17)

An intriguing consequence of this exact solution is that a type 1 H(u) typically multiply
violates the Wigner–von Neumann noncrossing rule [21–27] and, moreover, it is necessary
that it do so at least once [6].

4. Complete parameterization of type 2 matrices

In this section, we construct all type 2 families, i.e. linear vector spaces formed by N − 1
mutually commuting, independent matrices Hi(u) = T i + uV i. The derivation is similar to
that of type 1 in the previous section, but somewhat more involved. We first choose a convenient
canonical basis in the operator spaceVK as discussed in the end of section 2 and evaluate matrix
elements of equation (9) in this basis. This results in an equation constraining the matrix Skl

defining type 2 matrices, which we then solve. The final result—parameterization of type 2
operators—is given by equation (33).

There are N − 1 linearly independent diagonal matrices V i for any type 2 family.
Therefore, by taking linear combinations of Hi(u), we can go to a basis in the operator
space where only two of the di

k in equation (5) are nonzero. It is convenient to choose and
parameterize these nonzero matrix elements as di

j = 1/x j for some fixed j and di
i = −1/xi for

i = 1, 2, . . . , j − 1, j + 1, . . . , N. We also impose the following constraint on parameters xk:

N∑
k=1

xk = 0, (18)

so that the identity can be formed by linear combinations of the Hi(u), thereby ensuring that
it is an element of the commuting family.

Equation (9) in this basis yields

f i j
k − f i j

l = −S jkS jl

x jSkl
+ SikSil

xiSkl
, (19)

where k, l �= {i, j} and the diagonal elements of T i now depend on an additional index j. Note
that equation (19) holds for all j.2 Similar to the analog equation (11), consistency requires
that a triangular sum of such terms vanish, i.e.

(
f i j
k − f i j

l

)+ (
f i j
l − f i j

m
)+ (

f i j
m − f i j

k

) = 0, from
which it follows that xiν jklm = x jνiklm. Without loss of generality, we can define a quantity
Gi jkl such that νi jkl = Gi jklxix jxkxl , which implies that Gjklm = Giklm. This relation is general

2 N(N − 1)/2 distinct choices of (i, j) produce N(N − 1)/2 mutually commuting matrices Hi j(u) = T i j + uV i j that
all belong to the same type 2 family, i.e. only N − 1 of them are independent.

7
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and must be true for all distinct i, j, k, l, m, and therefore consistently permuting indices yield
Gi jkl = const = G, where G is some nonzero real parameter. We therefore obtain

νi jkl = Gxix jxkxl . (20)

We will show that equation (20) can be solved generically. Let us simplify by dividing the x’s,
i.e. let Si j ≡ S̃i j

√
xi

√
x j, from which it follows that

ν̃i jkl ≡ S̃i jS̃ jkS̃kl S̃li + S̃ikS̃kl S̃l jS̃ ji + S̃il S̃l j S̃ jkS̃ki = G. (21)

We are looking for a parameterization of S̃i j that resolves equation (21), ideally in a manner
that treats both of its indices similarly. Our strategy for pursuing this parameterization is to
find another equation nontrivially related to equation (21) and use that to eliminate some of
the S’s. More specifically, equation (21) involves four indices whereas the S’s are two index
objects—implying that equation (21) overdetermines the S’s. We are looking for an equation
involving fewer indices from which we derive a parameterization.

The S̃i j, like the Si j, are antisymmetric and, as it turns out, this property is sufficient to
identically satisfy the equation

ν̃m jkl S̃i jS̃ikS̃il − ν̃mikl S̃i jS̃ jkS̃ jl + ν̃mi jl S̃ikS̃ jkS̃kl − ν̃mi jkS̃il S̃ jl S̃kl = 0.

Given equation (21), we can remove an overall common factor G such that

S̃i jS̃ikS̃il − S̃i j S̃ jkS̃ jl + S̃ikS̃ jkS̃kl − S̃il S̃ jl S̃kl = 0. (22)

Equation (22) is now a nontrivial equation constraining the S̃i j beyond simple antisymmetry.
We can use equations (21) and (22) to eliminate S̃kl . This is the resulting equation

ρi j ≡ (S̃i jS̃ik)
2 + (S̃i jS̃ jk)

2 − (S̃ikS̃ jk)
2 − G

2S̃ikS̃ jk
+ S̃2

i j (23)

= (S̃i jS̃il )
2 + (S̃i jS̃ jl )

2 − (S̃il S̃ jl )
2 − G

2S̃il S̃ jl
+ S̃2

i j, (23)

where we have chosen to separate terms involving index k and those involving index l. Note
that both sides of the equation are identical but for the different indices, true for all k, l �= {i, j},
and it is for this reason that we can define the object ρi j as a two-index quantity though it is
defined through quantities involving three indices. From equation (23), we obtain

S̃2
i j(S̃ik + S̃ jk)

2 − (S̃ikS̃ jk + ρi j)
2 = G − ρ2

i j (24)

for all k �= {i, j}. The key result of our strategy is that equation (24) implies that

S̃ik + S̃ jk =
√

G − ρ2
i j

S̃i j
cosh χk,

S̃ikS̃ jk =
√

G − ρ2
i j sinh χk − ρi j

(25)

for some parameters χk.
Again, what we have done here is use the identically satisfied equation (22) to reduce

a four-index equation (21) to a number of three-index equations involving the index-less
parameter G and the two-index object ρi j. Actually, at this point, there is a simple algorithm
to completely determine all S’s. We can fix indices i and j and choose values for G, ρi j, S̃i j

and these new parameters χk, k �= {i, j}. Given these chosen values, the S̃ik and S̃ jk can be
determined using equation (25). Once we have values for S̃ik and S̃ jk, substitution into equation
(22) allows us to completely determine S̃kl , k, l �= {i, j}, i.e.

S̃kl = −S̃i j
S̃ikS̃il − S̃ jkS̃ jl

S̃ikS̃ jk − S̃il S̃ jl
= − 
̃l cosh χk + 
̃k cosh χl

sinh χk − sinh χl
, (26)

8
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where


̃m ≡ δm

√√√√G − ρ2
i j

S̃2
i j

cosh χm
2 − 4

√
G − ρ2

i j sinh χm + 4ρi j,

and δm = ±1 accounts for an inherent ambiguity in sign.
The above algorithm explicitly favors two indices over the others, i.e. the fixed i and j

above, and we would like to treat all indices in a unified way. Let us make the following change
of variables: sinh χm = (qεm + r)/(sεm + t) for q, r, s, t such that qt − rs = 1,3 and m �= {i, j}.
By substituting this into equation (26) and removing an overall scale (again without loss of
generality), we find that

S̃kl = 1

2

√
(λ1 − εk) (λ2 − εk) (λ1 − εl ) (λ2 − εl )


k + 
l

εk − εl
, (27)

given


m ≡ 
(εm) = δm

√
1 + P1

λ1 − εm
+ P2

λ2 − εm
, (28)

where the dependence of λ1, λ2, P1, P2 on parameters q, r, s, t, G, ρi j, S̃i j can be determined
with some algebra. We are not particularly interested in this functional dependence, however,
because equation (28) generally satisfies equation (21), i.e. if we choose parameters
λ1, λ2, P1, P2 and εm for 1 � m � N, all S̃kl given by equation (27), k, l = {1 . . . N},
satisfy equation (21) where in these preferred parameters G = −P1P2(λ1 − λ2)

2/16.
To define the type 2 Si j ≡ S̃i j

√
xi

√
x j fully, we can simply choose N−1 of the x j parameters

and determine the remaining one so that equation (18) is satisfied. We can, however, write x j

in a more transparent form. Let us introduce new real parameters γ j such that

x j = γ 2
j

(λ1 − ε j)(λ2 − ε j)
. (29)

By partial fraction decomposition

γ 2
j

(λ1 − ε j)(λ2 − ε j)
= − 1

λ1 − λ2

(
γ 2

j

λ1 − ε j
− γ 2

j

λ2 − ε j

)
, (30)

we see that we can impose equation (18) by requiring that λ1 and λ2 be among the N solutions
to

N∑
j=1

γ 2
j

λi − ε j
= B, (31)

where B is an arbitrary real number and εm are understood to be distinct. Given equation (27),
we find that type 2 Skl take the simple form

Skl = 1

2

γkγl

εk − εl
(
k + 
l ) . (32)

Fully parameterizing type 2 Skl is the lion’s share of the type 2 parameterization effort and
with a bit of algebraic manipulation we determine the f i

k for all k using equations (9) and (19),
which are linear in f i

k. Linear combinations of the resulting Hi(u) yield a general type 2 matrix

[H (u)]mn = γmγn

(
dm − dn

εm − εn

)

m + 
n

2
, m �= n,

[H (u)]mm = u dm −
∑
j �=m

γ 2
j

(
dm − d j

εm − ε j

)
1

2

(
m + 
 j)(
 j + 1)


m + 1
,

(33)

3 We choose this condition because with the four parameters there is a redundant overall scale. Choosing qt − rs = 1
fixes that scale and, as it turns out, simplifies a number of calculations.
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where

dm = g0 +
N−2∑
j=1

g j

λ j+2 − εm
(34)

and g j are arbitrary real numbers.
Equation (33) together with auxiliary equations (28), (31) and (34) provides a complete

parameterization of all type 2 commuting families. (2N + 3)-independent real parameters
B, P1, P2, γi and εi specify the commuting family; N − 1 real numbers gi further specify a
particular matrix within the family. The choice of all these parameters is unconstrained, except
simple explicit restrictions on P1 and P2 to ensure that equation (28) produces real 
m, which
we discuss in detail in the next section for general type M.

