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Abstract

Graphene is a two dimensional system which can be studied using surface probe tech-
niques such as scanning tunneling microscopy and spectroscopy. Combining the two, one
can learn about the surface morphology as well as about its electronic properties. In this
chapter we present a brief review of experimental results obtained on graphene supported
on substrates with varying degrees of disorder. In the first part we focus on the electronic
properties of single layer graphene without a magnetic field as well as in the presence of a
perpendicular magnetic field. The second part focuses on twisted graphene stacks and the
effects of rotating away from the equilibrium Bernal stacking on the electronic properties.
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1 Scanning tunneling microscopy and spectroscopy

Scanning tunneling microscopy (STM) is a powerful technique used to study the surface
morphology of materials as well as to learn about their electronic properties. The idea behind
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the operation of an STM, for which Gerd Binnig and Heinrich Rohrer were awarded the Nobel
prize in 1986 [1], is conceptually simple. By bringing a sharp metallic tip atomically close (≈
1nm) to a conducting sample surface one can create a tunneling junction and when a bias
voltage is applied between the two, a tunneling current will start flowing. Such a tunneling
junction is depicted in Figure 1. In this situation the electrons below the Fermi level of the
sample will be tunneling into the tip, and therefore probe the filled electronic states. In the
reverse situation when the Fermi level of the tip is above that of the sample, the electrons are
flowing out of the tip into the sample probing the empty states of the sample. The current
between the sample and the tip It can be calculated from a Fermi Golden rule expression
which, assuming low temperatures, can be simplified to [2, 3]:

I ∝ 4πe

h̄

∫ eVBias

0
ρsample(ε)ρtip(eVBias − ε) |M |2 dε (1)

The matrix element, assumed to be constant for the energy interval of integration , |M |2 ∝
e
−2d
h̄

√
2mΦ, yields:

I ∝ e
−2s
h̄

√
2mΦ

∫ eVBias

0
ρsample(ε)ρtip(eVBias − ε)dε (2)

Here ρsample and ρtip are the density of electronic states for the sample and tip, d is the
separation between the tip and sample, m, e are the electron mass, charge, and Φ is the
barrier height.

Topography. Using the STM to measure the topography of a sample is based on the
condition that It is very sensitive to the tip-sample separation:

I ∝ e
−2d
h̄

√
2mΦ (3)

A common measurement mode of STM is the constant current mode in which the tip moves
across the sample and it is raised or lowered by a feedback loop in order to keep the tunneling
current constant. Tracing the contour made by the tip will give information about the sample
topography.

Spectroscopy. If we assume that the tip density of states (DOS) is flat in the energy
range of choice, by taking the derivative of It with respect to the VBias, we obtain:

dIt
dVBias

∝ ρsample(eV ) (4)

Therefore, the STM can be used to learn about the density of states of the sample in the
scanning tunneling spectroscopy (STS) mode. For this, first the junction is set, then the
feedback loop is disabled and the tunneling current is recorded while varying the bias voltage.
Typically this differential conductance is measured with a lock-in technique by applying a
small ac. modulation to the bias voltage. By repeating such a measurement on a grid of
points across a chosen region one obtains dIt/dVBias maps which reflect the local density of
states as a function of spatial coordinates.

In a realistic situation the measurement temperature imposes a lower bound on the res-
olution which cannot be better than the thermal broadening: E≈ kT . For measurements at
4K the minimum resolution is thus ≈ 0.35meV . At the same time the ac. bias modulation
should be comparable to this value for optimal resolution. Furthermore, common materials
used for the tip such as Pt/Ir, W, Au typically satisfy the condition of a flat DOS for small
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Figure 1: (a) Sketch of the tunneling junction between the tip and the sample in an STM
experiment. The important quantities are indicated: the tip-sample separation d, the Fermi
level EF , the bias voltage VBias. The indicated DOS for the sample has an arbitrary shape
and for the tip it is assumed constant.(b) Sketch of the STM set-up in which a graphene
flake is placed on a Si/SiO2 substrate. The main parts of an STM experiment are indicated:
the scanning head, the feedback system, the data acquisition interface, the bias voltage and
tunneling current. In addition, a gate voltage is applied between the graphene and the gate
electrode (typically Si).

enough voltages. For a reliable STS measurement one needs to check that the experiment
is done in the vacuum tunneling regime when the dependence of the tunneling current on
tip-sample distance is exponential [4]. Reliable spectra are checked to be reproducible as a
function of time and they do not depend on the tip-sample distance.

