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Abstract. We study the onset of motion of a vortex lattice in response to a driving current that is turned 
on suddenly. For sufficiently high currents we find that the average vortex velocity (obtained from the 
longitudinal voltage drop) grows smoothly with time and obeys a stretched exponential with an exponent 
β ~ 0.7. The response is governed by two time scales: a delay time (t0) before the appearance of a 
measurable voltage drop, and a rise time (τ ) characterizing the evolution of voltage response.  Both time 
scales increase with decreasing saturation voltage V0 : τ decreases exponentially, while t0 as a power law. 
When the saturation velocity is too low the response slows down significantly and shows a step structure 
indicating plastic response.  

1. INTRODUCTION 

The structure of vortex lattices in type-II superconductors has been a topic of intense study over 
the past 50 years [1-3]. Our current understanding of its static properties can be summarized in terms 
of a global phase diagram containing a liquid and a variety of glassy phases separated by boundaries 
that are sensitive to material parameters including the amount and nature of imperfections, the extent 
of anisotropy, the coherence length and the London penetration length. One of the important advances 
in this field was the prediction that at low field and temperature and in the limit of clean samples the 
vortex lattice should form a quasi-ordered phase, the so-called Bragg glass [4,5]. This was shown to 
be a true thermodynamic phase characterized by the absence of topological defects, power law Bragg 
peaks and broken replica symmetry. The latter is expected to manifest itself as glassy dynamics [5-7] 
in experiments on moving vortex lattices. Static evidence for the existence of an ordered state 
consistent with the Bragg glass phase was thus far obtained through imaging experiments in both real 
and reciprocal space [8-10]. However little was done to probe the vortex motion in search of its 
putative glassy dynamics.   

Most early studies on vortex motion employed transport measurements to obtain the vortex 
velocity from the steady-state voltage response to an applied current assuming that it is uniquely 
determined by the current amplitude. This assumption is reasonable for describing single vortex 
motion considering that vortices are overdamped objects whose response to a driving force is almost 
instantaneous. However experiments showing evidence of metastability, history effects and slow 
response times in weak pinning vortex lattices [11-13], demonstrated that the motion of a vortex 
lattice can differ significantly from that of a single vortex.  Here we describe time-resolved 
experiments to study the onset of motion of a vortex lattice in response to an applied driving force.  
We find that the time evolution of the average vortex velocity when driven toward a high saturation 
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velocity is described by a stretched exponential function, which is one of the salient properties of a 
glass [14, 15]. The smooth evolution becomes significantly slower and even shows steps when driven 
to a low saturation velocity. A dynamic phase diagram is identified accordingly. 

2. EXPERIMENTAL 

In order to study the dynamic response of a driven vortex lattice, two questions have to be answered: 
What is the initial stationary state? How to measure the dynamic process?   

There are various ways to prepare a vortex lattice. 1) Zero-field-cooling (ZFC), the sample is 
cooled through its superconducting transition temperature Tc, and then a magnetic field is ramped up. 
2) High-field-cooling (HFC), the sample is cooled in a very strong magnetic field, and then the field is 
ramped down. 3) Field-cooling (FC), the sample is cooled in the fixed field with the given level 
precisely.  4) Shaking, a small AC field is used to equilibrate the vortex lattice after ZFC or FC. 5) 
Driving, a driving current is used to help the equilibration. The FC state deserves special attention 
because as vortices form upon cooling through Tc their density is uniform and remains this way since 
the procedure does not involve introducing or removing vortices through the sample edges as is the 
case in the other methods.  
 Our experimental protocol is as follows. Starting from a freshly prepared FC state, we apply a 
current pulse and employ a time resolved measurement to monitor the evolution of the voltage 
induced by the vortex motion. This procedure allows monitoring the vortex lattice motion while it 
explores its configuration space under controlled experimental conditions. 
 Experiments were carried out on an un-doped single crystal of 2H-NbSe2, with dimensions 4.41 
mm × 0.83 mm × 6 µm, transition temperature and width of Tc = 7.2 K and 130 mK. The magnetic 
field was applied along the c-axis and the transport currents were in the a-b plane. Details of the 
experimental setup have been reported elsewhere [16]. 