The choice of parameters is not unique. For example, a uniform shift εi → εi + c yields
the same family. The entire group of ‘gauge’ transformations on the parameters that leave type
2 commuting families invariant is explored in section 7. Interestingly, it turns out that in the
case of type 2, there is an additional gauge freedom not present for other types, which allows
an alternative, particularly transparent parameterization, see equation (60).

5. Type M—the ansatz parameterization

Explicitly constructing the most general type M � 3 commuting families is difficult if at all
possible (see the discussion in section 11 for more on this). However, it turns out that the type
2 formulas of the previous section can be generalized to obtain some type M families with
arbitrary M. The idea is to use the same equations (32) and (33) to generate the matrices, but
to extend equation (28) by including more poles in its radicand. Specifically, we take


m ≡ 
(εm), 
(σ ) = δ(σ )

√√√√1 +
M∑

j=1

Pj

λ j − σ
, (35)

dm = g0 +
N−M∑
j=1

g j

λ j+M − εm
, (36)

where δ(σ ) = ±1, Pj are real numbers and λm, m = {1, . . . , N} are solutions of equation (31).
In appendix A we prove that equation (33) with 
m and dm given by equations (35) and

(36), respectively, indeed produce type M matrices as defined in section 2, i.e. families of
K = N − M + 1 linearly independent mutually commuting matrices with no u-independent
symmetry. Equations (33) and (35) contain 2N + M + 1 parameters characterizing the
commuting family 2N γi’s and εi’s, M Pi’s and parameter B. As discussed in detail in section 7,
there are certain gauge transformations, such as a uniform scaling of γi and εi or a uniform shift
of εi, that leave the commuting family invariant. This allows us to fix three degrees of freedom
meaning that the number of parameters needed to uniquely specify a type M commuting family
produced by our ansatz is 2N + M − 2. In sections 8 and 11, we argue based on numerical
evidence and other considerations that a general type M � 3 family is uniquely specified by
2N + 2M − 5 parameters. This implies that our construction misses M − 3 parameters, i.e. it
does not yield all commuting families for types M > 3.

A natural way to choose a basis for the ansatz type M commuting family is to define the
K − 1 = N − M nontrivial Hi(u) such that g j = δi j in equation (36) for 1 � i � N − M.
For i = 0, we take H0(u) to be proportional to the identity matrix, as given in equation (3). In
other words,

Hi(u) = T i + uV i is given by equations (33) and (35) with dk → di
k = 1

λi+M − εk
(37)

10
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for i = 1, . . . , N − M. In particular, V i is a diagonal matrix and

diagonal of V i = (
di

1, di
2, . . . , di

N

) =
(

1

λi+M − ε1
,

1

λi+M − ε2
, . . . ,

1

λi+M − εN

)
. (38)

A general member of the commuting family is

H(u) =
N−M∑
i=0

giH
i(u), (39)

consistent with equations (33) and (36), where gi are arbitrary real coefficients.
Especially interesting in the structure of the ansatz is the form of equation (35). The

presence of these 
 j’s in equation (33) is what essentially distinguishes type M, M > 1,
from the type 1 operators reviewed in section 3, and therefore what allows for the systematic
decrease in the size of the commuting family, i.e. these 
’s see us go from the maximal operator
Skl = γkγl/(εk − εl ) to

Skl = 1

2

γkγl

εk − εl
(
k + 
l ) (40)

for type M. The successive inclusion of poles in the radicand of equation (35), i.e. increasing
numbers of Pi �= 0, incrementally decreases the size of the corresponding commuting family.
In particular, two such poles yield precisely the type 2 matrices of section 4 (see in particular
equation (28)), i.e. for M = 2, the ansatz is precisely the complete parameterization of type 2
given in the previous section.

For M = 1, the ansatz offers an alternate, but equivalent parameterization of type 1
matrices to that given in equations (14). To see this, consider the off-diagonal elements
of a general type 1 matrix given by the ansatz in light of the equation 
2

m − 
2
n =

P1(εm − εn)/(λ1 − εm)(λ1 − εn):

[H (u)]mn = γmγn
1

2

dm − dn


m − 
n

P1

(λ1 − εm)(λ1 − εn)
, m �= n. (41)

We can re-express equation (41) in the equation (14) form, i.e.

[H (u)]mn = γ̃mγ̃n

(
dm − dn

ε̃m − ε̃n

)
, m �= n,

if we have

ε̃ j = 2

P1

w
 j + x

y
 j + z

γ̃ j = γ j(
λ1 − ε j

) (
y
 j + z

) , (42)

where w, x, y, z are arbitrary real numbers satisfying wz − xy = 1. Note that this constitutes
a threefold redundancy in the ansatz parameterization of type 1 matrices. In section 7, we
will see that this redundancy is in addition to another threefold parametric redundancy
that all ansatz matrices share. Demonstrating the equivalence of the diagonal elements of
maximal matrices as defined by equations (14) to those of ansatz type 1 matrices, as given by
equations (33), proceeds similarly.

The above is sufficient to show that type 1 matrices, as specified by the above ansatz,
are precisely the type 1 matrices of section 3. Note, however, that there is a subtlety in the
definition of dm. In particular, the ansatz seemingly stipulates (i.e. through equation (36)) a
restricted set of allowed V , even for type 1, whereas equations (14) take the V to be diagonal
matrices with arbitrary real diagonal elements dm. In fact, these are equivalent statements
because for M = 1 there are N gj and N dm in equation (36) related via an N × N matrix. This

11
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matrix is similar to the Cauchy matrix [28] and can be similarly shown to be nondegenerate.
Therefore, for an arbitrary choice of dm, there always exists the corresponding choice of gj

and vice versa.
Note that equations (14), (33) and (35), M = 1, are explicitly identical when P1 = 0

and all 
m = 1. However, the ansatz allows for some 
’s to be −1 when P1 = 0. So for
an ansatz type 1 matrix with P1 = 0—which we might call a ‘type 0’ matrix—if 
i = 
 j,
Si j has the form of equation (13). If, however, 
i = 1 and 
 j = −1, Si j vanishes. It follows
that if we take a type 1 commuting family and tune |P1| ever smaller, while keeping all other
parameters fixed, we find that when P1 = 0 we are left with pseudo-type 1 matrices with
block diagonal structure and, consequently, u-independent symmetry. Indeed, these ‘type 0’
commuting families will be the direct sum of two different type 1 families.

5.1 Ensuring reality of ansatz matrices

Next, we discuss the conditions on ansatz parameters such that the resulting matrices are real
symmetric. For unrestricted complex parameters γi, εi, Pi, B and gi, the above construction,
equations (33) and (35), produces complex symmetric matrices for which all properties of type
M matrices save for reality, but including the exact spectra derived in the next section, hold.

Moreover, it can be shown that there exist complex parameters such that the corresponding
matrices are real type M, and where the complexity cannot be removed simply by multiplication
by some common factor. A block of the 1D Hubbard model in appendix C provides an
interesting example of such a situation. However, the most general constraint on complex
parameters γi, εi, Pi, B and gi to ensure real type M matrices appears to be rather nontrivial
and we will not attempt to derive it here. Instead, let us choose the parameters B, γ j, ε j, Pi and
gi to be real and constrain them so that equations (33) and (35) always yield real matrices. In
this case, the only problematic component for producing real matrices is the 
 j, we still need
the radicand in equation (35) to be positive.