In the following sections we will discuss the results obtained by investigating graphene
samples using scanning tunneling microscopy and spectroscopy.

2 From disordered graphene to ideal graphene

Graphene on SiO2. Graphene was initially isolated by mechanical exfoliation from
graphite (Highly Oriented Pyrolitic Graphite (HOPG) or natural graphite) onto Si wafers
capped with SiO2 [5]. In order to fabricate devices from these flakes, metallic contacts are
added using standard e-beam lithography. This sample configuration allows using the highly
doped Si as a back gate so that by applying a voltage between the flake and the back gate one
can tune the carrier density in graphene. Much of the experimental work and in particular
transport experiments have used this type of sample, but they are far from ideal.

Firstly, the nanofarbrication procedure can result in disorder that can reside either between
the graphene and the SiO2 or on the surface of graphene. Secondly, graphene will conform to
the surface of SiO2 and it will therefore be rippled. An illustration of this situation is presented
in Figure 2. As a consequence of the disorder, the Fermi level of neutral graphene will not
coincide with the Dirac point, meaning graphene is doped [6, 7]. The doping varies on the
surface of graphene creating puddles of different carrier density (electron-hole puddles)[6, 7].

One of the main sources of the electron-hole puddles in graphene is the random poten-
tial induced by the substrate. For the standard SiO2 substrates which are routinely used in
graphene devices this is particularly problematic due to the presence of trapped charges and
dangling bonds [8]. Recent experiments demonstrated that the use of dry-chlorinated SiO2

substrates leads to a significant reduction in the random potential. The use of these substrates
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gave access to the intrinsic properties of graphene allowing the observation of Landau levels
as detailed in a later section [9] (2.4).

Graphene on hexagonal boron nitride (BN), mica etc. More recently, experimen-
tal methods were developed to manipulate other 2D materials from layered structures (e.g.
BN)[5, 10]. In order to minimize the disorder due to the underlying substrate while still
preserving the possibility of gating, graphene was placed on thin flakes of BN which in turn,
were previously exfoliated on Si/SiO2. The quality improvement by using BN as a substrate
was significant; the mobilities for devices were above 100000 cm2/V s which is an order of
magnitude higher than typical graphene devices on SiO2 [10]. In very high magnetic fields
the fractional quantum hall effect was also observed in such samples [11]. Another substrate
demonstrated to be suitable for obtaining flat graphene is mica [12].

Graphene flakes on graphite. After cleavage of a graphite crystal, one often finds
graphene flakes on the surface which are decoupled from the bulk graphite underneath. These
flakes provide the most favorable conditions for accessing the intrinsic electronic properties of
graphene as detailed in the following sections [13, 14, 15].

Epitaxial graphene, graphene obtained by chemical vapor deposition etc. Other
avenues of producing graphene are epitaxial growth on SiC crystals [16, 17, 18] and chemical
vapor deposition (CVD) [19, 20, 21]. In the epitaxial growth one starts with a SiC crystal
terminated in Si or C and annealing to temperatures above 1500 oC leads to the formation
of graphene layers at the surface. Often the layers are misoriented with respect to each other
thereby forming Moiré patterns. For the CVD growth, a metallic substrate that plays the
role of a catalyst is placed in a hot furnace in a flow of gaseous carbon source. As a result,
carbon is absorbed into the metal surfaces at high temperatures and precipitated out to form
graphene during cool down to room temperature [22]. Other metallic substrates used for
growing graphene films include Ru [23, 24], Ir [25, 26] and Pt [27].

2.1 Surface topography of graphene

The discussion about the morphology of a graphene surface is important because the
stability of a 2D membrane in a 3D world is closely related to the tendency toward crumpling or
rippling [28, 29]. The degree of rippling also influences the quality of the electronic properties
[30]. The morphology of the graphene surface depends strongly on the type of substrate (or
lack of substrate) underneath.

Transmission Electron Microscope (TEM) experiments performed on graphene films placed
on TEM grids show that there is an intrinsic rippling of the suspended graphene membrane
with deformations of up to 1nm [31]. However, when deposited on a flat surface such as mica
[12], BN [32, 33], or HOPG [34] the height corrugations become as small as 20-30pm. On the
surface of SiO2 the Van der Waals forces will make graphene conform to the rough surface
and typical values reported for the corrugations are 0.5nm in height and a few nm in the
lateral dimension [7, 9, 13, 35, 36].