3. RESULTS AND DISCUSSION 

2H-NbSe2 is a typical weak pinning type-II superconductor. The static phase diagram of the sample 
was reported elsewhere [16]. SANS measurements on similar samples exhibit sharp Bragg peaks at 
low temperatures that are consistent with the formation of a Bragg glass [9,10].  In the following we 
focus on the dynamics of vortex lattices prepared by an FC process in 0.2 T.  

3.1 Dynamic phase diagram 

The results on the evolution of the voltage response to an applied current are summarized in fig. 1. For 
a given temperature the saturation voltage V0 increases linearly with current, I, as expected from free 
flux flow (fig. 1a). However, the time scale of the evolution slows down with decreasing V0 (fig. 1b). 
As V0 continues to decrease there is a transition in the behavior of V(t) from fast and smooth to slow 
and stepwise. In order to capture the main features of V(t) we define a response time, τ80,  as the time 
when 80% of V0 is reached. Fig.1c is a contour plot of τ80 in the V0-T plane. Due to the presence of a 
surface barrier [17], the applied current is not proportional to the bulk current density J. But since J,  
rather than the total current, determines the driving force on individual vortices, fd ~ J, the applied 
current is not a reliable measure of the force. Instead we use V0 as a measure of the driving force:  

η/)(0 pd ffV −∝                                                            (1) 

where fp ~ Jp  is the pinning force, η  the viscosity and Jp is the critical current density.  Thus one can 
treat the vertical axis of fig. 1c as a force axis. 
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 One of the outstanding features of fig. 1c is the existence of a bubble (defined by the squares) 
within which τ80 is several orders of magnitude longer. In the bubble regime the response breaks up 
into long time steps during which only a fraction of the vortices are moving – a clear signature of 
plastic response. The arrow in the figure points to the same V0 as that in fig. 1b showing the definition 
of the bubble boundary as the locus for the appearance of stepwise response. Another feature is that 
τ80  depends weakly on temperature below ~5.70 K (dashed line in fig.1c) but decreases sharply above 
it.  
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Figure 1. a) Saturation voltage V0 versus applied current level. The solid line is a fit to free flux flow. 
b) Time dependence of voltage for different V0. The response is smooth at high levels but step-like at 
low levels. The arrow shows the boundary separating the regimes of elastic and plastic flow. c) The 
contour plot of response times (see text).         

3.2 Evolution toward high velocity 

In fig. 2 we show the time dependence of the response in the high velocity regime where it is smooth 
(outside the bubble of fig. 1c). In this regime the data is well described by a stretched exponential: 
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where V0 is the saturation voltage, t0 is a waiting time before any voltage appears, τ is the rise time  
and β = 0.7.  In the same figure we also show that a fit to a simple exponential decay cannot follow 
the data over the entire range. Similarly a simple logarithmic fit, while adequate for short times must 
deviate from the data at longer times. The stretched exponential response observed here is one of the 
hallmarks of glassy behavior [14, 15]. It arises in the presence of many competing response times with 
the exponent typically characterizing the distribution of these times. The stretched exponential 
response inevitably arises when the dynamics of competing mechanisms is hierarchically constrained 
[15].  
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Figure 2. Time evolution of vortex response to an applied current pulse. The fits show that the 
response is best described by a stretched exponential function (equation 2 in the text) with β=0.7. 
 