First, we rewrite the expression under the square root in equation (35) as follows:

1 +
M∑

j=1

Pj

λ j − σ
=

∏M
j=1 (φ j − σ )∏M
j=1 (λ j − σ )

, (43)

i.e. we traded M parameters Pj for new M parameters φ j. Note that Pj’s can be expressed in
terms of φ j’s by computing the residues at the corresponding poles

Pj =
∏M

k=1(φk − λ j)∏
k �= j(λk − λ j)

.

Let us order ε j so that ε j < ε j+1. Recall that λ j are solutions of equation (31). It can be
shown (see e.g. [6]) that they are all real and lie between consecutive ε j. We have εi < λi < εi+1

for B > 0 and εi−1 < λi < εi for B < 0, where i = 1, . . . , N. If we now take φ j, j = 1, . . . , M,
to be also real and such that

ε j < φ j < λ j for B > 0
λ j < φ j < ε j for B < 0,

(44)

all terms φ j−ε j

λ j−ε j
> 0, which is sufficient (though not necessary) to ensure the positivity of the

radicand in equation (35) and reality of the matrix elements.

6. Exact solution

In this section, we present the exact solution of the type M matrices parameterized by the
above ansatz, see section 5. The exact solution of the eigenvalue problem for type M matrices
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proceeds in a manner reminiscent of that of the type 1 operators of [6], see also section 3. A
particularly striking feature of this exact solution is that though these operators have explicitly
more structure than type 1 operators, the exact solution is nevertheless essentially just as
simple, in that the entire eigensolution derives directly from the solution of a single algebraic
equation. This is in stark contrast to the situation typical with Bethe’s ansatz where there are
a large number of coupled algebraic equations to be solved to derive a small portion of the
spectrum.

We want to determine the exact solution Hi(u) · �vσ (u) = Ei
σ (u)�vσ (u), where Hi(u) is

a basic operator specified in equation (37), and �vσ (u) and Ei
σ (u) are its eigenvectors and

corresponding eigenvalues, respectively. The ansatz eigensolution is as valid for type 1, as it is
for all ansatz type M and so the components of eigenvector�vσ (u) must bear some resemblance
to that of our existing type 1 exact solution. Let us modify equation (15) somewhat and assume
that the jth component of this eigenvector is given by

vσ
j ≡ [�vσ (u)] j = 1

2

γ j

σ − ε j
(
(σ ) + 
 j). (45)

Expanding in terms of our parameters and using equations (37) and (40), we obtain, after some
algebraic manipulation,

[Hi · �vσ ] j = vσ
j

∑
m

1

λi − εm

γ 2
m

2


(σ ) + 
m

σ − εm

+ vσ
j

λi − ε j

[
u −

∑
m

γ 2
m

2


(σ ) + 
m

σ − εm
− B

2
(
(σ ) − 1)

]
.

Note that the second term is a j-dependent coefficient on the jth putative eigenvector
component. This term must vanish in order for equation (45) to constitute an eigenvector.
Thus, given an eigenvector of matrix Hi(u) specified by equation (45) the corresponding
eigenvalue is

Ei
σ =

∑
m

1

λi − εm

γ 2
m

σ − εm

1

2
(
m + 
(σ )), (46)

where σ is such that the following algebraic equation:∑
m

1

2

γ 2
m

σ − εm
(
(σ ) + 
m) − B

2
(
(σ ) − 1) = u, (47)

is satisfied. We should note, however, that it remains to be proven that equation (47) generically
yields N distinct solutions given both sign choices for 
(σ ), see equation (35). Nevertheless,
the numerical analysis has yielded no counterexample.

The behavior of the spectrum of a typical type M operator as a function of the parameter
u is particularly interesting. As distinct from the spectra of random real symmetric operators
linear in a parameter, random type M matrices—whose parameters B, γ j, ε j, λi, Pi are chosen
from random uniform distributions—exhibit frequent violations of the Wigner–von Neumann
noncrossing rule, see figure 1, which states that eigenvalues of the same symmetry do not
cross as a function of a single coupling parameter.

It is interesting to note that the numerical observation of individual Hi(u) suggests that
they undergo concurrent crossings of N − 2 eigenvalues at some value of u, see figure 2. This
is a surprising phenomenon that one would rightly expect from type 2 matrices4 but, perhaps,
not general type M matrices.

4 As explained in section 2, in the canonical basis each type M basic operator at u = ∞ is a diagonal matrix with
N − M zero eigenvalues.
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6 4 2 2 4 6
u

1.0

1.5

E

Figure 1. Numerical energy levels of a 12 × 12 type 4 operator H(u) = ∑8
i=0 giHi(u) with

parameters B, γ j, ε j, Pj and g j randomly chosen over a uniform distribution of real numbers.
The eigenvalues exhibit many level crossings, frequently violating the Wigner–von Neumann
noncrossing theorem.

4 2 2 4 6 u

50

50

E

Figure 2. Numerical energy levels of a 12 × 12 type 4 operator Hi(u), i = 3, with parameters
B, γ j, ε j, λi, Pi identical to those in figure 1. Note that the eigenvalues exhibit N−2 = 10 concurrent
level crossings at a particular value of u.

We can explain this phenomenon by considering the Hi(u) eigenvalues. At a given u, and
for all σ satisfying equation (47) we find, through some algebraic manipulation,

Ei
σ =

∑
m

1

λi − εm

γ 2
m

σ − εm

1

2

(

m + 
(σ )

) = 1

λi − σ

[
u − 1

2

(
B +

∑
m

γ 2
m

λi − εm

m

)]
. (48)

Thus, at ũ = 1
2

(
B+∑

m
γ 2

m
λi−εm


m
)

we find that, for σ �= λi, the σ th eigenvalue of Hi(ũ) is zero.
Naturally, not all the eigenvalues can vanish, otherwise Hi(ũ) is trivial. Indeed, setting σ = λi

and u = ũ in equation (47), we find that it is solved for both sign choices for 
(σ ), i.e. equation
(47) has a doubly degenerate solution σ−(ũ) = σ+(ũ) = λi, such that 
(σ+) = −
(σ−).
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Numerically, we find confirmation of this phenomenon wherein N − 2 σ ’s correspond to zero
eigenvalues, while the other two eigenvalues at ũ are nonzero.

7. Gauge redundancy in the ansatz parameters

Given a set of real parameters B, γ j, ε j, λi, Pi defining a type M commuting family, one might
ask whether these parameters are unique, i.e. does there exist a set B̃, γ̃ j, ε̃ j, λ̃i, P̃i yielding the
same type M commuting family?

On inspection, it is apparent that parameters are, in fact, not unique, e.g. a uniform shift
of the ε (and λ) parameters leaves equations (33) and (35) unchanged. Similarly, one can find
a variety of uniform scaling schemes under which all matrix elements are invariant.

More interesting, however, is the following linear fractional parameter transformation:

ε̃ j = wε j + x

yε j + z
, λ̃ j = wλ j + x

yλ j + z
, γ̃ j = γ j

yε j + z

(ς ), P̃j = 1


2(ς )

Pj

(yε j + z)2
,

(49)

where w, x, y, z are arbitrary real parameters subject to constraint wz − xy = 1, ς = −z/y and

(ς ) is defined in equation (35). It can be shown then that the above transformation yields the
corollary transformation:


̃ j = 
 j


(ς )
. (50)

By direct computation it can be shown that the Si j and, therefore, all off-diagonal matrix
elements of the members of the ansatz commuting families are invariant under the above. Now
consider the action of this transformation on diagonal matrix elements of the basic commuting
matrix Hi(u) = T i + uV i given by equations (37) and (38). For V i we have

d̃i
j ≡

( λi

1 − ς−1λi
− ε j

1 − ς−1ε j

)−1
= di

j(1 − ς−1λi)
2 + ς−1(1 − ς−1λi). (51)

We see that the effect of the transformation on the diagonal matrix V i is a uniform scaling by
(1 − ς−1λi)

2 and shift by a trace, ς−1(1 − ς−1λi)I, i.e.

Ṽ i = (1 − ς−1λi)
2V i + ς−1(1 − ς−1λi)I. (52)

Using partial fraction decomposition, see equation (30) and equation (35), it can be shown
that

(1 − ς−1λi)
−2H̃i(u) = Hi

[
u

(1 − ς−1λi)2
+

∑
j

γ 2
j


(ς ) + 
 j

ς − ε j
− B

2
(
(ς ) − 1)

]
− I

∑
j

γ 2
j


 j + 
(ς )

(λi − ε j)(ς − ε j)
,

i.e. the gauge transformation preserves the matrix elements of the type M matrices, up to a
uniform rescaling, a shift in the coupling parameter u and the addition of a multiple of the
identity matrix.

Type 2

With respect to the ansatz parameterization, in addition to the invariance under the above
transformation, type 2 matrices have a parametric redundancy not shared by types M > 2. The
numerical work undertaken to ‘reverse engineer’ ansatz parameters directly from the matrix
elements of M > 2 commuting matrices produced by the ansatz (see appendix B) yields back
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the input parameters, modulo the transformation (49). However, type 2 matrices exhibit a 1D
gauge freedom beyond that of equations (49).

To see where this extra redundancy comes from, consider again equation (27). Let us now
allow εm to be a smooth function of a parameter t such that

S̃mn = 1

2


̃ (εm(t), εn(t)) + 
̃ (εn(t), εm(t))

εm(t) − εn(t)
, (53)

where 
̃ (α, β) ≡ δm
√

(λ1 − α) (λ2 − α) (φ1 − β) (φ2 − β) and φ1, φ2 are defined by the
equation

(φ1 − α) (φ2 − α)

(λ1 − α) (λ2 − α)
= 1 + P1

λ1 − α
+ P2

λ2 − α

for all α. By direct computation, it can be shown that S̃mn is t-independent if(
dεm

dt

)2

= (λ1 − εm(t)) (λ2 − εm(t)) (φ1 − εm(t)) (φ2 − εm(t)) , (54)

i.e. εm(t) is the elliptic function of t corresponding to equation (54) with initial conditions
εm(0) ≡ εm. Thus, S̃mn is invariant under the transformation εm(0) → εm(t).

A general elliptic function—i.e. one defined by equation (54) wherein λ1, λ2, φ1, φ2 are
arbitrary complex numbers—is related to a specific Jacobi elliptic function through a linear
fractional transformation. Concretely,

ε j(t) = wk sn((t j + t)/τ ) + x

yk sn((t j + t)/τ ) + z
, (55)

where w, x, y, z are complex numbers such that wz − xy = 1 and

wλ1 + x

yλ1 + z
= k−1,

wλ2 + x

yλ2 + z
= −k−1,

wφ1 + x

yφ1 + z
= k

wφ2 + x

yφ2 + z
= −k, (56)

τ = ±k
√

(−y2k2 + w2)(−y2k−2 + w2), and k is any one of the four roots of the equation(
k − k−1

k + k−1

)2

= (λ1 − φ1)(λ2 − φ2)

(λ1 − φ2)(λ2 − φ1)
. (57)

Elliptic functions have a number of beautiful transformation properties. Interestingly, it can
be shown, using the well-known ‘angle’ addition formulae involving Jacobi elliptic functions
[29], that

sn(t/τ + κ/4) = 
 j/
 (−z/y) , (58)

where 
(σ ) is defined as in equation (28) and κ is one of the characteristic periods of these
doubly periodic functions. This is a surprising intermingling of ε j and 
 j, the broader meaning
of which remains mysterious.

The most compelling such exploitation of the behavior of Jacobi elliptic functions comes
in reconsidering equation (53). By directly substituting equation (55) into equation (53), we
find that

S̃mn = 1

2τ

cn ((tm + t)/τ ) dn ((tn + t)/τ ) + cn ((tn + t)/τ ) dn ((tm + t)/τ )

sn ((tm + t)/τ ) − sn ((tn + t)/τ )
. (59)

However, S̃mn is independent of the elliptic parameter t. We can make this t-invariance manifest
by using the addition law properties of Jacobi elliptic functions [29], whereby it can be shown
that
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S̃mn = 1

2τ

cn
( tm−tn

2τ

)
dn

( tm−tn
2τ

)
sn

( tm−tn
2τ

) , (60)

where sn2 + cn2 = 1 and k4sn2 + dn2 = 1.
This parametric redundancy is peculiar to type 2—the naı̈ve generalization to higher types,

i.e. extending equations (53) and (54) by including λi, φi, 1 � i � M and generating ε j(t)’s
that satisfy hyperelliptic differential equations does not yield an invariant analog of equation
(53). That such a simple, geometric redundancy is embedded in the derived construction of
type 2 matrices is both beautiful and compelling; however, its meaning is unclear.

8. Random generation of commuting matrices and completeness of the ansatz

In this section, we address the issue of completeness of the ansatz—whether all type M > 2
commuting matrices are also ansatz matrices, i.e. for any pair of commuting matrices both
linear in a parameter u do ansatz parameters B, γ j, ε j, λi, Pi and gi exist that yield back these
matrices? As yet, we have no analytic means to directly answer this question, but numerically
we find that the answer is ‘Yes’ for M = 3 and ‘No’ for M > 3. Specifically, numerical analysis
shows that 2N + 2M − 5 continuous parameters are needed to uniquely specify a generic type
M commuting family, i.e. the ansatz of section 5 is short by M − 3 parameters.

Below we will detail this analysis, wherein we

(1) generate two random commuting matrices and determine the type of the commuting
family they belong to,

(2) and then process one of these matrices through an algorithm designed to check whether
a matrix belongs to an ansatz type M commuting family and extract ansatz parameters if
it does.

Recall from section 2 that any two commuting symmetric matrices H1(u) = T 1 + uV 1

and H2(u) = T 2 + uV 2 can be represented as H1(u) = uV 1 + [V 1, S] + W 1 and
H2(u) = uV 2 + [V 2, S] + W 2, where V 1,V 2,W 1,W 2 are diagonal and S is an antisymmetric
matrix. [H1(u), H2(u)] = 0 is then equivalent to (see equation (9))

[[V 1, S], [V 2, S]] + [[V 1, S],W 2] − [[V 2, S],W 1] = 0. (61)

It turns out that we can generate a pool of generic commuting matrices by brute forcing
a solution to equation (61). Using Mathematica’s FindRoot [30] function—an algorithm
designed to search a D-dimensional parameter space for solutions to a set of D equations—we
input 4N random real values for the nonzero elements of V 1,V 2,W 1,W 2 and ask FindRoot
to find a solution S to equation (61) whose matrix elements are close to those of a randomly
generated antisymmetric seed matrix. Typically, FindRoot is able to quickly find such an
antisymmetric matrix. This solution appears to be one of many in a large discrete set of
compatible antisymmetric matrices, not all of them real. We know that there are many solutions
because changing the random seed matrix, given the same inputs V 1,V 2,W 1,W 2, frequently
sees FindRoot land on an entirely different antisymmetric matrix.

We believe that the solution set is discrete because when Mathematica’s NSolve—an
algorithm designed to search for many numerical solutions to an arbitrary set of constraints—
attempts to solve equation (61) given those same 4N inputs, it manages to generate a discrete
set of S. However, if we decrease the number of inputs, e.g. specify only 4N − 1 inputs,
NSolve very quickly indicates that the system is under-constrained by at least one equation
and randomly generates a linear constraint so as to proceed toward calculating a solution set.

In practice, we observe that the FindRoot algorithm can find at least one solution to
equation (61), given 4N inputs. Note, though, that this method of randomly generating

17



J. Phys. A: Math. Theor. 44 (2011) 395302 H K Owusu and E A Yuzbashyan

1

2

3
4

6 6

1

2

3

4 5

7 7

1

2

3

4

5 6

8 8

1
2 3

4

5
6 7

9 9

1

2
3 4

5

6 7 8

10 10

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3. The distribution of various matrix types 1 � M � N − 2 among randomly generated
integrable matrices of sizes N = 6, 7, 8, 9 and 10. 4N random real values (flatly distributed
between −1 and 1) are given to the nonzero matrix elements of diagonal matrices V 1,V 2,W 1,W 2

and equation (61) is solved numerically. At each iteration of random generation, one such S solution
is chosen among a large set of such solutions, and matrices H1(u) and H2(u) are constructed and
their type determined. We observe that random generation favors lower types, and we note with
some surprise that there are types that appear with extremely low (albeit finite) frequency, e.g.
8 × 8 type 6, or not at all, 6 × 6 type 3.

commuting matrices is independent of the matrix type, i.e. nowhere in the procedure does
one explicitly specify the size of the commuting family to which H1(u) and H2(u) belong.
The initial 4N parameters defining matrices V 1,V 2,W 1,W 2 and the antisymmetric solution
matrix S correspond to some type M commuting family, and we can determine the value of M
by counting the number of linearly independent matrices in the commuting family.