 In Fig. 3 we show the temperature dependence of the fitting parameters τ, t0, and β obtained by 
fitting the data for V(t) to the stretched exponential function in equation 2 over the experimental 
temperature range. The upper panels describing the low temperature data are almost identical 
indicating weak temperature dependence consistent with the contour plot of Fig 1c. The average value 
of the exponent is found to be β ~ 0.7, with a scatter that decreases significantly at higher velocities. 
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Figure 3. Fitting parameters as a function of saturation voltage obtained by fitting the voltage 
response with a stretched exponential at low temperatures (upper panels) and high temperatures 
(lower panels). The solid lines are fits to an exponential and the dotted lines are guides to the eye. 
 
 We note that the relaxation time τ decreases exponentially with V0 while the delay time t0 is 
better described by a power law t0(V0) ~ V0

-α . The power law dependence suggests a divergence in the 
delay time at the depinning threshold, V0 ~ 0.  In the lower panels of Fig. 3 we note the onset of 
temperature dependence of the fitting parameters for T > 5.7 K, however the exponential dependence 
of τ(V0 ) persists at all temperatures.  In fig. 4 we plot the temperature dependence of the exponent 
α and of t0 at V0 = 10 µV. We note that the power increases almost linearly with temperature. 
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Figure 4. (left) Temperature dependence of the power α in t0~V0
-α. (right) Temperature dependence of  

t0 at 10 µV. 

3.3 Discussion 

When the vortex lattice moves in response to an applied current pulse it undergoes a transition from 
static to moving state and since the moving state is more ordered than the stationary one [18,19],  the 
finite response time can be attributed to the time to heal lattice defects. If we assume that healing 
proceeds by an activated process with barrier U(V0,T) [16] the time scale of the defect healing rate 
would be given by τ ~  exp(U/T).  For a driven lattice the effect of the applied current on the barrier 
can be estimated using the Anderson Kim model [20]  U(J) ~ Uc(1-J/Jc) where Uc is the static barrier 
due to pinning.  Using equation 1 we find J = V0 /ρff l+ Jc, where ρff = ρn H/Hc2 is the free flux flow 
resistivity and l the distance between voltage leads. Thus we can write  

TVeV /
00

0)( γττ −=                                                                                   (3) 
 with γ= Uc Τ /ρff l Jc and )(~ 00 TNτ  where N0(T) ~ eαT is the number of defects in the initial lattice 
[16].  
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Figure 5. Temperature dependence of γ and τ0 obtained by fitting to equation (3). The solid line in the 
left panel describes the temperature dependence of γ  calculated by assuming an activation process for 
healing defects and an Anderson-Kim model to describe the effect of the driving force on the barrier.    

 
The values of  γ(T) and τ0(T)   obtained from fitting  the data  are plotted in figure 5. In the left 

panel we compare the temperature dependence of the measured γ(T) to that obtained  from a collective 
pinning [2] model  Uc Τ /ρff l Jc ~ (Tc-T)-1/2 (solid curve) where  Tc = 6.9K is the critical temperature of 
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the sample at 0.2 T.  We note that for  T < 6 K this model captures the temperature dependence γ(T). 
At higher temperatures the deviation from this model suggests that a new mechanism, such as 
injection of defects through sample edges, further slows down the healing process. 

4. SUMMARY 

We have studied the dynamic evolution of a vortex lattice from stationary to moving state in response 
to an applied current pulse.  We find that the time evolution of the response follows a stretched 
exponential with exponent β ∼  0.7, as expected of a glassy system The response is characterized by 
two time scales,  a delay time t0  and a characteristic response time τ. Both time scales depend on the 
saturation voltage, with   t0(V0) ~ V0

-α ,  α ~ 1.8-3.8  and TVeV /
00

0)( γττ −= ,γ(Τ) ~ (T-Tc)-1/2  for 
sufficiently large values of V0 and low temperatures.  When the vortex lattice is driven towards a low 
V0, plastic processes set in leading to the appearance of steps and non-monotonous response. We 
attribute the time evolution of the response to a process of defect healing in the vortex lattice and 
show that the temperature dependence of the response is consistent with an activation process over a 
barrier that is reduced in the presence of the applied current according to the Anderson Kim model. 
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