In particular, we take a putative matrix Hk(u) = uV k + W k + [V k, S], where V k and W k

are diagonal matrices whose nonzero entries, dk
m and f k

m, respectively, are undetermined real
variables, and solve the commutation relation [H1(u), Hk(u)] = 0. There will be N(N − 1)/2
equations linear in these 2N unknown dk

m and f k
m. Let p be the number of these equations found

to be linearly independent. Then, it follows that because Hk(u) is a type M matrix and, by
definition, we can only freely choose K = N − M + 1 of the nonzero matrix elements of V k

and the overall trace of W k, p = 2N − (K + 1), i.e. the commutator yields p = N + M − 2
linearly independent constraints on V k and W k. Thus, counting the number p of independent
equations shows the matrix type, M = p − N + 2.

We observe that this procedure for generating generic commuting matrices yields a
distribution of types weighted toward the lower end, see figure 3. Interestingly, out of many
hundreds of random generations, not one 6 × 6 type 3 matrix was generated, even though we
know that they exist and can be readily made by the ansatz.

We cannot as yet prove that given some random diagonal matrices V 1,V 2,W 1,W 2, a
solution S must always exist for equation (61), but for the reasons stated above we find
empirically that 4N parameters are always sufficient and apparently necessary to generate
two distinct commuting matrices. Accordingly, let us assume 4N as the correct number of
parameters necessary to specify two distinct, generic N × N real symmetric commuting
matrices, linear in parameter u, regardless of the type. If those two matrices are type M, of
those 4N inputs 2(N − M + 2) are used to uniquely determine the two independent members
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of the commuting family, i.e. 2(N − M + 1) for both unique V ’s and an extra two inputs to
fix a trace on both W ’s not constrained by the commutation relations. In addition, we can
remove an overall scale on S matrix elements. This leaves 2N + 2M − 5 of our initial 4N input
parameters to uniquely specify a generic type M commuting family.

Are all type M matrices also ansatz?

We already know that all type 1 and 2 matrices conform to the ansatz—this is essentially what
the ansatz was designed to do, see sections 4 and 5. Now let us consider ansatz type M � 3
matrices. Counting ansatz parameters B, γ j, ε j, Pi and removing the parametric redundancies
(see section 7), we are left with 2N + M − 2 parameters to uniquely specify an ansatz type
M � 3 family. Compared to the number of parameters needed to specify a generic type M
commuting family, we see that ansatz type M families appear smaller by M − 3 continuous
parameters.

These parameter-counting arguments strongly suggest that a generic type M commuting
matrix is not an ansatz matrix, i.e. the ansatz generates only a small subset of type M for
M > 3. The case of type 3 appears marginal, i.e. on the one hand the preceding argument
indicates that there are sufficient parameters for ansatz to cover all of type 3, and on the other
hand the ansatz is a naı̈ve extension on a full parameterization of type 2 and there is no obvious
reason for the ansatz to extend fully to type 3.

To gain further insight into the completeness of the ansatz, we randomly generate generic
commuting matrices of arbitrary type (see above) and subject them to an algorithm (described
in detail in appendix B) that reverse engineers the ansatz parameters from the matrix elements
if the matrix is ansatz type M. However, when we run generic commuting matrices through
this algorithm, all observed matrices of type M > 3 are seen not to be ansatz matrices. In
particular, in these cases, the algorithm is unable to find nontrivial 
 j satisfying equation (B.3).

What is surprising, though, is that the ansatz carries no guarantee that it covers type 3,
and yet every observed, randomly generated type 3 matrix has an ansatz parameterization. In
view of this result, we conjecture that the ansatz is complete for types 1 and 2—which we
have proved—and for type 3, while incomplete for general type M > 3 by an unknown set
of M − 3 parameters, which we note empties for type 3. In section 11, we provide further
arguments supporting this conjecture.

9. Level crossings

One of the signatures of parameter-dependent integrable models is the presence of level
crossings in their spectra. A general u-dependent Hamiltonian, H(u), obeys the Wigner–von
Neumann noncrossing rule which states that when one plots the u-dependence of those energy
levels sharing the same quantum numbers, the levels may approach one another closely, but they
never cross [21–27]. The spectra of type M Hamiltonians, however, behave very differently—
they carry frequent (though not necessary [6]) violations of the noncrossing rule, see
figures 1, 2 and 4.

For type 1, we were able to offer a topological rationale for the necessary existence of
at least one such crossing [6], but the analysis in type M is more difficult. We do observe,
however, that the number of crossings varies with type as

No of crossings = (N − 1)(N − 2)

2
− M̃ + 1 − 2L, (62)
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Figure 4. The u-dependent spectrum of a randomly generated 8 × 8 type 4 operator H(u).
Generally the discriminant of the characteristic polynomial of an N × N matrix T + uV is a
polynomial in u of order N(N − 1). We observe that discriminants of type M matrices factor as
DiscH(u) = P(u)Q(u)2. While the complex roots of P(u) correspond to values of u for which
the spectral decomposition of H(u) involves Jordan blocks, the crossings occur at roots of
the (N−1)(N−2)−M+1 = 18 order polynomial Q(u). This type 4 matrix has 16 crossings at u =
{−6.97,−6.57,−3.90,−3.50,−3.32,−3.17,−2.72,−2.40,−2.22,−1.47,−0.99,−0.11, 1.74,

5.69, 6.72, 6.90} and we numerically confirm that they are roots of Q(u). Its other two roots are com-
plex conjugates, corresponding to ‘complex crossings’ occurring at u = {0.52+1.00i, 0.52−1.00i}.
Reliance on visual inspection alone suggests that there is a crossing at u = −0.44 and E = 1.06.
However, the inset—and analysis of the roots of the discriminant—shows that this is actually a
‘close’ level-repulsion.

where L is some non-negative integer bounded such that the above expression is non-negative,
and where M̃ is an integer such that

M̃ � M.

In the overwhelming number of observed commuting matrices M̃ = M. Specifically, out of
several hundreds of matrices analyzed, only two nonansatz matrices were observed to be such
that M̃ �= M. M̃ then is overwhelmingly identical to the type, but there are apparent exceptions
(see section 11). Note that we always find M̃ = M for ansatz matrices.

The crossings’ story gets more interesting when one extends the notion of crossings
to ‘complex crossings’, by which we mean complex values of u wherein at least two of the
eigenvalues of an operator H(u) are equal. More concretely, complex crossings occur at values
of u corresponding to the roots of the discriminant of the characteristic polynomial P(λ, u) of
H(u). The discriminant is defined as

∏
i< j (Ei − Ej)

2, where Ei are the roots of P(λ, u), i.e. it
is polynomial in the coefficients of P(λ, u) and, therefore, polynomial in u. The order of this
polynomial can be shown to be N(N − 1) and, therefore, there are exactly N(N − 1) complex
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values of u (roots) where the discriminant vanishes, independent of type or even whether H(u)

belongs to a commuting family.
However, from numerical analysis we see that for a general H(u), these roots do not

correspond to eigenvalues being equal to one another; they correspond to a situation in which
there ceases to be a full eigen-decomposition of the operator. For a completely general, non-
integrable matrix, the roots of the discriminant correspond to a spectral decomposition of H(u)

involving Jordan blocks, rather than eigenspaces, see [32]. A type M matrix, Hi(u), however,
is rather special. Its discriminant—which we denote DiscHi(u)—factorizes as

DiscHi(u) = P(u)Qi(u)2,

where P(u) and Qi(u) are polynomials. It turns out that Qi(u) is a polynomial of order
(N − 1)(N − 2)/2 − M̃ + 1 and its roots are often real, but not always. Its complex roots come
in complex conjugate pairs, hence the 2L term in equation (62). All of its roots correspond to
values of u where at least two eigenvalues are equal. Moreover, if we consider two type M
matrices, Hi(u) and H j(u) belonging to the same commuting family, i.e. [Hi(u), H j(u)] = 0,
their discriminants will have distinct factors Qi(u) and Qj(u). However, they will have the
same factor P(u) and its 2N + 2M̃ − 4 complex roots correspond to values of u where a
breakdown of the eigenstructure to Jordan blocks occurs.

Interestingly we also observe that if we express H j(u) as a polynomial in Hi(u)—which
we can do for any pair of nondegenerate commuting matrices, see [3]—the coefficients of that
polynomial are rational functions in u the denominators of which are all Qi(u), i.e.

H j(u) =
N−1∑
m=0

Rj
m(u)

Qi(u)
[Hi(u)]m, (63)

where Rj
m(u) are polynomials in u of order (N − 1)(N − 2)/2 − M̃ − m + 2. Note that the

failure of polynomials of a degenerate matrix to span that same matrix commutant is reflected
in the fact that the above polynomial’s coefficients blow up at the roots of Qi(u), i.e. at those
values of u where Hi(u) undergoes a level crossing.

10. Taxonomy of types in the 1D Hubbard model

In section 8, we explored the distribution of general and ansatz matrix types among randomly
generated commuting matrices. Here, we study the prevalence of types in a well-known
integrable system. As mentioned in the introduction (section 1), sectors of such systems
corresponding to a complete set of quantum numbers are type M operators. Our aim is to
determine the values of M for different sectors and to see if these operators conform to the
ansatz of section 5.

As an example, we consider the 1D Hubbard model on six sites, three spin-up and three
spin-down electrons. Periodic boundary conditions are assumed. The Hamiltonian reads

Ĥ = T
6∑

j=1

∑
s=↑↓

(
c†

jsc j+1 s + c†
j+1 sc js

) + U
6∑

j=1

(
n̂ j↑ − 1

2

)(
n̂ j↓ − 1

2

)
, (64)

where c†
js and c js are fermionic creation and annihilation operators, respectively, s denotes

the spin projection, n̂ js = c†
jsc js is the number operator and T and U are real parameters.

There is a hierarchy of conserved currents commuting with each other and with the Hubbard
Hamiltonian. The first nontrivial current is linear in both T and U , while higher currents
are polynomials in U of order 3 and higher. Following [31], we choose energy units so that
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Table 1. Blocks of 1D Hubbard model are matrices of various types, some of which are described
by the ansatz of section 5. Each block corresponds to a complete set of parameter-independent
symmetry quantum numbers. The number of nontrivial commuting partners is N − M − 1, where
M is the type. For blocks in the tables this number ranges from 1 to 10, where 10 corresponds to
the 14 × 14 type 3 block.

Momenta P = 1, 5

No of identical blocks N × N Type Is it ansatz?

1 8 × 8 Type 3 Yes
2 3 × 3 Type 1 Yes
2 16 × 16 Type 12 No
1 14 × 14 Type 3 Yes
2 3 × 3 Type 1 Yes

Momenta P = 2, 4
2 12 × 12 Type 7 No
1 14 × 14 Type 11 No
2 4 × 4 Type 1 Yes
2 2 × 2 — —
1 16 × 16 Type 6 No

U − 4T = 1, which is equivalent to the replacement

U = u T = (u − 1)/4,

where u is a dimensionless real parameter.
Hamiltonian (64) for three spin-up and three spin-down electrons can be represented by a

square matrix of size
(
C6

3

)2 = 400. It has numerous parameter-independent symmetries such
as total momentum, spin, particle–hole symmetry, etc. Using these symmetries, one can bring
the Hamiltonian to a block diagonal form with block sizes ranging from 1 to 16; see [19, 31]
for details as well as the quantum numbers corresponding to block sizes shown in table 1. With
the help of this procedure and algorithms described in section 8 and appendix B, we determine
the smallest possible blocks, their type and whether they conform to our ansatz of section 5.
The results are displayed in table 1. The total momentum takes integer values P = 0, . . . , 5
in our notation. Spectra for momenta P and 6 − P are identical due to a spatial reflection
symmetry. For simplicity, we show the results only for momenta P = 1, 5 and P = 2, 4.

We make the following observations.

(1) Recall that N × N type M matrix has N − M − 1 nontrivial commuting partners linear
in u. We note that blocks in table 1 have 1–10 such partners. This implies that the 1D
Hubbard model has at least ten conserved currents linear in u, while only one such current
has been previously identified. All ten currents can be written in terms of fermionic
creation/annihilation operators c†

js, c js with the help of projectors onto the corresponding
sectors. The resulting expressions however might turn out to be nonlocal and rather
cumbersome.

(2) The exact solution of section 6 applies to all ansatz blocks in table 1. Therefore, in all
these sectors Bethe’s ansatz solution for the 1D Hubbard model [5, 33]—a large number
of coupled nonlinear equations—reduces to single equation (47). It is interesting to see
explicitly how such a simplification becomes possible.

In appendix C, we explicitly write down one of the ansatz Hubbard blocks—the 8 × 8
type 3 block with momentum P = 1.
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11. Discussion

In this paper, we have defined quantum integrable systems, linear in a parameter u, to be
operators for which there exist a number of mutually commuting operators similarly linear
in u. We introduced a classification of these quantum integrable systems according to type,
where we defined a type M operator as belonging to a commuting family with K = N −M +1
linearly independent members. For types 1 and 2, we were able to resolve the corresponding
commutation relations, equation (9), yielding a complete parameterization. For higher types,
we extended the type 2 parameterization to create an ansatz, see equations (33)–(36), that
parameterizes a subset of all type M commuting matrices. Moreover, these ansatz matrices are
exactly solvable through a single algebraic expression, equation (47).

In addition to this analytic approach to resolving commutation relations, we also brute-
forced random numerical solutions. We observed that the number of parameters necessary to
specify one of these randomly generated commuting families is 2N + 2M − 5, whereas the
ansatz involves 2N + M − 2, i.e.

M − 3 = (no of general type M parameters) − (no of ansatz type M parameters) .

When we attempt to find ansatz parameters that can reproduce a randomly generated
commuting family’s matrix elements, we find that this is possible for types 1, 2 and 3 only;
types M > 3 do not appear to be ansatz matrices, in general. Interestingly, when attempting
to find ansatz parameters for the blocks of the 1D Hubbard model Hamiltonian, we find that a
number of them are indeed ansatz. Additionally, we looked at the unusual frequent violations
of the noncrossing rule in the spectra of type M matrices and found that the number of (possibly
complex) crossings of a type M matrix is precisely the same as the order of a polynomial in
u whose square is a factor of the discriminant of that matrix’s characteristic polynomial. The
other factor of that discriminant is a polynomial common to all members of the commuting
family, and its roots correspond to complex values of u for which all H(u) cease to have a full
eigen-decomposition, whereby these matrices have a nontrivial Jordan canonical form.

The ansatz constitutes a significant step toward a comprehensive theory of parameter-
dependent finite-dimensional integrable models. However, there remains much to be
understood about general type M operators. For example, it is believed that there is some
to-be-determined equivalence between the existence of parameter-dependent conservation
laws and the existence of an exact solution. This relationship is on full display with ansatz type
M matrices. However, we could, for the sake of curiosity, consider a type N − 1 ‘commuting
family’ by following the ansatz exactly as written, but taking M = N − 1. Note that this is a
very degenerate family because the number of independent elements is K = 2, i.e. a single
nontrivial operator and the identity. At first glance, such matrices do not seem to be different
from most parameter-dependent matrices in that their only commuting partner is the identity.
Nevertheless, these type N − 1 matrices are exactly solved by the same equations (46) and
(47). This suggests that conservation laws linear in the parameter are not necessary for an exact
solution, though they may be sufficient. Interestingly, we find numerically that all ansatz type
N − 1 matrices have N commuting currents quadratic in u. The exact relationship between
these two properties remains elusive.

Most interesting is the question of how the ansatz fails to completely parameterize all
type M commuting matrices, i.e. why ansatz type M commuting families involve M − 3
fewer parameters than generic type M. Parameter counting alone tells us that the ansatz
parameterizes all type 3 matrices, which we have confirmed numerically. Nevertheless, nothing
in the derivation of the ansatz necessitates this type 3 parametric completeness: this result is
a complete (albeit pleasant) surprise. But why this surprise coverage of type 3? Why does the
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ansatz completely parameterize type 2 with a redundancy that can be made manifest through
elliptic functions?

Let us start with the last question first and let it be the foundation of the following
speculation: type M commuting matrices live on compact Riemann surfaces of genus
g = M − 1. From this point of view, type 2 matrices live on tori which, when equipped
with a complex structure, become Riemann surfaces of genus 1. Working backward, type
1 lives on the Riemann sphere. Similarly, type 3 lives on a Riemann surface of genus 2, a
complex 2-manifold with two handles, type 4 a genus 3 surface with three handles, etc.

What do we get for this idle speculation? First, the redundancy of type 2 ansatz parameters
detailed in section 7 involves elliptic functions. One way to view such functions is as doubly
periodic functions over the complex plane, but another way to understand them is as the
basic functions that live on a fundamental parallelogram, where the identification of the
parallelogram edges implies that these functions live on a complex torus. This alone is a
middling justification for such speculation in that it is limited to type 2.

The Riemann surface conjecture becomes broadly instructive when we further conjecture
that ansatz type M matrices live on the hyperelliptic subset of Riemann surfaces of genus
g = M − 1. It is a well-known result of the study of Riemann surfaces that general surfaces
of genus g have complex structures parameterized by 3g − 3 complex parameters, whereas
hyperelliptic Riemann surfaces are much simpler and have complex structures parameterized
by 2g−1 complex parameters [35]. If we speculate that the ansatz consistently maps Riemann
surfaces of genus g = M − 1 to type M commuting families, but that the ansatz is presently
restricted to that subset of surfaces that are hyperelliptic, parameter counting tells us that
we should be short g − 2 complex parameters, i.e. that same M − 3 parameter gap between
randomly generated versus ansatz derived type M commuting families. Moreover, it is well
known that most Riemann surfaces are not hyperelliptic, but that all surfaces of genera 0, 1
and 2 are—much the same way that the ansatz does not cover most types, but is complete for
types 1, 2 and (apparently) 3.

In future work [34], we will show that the eigenvalues of the ansatz type M matrices
belong to the topologically restricted vector space of meromorphic functions on hyperelliptic
Riemann surfaces of genus M − 1. Moreover, the components of the eigenvectors will also
be given by meromorphic functions on these surfaces and we will attempt to generalize
the manner in which these functions are determined to arbitrary, nonhyperelliptic Riemann
surfaces. There we will see that the well-known Riemann–Roch theorem [35] justifies the
correspondence between a Riemann surface’s genus and the commuting family’s type. In
particular, this theorem will show that the more general genus-type relationship is given by
g � M − 1, where the typical situation satisfies the lower bound. From this point of view, the
fact that sometimes M̃ �= M (see section 9) is reflected in the fact that g = M̃ − 1.
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Appendix A. Does the ansatz really parameterize type M?

Here we prove that the ansatz of section 5 indeed yields type M families of commuting
operators as defined in section 2. Specifically, we need to show that (1) Hi(u) defined by
equation (37) admit no u-independent symmetry, (2) [Hi(u), H j(u)] = 0 for all i, j � N − M
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and (3) the linear space VK formed by Hi(u) has dimension K = N − M + 1, i.e. the only
matrices that commute with all Hi(u) are linear combinations thereof.

A.1. Absence of u-independent symmetry.

Let us assume that such a symmetry � �= aI exists, i.e. [�, Hi(u)] = 0 for all u and i; then,

[�,V i] = [�, T i] = 0.

However, for ansatz type M matrices, we can choose a basis (38) on VK such that
di

k = 1/(λi − εk) where, by premise, all εk are distinct. Consequently, an ansatz type M
commuting family has a basis in which all diagonal matrices V i are nondegenerate. It follows
then that the only � that commutes with all these V i is itself a diagonal matrix. By directly
computing the commutator, we see that for � to commute with all T i

γmγn(ωm − ωn)

(
di

m − di
n

εm − εn

)

m + 
n

2
= 0,

where ωm ≡ �mm which is only generally satisfied if

ωm = ωn

for all m, n = {1, . . . , N}, i.e. if � is a multiple of the identity.

A.2. Mutual commutativity.

Using the relation(

2

m − 
2
k

) (

2

l − 1
) = (εm − εk)

∑
s

∑
t

PsPt

(λs − εm)(λs − εk)(λt − εl )
,

and some algebraic manipulation we find that

[Hi(u), H j(u)]kl = [[V i, S], [V j, S]] + [[V i, S],W j] − [[V j, S],W i]kl

= −
∑

m

M∑
t>s

M∑
s=1

Ci jklγ
2
mPsPt (λs − λt )

2(εk − εl )(εl − εm)(εk − εm)

(λi − εm)(λ j − εm)(λs − εk)(λt − εl )(λs − εl )(λs − εm)(λt − εk)(λt − εm)
,

(A.1)

where

Ci jkl = γkγl(λi − λ j)

4(λi − εk)(λ j − εk)(λi − εl )(λ j − εl ) (
k + 1) (
l + 1)
.

Recall that the λi satisfy equation (31). Given this, it can be shown, using partial fraction
decomposition, that∑

m

γ 2
m

(λi1 − εm)(λi2 − εm) . . . (λik − εm)
= 0, (A.2)

provided i1, i2, . . . , ik are distinct. All terms summed over the index m in equation (A.1)
contain a factor of the form (A.2) for k = 2, 3 and 4, where i1, i2, . . . , ik are by construction
distinct. Thus, [Hi(u), H j(u)] = 0, for all i and j ranging from 0 to K − 1.
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A.3. Dimension of the vector space formed by Hi(u).

Next, we show that there are no members of this commuting family that are linearly independent
of Hi(u). Toward this end, let us consider a general matrix H(u) = T + uV and specifically
the diagonal matrix V and its nonzero matrix elements dm. First, we note that if there exists
an H(u) in the commuting family that is linearly independent of the Hi(u) = T i + uV i,
i = 0, . . . , K − 1, but whose V is linearly dependent on the V i, then there exists a linear
combination of Hi(u) and H(u) that is both u-independent and in the commuting family—a
situation precluded by the absence of u-independent symmetry demonstrated above.

More generally, in [18], Shastry shows that for arbitrary (not necessarily ansatz)
commuting matrices—independent of type—there exists a necessary (but not sufficient) set
of constraints on dm such that H(u) commute with all elements of the commuting family. The
constraint is

d jμ j;kl + dkμk;l j + dlμl; jk +
∑

i�= j,k,l

diνi jkl = 0, (A.3)

where νi jkl and μ j;kl are quantities characteristic of the commuting family as a whole and not
specific to any particular one of its members. νi jkl is defined as in equation (12) and is μ j;kl

defined as follows:

μ j;kl ≡ f i
j − f i

k

di
j − di

k

− f i
j − f i

l

di
j − di

l

+ S2
jkS2

jl −
∑

m�= j,k

S jmSmkSklSl j
di

m − di
k

di
j − di

k

−
∑

m�= j,l

S jkSklSlmSm j
di

m − di
l

di
j − di

l

.

We have used the matrix elements of Hi(u) to define μ j;kl above, but it turns out that μ j;kl is
independent of index i. Let us now consider these general quantities as determined by matrix
elements given by equations (33) and (35). By direct computation, it can be shown that given
the section 5 ansatz for type M matrices

μ j;kl = −
M∑

t>s

M∑
s=1

⎡⎣PsPt (λs − λt )
2

16

(
γ 2

j

(λs − ε j)(λt − ε j)

)2 ∏
q={k,l}

γ 2
q

(λs − εq)(λt − εq)

⎤⎦ ,

νi jkl = −
M∑

t>s

M∑
s=1

⎡⎣(
PsPt (λs − λt )

2

16

) ∏
q={i, j,k,l}

γ 2
q

(λs − εq)(λt − εq)

⎤⎦.

Now let us compute equation (A.3) expressing dm as dm = ∑N
s=1

gs

λs−εm
for some gs. Note that

this can always be done because the N × N Cauchy matrix Asm = (λs − εm)−1 is invertible
[28]. With dm so defined, we directly compute equation (A.3) to determine the necessary gs

such that [Hi(u), H(u)] = 0. We find that

1

2

M∑
t>s

M∑
s=1

N∑
i=1

[(
gs

γ 2
i

(λs − εi)2

)

×
(

PsPt (λs − λt )γ
2
j γ

2
k γ 2

l

16(λs − ε j)(λt − ε j)(λs − εk)(λt − εk)(λs − εl )(λt − εl )

)]
= 0,

which requires that∣∣∣∣∣∣∣
1 1 1∑

t
Pt

λt−ε j

∑
t

Pt
λt−εk

∑
t

Pt
λt−εl∑

s
rsPs

λs−ε j

∑
s

rsPs
λs−εk

∑
s

rsPs
λs−εl

∣∣∣∣∣∣∣ = 0, (A.4)
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where summations over s and t run from 1 to M and rs = gs
∑N

i=1 γ 2
i /(λs − εi)

2. Note that
terms containing gs with s > M cancel from equation (A.3) by virtue of identity (A.2).

For the determinant to vanish, the rows in the matrix in equation (A.4) must be linearly
dependent. By the uniqueness of partial fractional decomposition, it follows that rs = r, i.e.
the determinant vanishes if (and only if) rs does not depend on s. Thus, we require that

gs = r

(
N∑

i=1

γ 2
i

(λs − εi)2

)−1

, for 1 � s � M. (A.5)

It turns out that the degree of freedom associated with r amounts to variation in an overall
trace as it can be shown that

d̃ ≡
N∑

j=1

r

λ j − εm

(
N∑

i=1

γ 2
i

(λ j − εi)2

)−1

= rB−1, (A.6)

independent of the index m. Thus, it follows that the only V allowed in an ansatz type M family
are constrained to be of the form

V =
K∑

i=1

aiV
i + d̃I, (A.7)

where ai = gi+M − g̃i+M and g̃i+M is defined by the right-hand side of equation (A.5) with
s = i + M, whereby the ansatz necessarily parameterizes matrices of exactly type M.

Appendix B. Inverse problem: determining parameters given an ansatz matrix

Here we detail an algorithm that, given an arbitrary N × N symmetric matrix H(u) = T + uV ,
determines if it conforms to the ansatz of section 5 and returns the ansatz parameters when it
does.

The algorithm is based on the central observation that the difference between a type 1
Si j, see equation (13), and that of an ansatz type M matrix, see equation (40), is the factor
ηi j ≡ (
i + 
 j)/2. If a type M commuting family has an antisymmetric matrix S for which
no such factor can be found, we know it does not conform to an ansatz parameterization. If,
however, such a factor exists and it can be determined, then we know that

�i j ≡ Si j

ηi j
= γiγ j

εi − ε j
, (B.1)

for some γ j and ε j and �i j so defined satisfies the equation

�i j� jk�kl�li + �ik�kl�l j� ji + �il�l j� jk�ki = 0. (B.2)

Moreover, the reverse is true, i.e. it can be shown that equation (B.2) implies equation (B.1) for
some γ j and ε j. Consequently, if equation (B.2) can be solved for 
 j, we can essentially strip
an ansatz Si j of its factor ηi j, and the ansatz parameters γ j and ε j can be determined. Without
loss of generality, we can multiply equation (B.2) by an overall factor of 16 ηi jηikηilη jkη jlηkl

and look for solutions 
 j to the resulting equation

(
i + 
k)(
 j + 
l )Si jS jkSklSli + (
i + 
l )(
 j + 
k)SikSklSl jS ji

+(
i + 
 j)(
k + 
l )SilSl jS jkSki = 0. (B.3)

This is a massively overdetermined set of N(N − 1)(N − 2)(N − 3)/4! equations, quadratic
in the N terms 
 j. We note that the equations are actually linear and homogenous in the terms
Bi j ≡ 
i
 j and that it is possible to attempt solving for the 
 j by first finding the minimal
set of linearly independent linear equations in Bi j and then solving for 
 j. In numerical
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practice, however, Mathematica’s NSolve—programmed to find all sets 
 j that satisfy the
N(N − 1)(N − 2)(N − 3)/4! equations of equation (B.3)—quickly finds nontrivial values for
the 
 j directly from the overdetermined quadratic equations, if they exist. We find that for
matrices with a generic, nonansatz S, solving equation (B.3) yields only trivial solutions, e.g.

 j = 0, for all j but one. For ansatz matrices where M � 3, however, there are two equivalent,
inversely related nontrivial solutions to equation (B.3), i.e.


i = {
αDi, βD−1

i

}
where α, β are arbitrary complex numbers. Note that having real Si j does not generally
guarantee that the corresponding 
i are themselves real. Note also that despite having proved
that type 1 and 2 matrices always have an ansatz parameterization, one can just as well
attempt to determine their 
’s using solutions to equation (B.3). However, in both cases, the

 j cannot be determined uniquely. In the type 1 case, NSolve generates a warning indicating
that there are not enough constraints for it to express a solution set and that it must generate
three additional constraints in order to proceed; from section 5, we know that these additional
constraints amount to fixing the threefold parametric redundancy unique to type 1. In the case
of type 2, NSolve generates a warning that it must generate a single constraint to proceed;
this corresponds to a single redundancy in the parameterization of type 2 matrices involving
elliptic functions, which we detailed in section 7.

If nontrivial solutions 
 j exist, the above procedure determines their values. It follows
from equation (B.1) that the resulting �i j satisfy a corollary equation

(γi� jk)
−1 − (γ j�ik)

−1 + (γk�i j)
−1 = 0 (B.4)

for some γi to be determined. This we do by fixing i and j and choosing arbitrary values for
γi and γ j such that we can use equation

γ −1
k = � jk((γ j�ik)

−1 − (γi� jk)
−1) (B.5)

to determine γk for all k �= i, j. From here, determining εk is straightforward, i.e.

εk = εi − γiγk

�i j
for all k �= i (B.6)

where we have yet another arbitrary degree of freedom in our choice of εi. These three
parametric redundancies, unearthed by this algorithm, constitute an interesting gauge freedom
in all ansatz type M commuting families, see section 7.

If and when the algorithm finds values γ j, ε j and 
 j for a putative ansatz type M matrix
H(u), proceeding to determine ansatz parameters λ j is a matter of determining whether there
exists an H̃(u) = uṼ + T̃ in the commuting family wherein the nonzero elements of the
diagonal matrix Ṽ are of the form

d̃ j = 1

λ̃ − ε j

for λ̃ to be determined by the algorithm, see section 5. Recall from section 8 that in determining
the size of a random type M commuting family, finding all matrices that commute with H(u)

reduces to N +M−2 linearly independent equations linear in its commuting partner’s diagonal
elements. Of these equations, we know that because there are only N − M + 1 independent
members of the commuting family, exactly M −1 of these equations can be found that involve
the N d̃ j alone. Consequently, there will be M − 1 constraints on λ̃ of the form

N∑
j=1

ck
j

λ̃ − ε j
= 0,
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where coefficients ck
j are determined by the matrix elements of H(u). Solving these

simultaneous equations reduces to finding all λ̃ that satisfy M − 1 polynomials of order
N − 1. Generally, such simultaneous polynomial equations have no solution. These ones
derived from ansatz matrices, however, have an M-element solution set {λ1, λ2, . . . , λM}.
To be ansatz parameters, each one must correspond to the same parameter B satisfying
equation (31).

Finding the rest of the M parameters Pj is a matter of solving N overdetermined linear
equations


2
k = 1 +

M∑
j=1

Pj

λ j − εk
,

see equation (35). If the algorithm can determine these Pk, H(u) is ansatz. Failure to determine
any of these parameters uniquely (up to the aforementioned gauge redundancy) or any
inconsistency with respect to the ansatz equations indicates that the matrix is not ansatz.
For example, it is possible that the algorithm could find some 
 j and parameters ε j, γ j given
some matrix, and yet fail to have a consistent ansatz parameter B. In practice, however, all
matrices tested through this algorithm failed to yield ansatz parameters at the 
-stage in so
much as the algorithm could not find nontrivial 
 j consistent with equation (B.3). That is,
if there are nonansatz type M matrices that satisfy equation (32) for some 
 j not satisfying
equation (35), they appear to be rather rare in a random ensemble of type M matrices.

Appendix C. An example of a sector of the 1D Hubbard model described by the ansatz

Here we explicitly write down the 8 × 8, momentum P = 1 block of the 1D Hubbard model,
which is an ansatz type 3 matrix, see section 10. This block is of the form T + uV , where V is
a diagonal matrix with the following entries:

diagonal of V = 1
4 (−3, 1,−3, 0, 3, 0, 3,−1) (C.1)

and

T = 1

12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
√

6 0 1 −1 3 −3
√

6√
6 −3

√
6

√
6 −√

6 −√
6 −√

6 0
0

√
6 11 3 3 1 1 −√

6
1

√
6 3 −2 −1 0 3

√
6

−1 −√
6 3 −1 −11 3 0 −√

6
3 −√

6 1 0 3 2 −1
√

6
−3 −√

6 1 3 0 −1 −7
√

6√
6 0 −√

6
√

6 −√
6

√
6

√
6 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.2)

Using the procedure outlined in appendix B, we find the corresponding ansatz parameters

ε = {−1, 0, 5,−5/2, 5,−5/2,−1, 0},

γ = 1
2
√

6
{1 − i, 3

√
6 + i

√
6,−1 − 7i, 4 + 8i,−7 + i,−8 + 4i, 1 + i,

√
6 − 3

√
6i}

and


2
j = 5ε3

j − (1 − 37i) ε j + 4 − 3i

5ε3
j − (1 + 37i) ε j + 4 + 3i

.
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