The first STM experiments on graphene deposited on SiO2 showed that the lattice is
indeed hexagonal with almost no defects [37]. Moreover, they also showed the importance
of sample cleaning in order to access the pristine graphene surface [38]. A more extensive
analysis of the correlation between the substrate roughness and intrinsic graphene roughness
[13] suggested that in areas where the graphene does not conform to the oxide surface and it
is suspended over the high points, one can find an additional intrinsic corrugation on smaller
length scales consistent with TEM studies [31].

4



SiO
2

Si

GRAPHENE

Fermi level

Dirac Point 

(a)

(b)

Figure 2: (a) Illustration of the varying carrier concentration across a graphene sample due
to the random potential underneath. The Fermi level and the Dirac point are shown by the
black and green lines, respectively. (b) Sketch of how graphene (the orange line) deposited
on the surface of SiO2 will have a roughness comparable to the substrate [13]. The light gray
dots schematically illustrate trapped charges.

A comparison between typical STM data for graphene on SiO2 and decoupled graphene
flakes on HOPG is presented in Figure 3. In Figure 3(a) the topography of a graphene area
on SiO2 shows a rippled surface. In contrast, graphene on HOPG is much flatter as seen in
the topography map in Figure 3(b). The corresponding atomic resolution data demonstrates
that despite the corrugation of the surface of graphene, the honeycomb lattice is continuous
across the hills and valleys (Figure 3 (c),(d)). Remarkably, in both cases the graphene lattice
is defect-free over areas as large as hundreds of nanometers.

When deposited on BN, graphene is significantly flatter than on SiO2 as shown in Figure
4. A comparison between the surface morphology for areas of graphene on SiO2 and on
BN is presented in Figure 4(a) and (b). Two line cuts arbitrarily shifted in the z direction in
Figure 4(c) show that, when placed on BN, graphene is one order of magnitude smoother than
on SiO2. On such samples STM/STS experiments report Moiré patterns that arise because
of the lattice mismatch and rotation between graphene and the BN [32, 33]. Furthermore,
the random potential fluctuation measured by scanning tunneling spectroscopy appears much
smaller than on graphene samples exfoliated on SiO2 [32, 33].

2.2 Tunneling spectroscopy of graphene

One of the reasons why graphene has attracted so much interest is its unique electronic
band structure. In the low energy regime the charge carriers obey a Dirac-Weyl Hamiltonian
and have a conical dispersion. To the first approximation, it is possible to obtain a closed
analytical form for the density of states at low energy [39]:

ρ(E) =
2Ac
π

|E|
v2
F

(5)
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Figure 3: (a) Scanning Tunneling Microscopy image of 300nm x 300nm graphene on a SiO2

surface (Vbias=300mV, It=20pA). (b) Scanning Tunneling Microscopy image of 300nmx300nm
graphene on graphite surface (Vbias=300mV, It=20pA). (c),(d) Smaller size image showing
atomic resolution on graphene in area (a) and (b), respectively. (e),(f) Scanning Tunneling
Spectroscopy data obtained on the corresponding graphene samples in (c) and (d), respectively
[9, 34].
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Figure 4: Comparison between the topography of two areas 100nm x 100nm of (a) graphene
on SiO2 and (b) graphene on BN . (c) Comparison between two line cuts across (a),(b).

where, Ac is the unit cell area of graphene lattice.

The DOS in graphene differs qualitatively from that in non-relativistic 2D electron sys-
tems leading to important experimental consequences. It is linear in energy, electron-hole
symmetric and vanishes at the Dirac point (DP) - as opposed to a constant value in the non-
relativistic case. This makes it easy to dope graphene with an externally applied gate voltage.
At zero doping, the lower half of the band is filled exactly up to the Dirac points. Applying
a voltage to the graphene relative to the gate electrode (when graphene is on Si/SiO2, the
highly doped Si is the back gate) induces a nonzero charge. This is equivalent to injecting,
depending on the sign of the voltage, electrons in the upper half of Dirac cones or holes in
the lower half. Due to electron-hole symmetry the gating is ambipolar [40].

For graphene on graphite the measured density of states is linear and vanishes at the Dirac
point (Figure 3(f)) as expected from theory. For the data shown in Figure 3(f), the Fermi
level is slightly shifted away from the Dirac point (≈ 16meV) corresponding to hole doping
with a surface density n = 2× 1010cm−2.

However, when disorder introduces a random potential, as is the case for the graphene
on SiO2, the spectrum deviates from the ideal V-shape [35, 36, 41, 42, 43]. Some of the
measured features in the spectra were attributed to strain and ripples [43], others to local
doping due to impurities. A typical spectrum is presented in Figure 3(e)[9]. In this case,
the Dirac point is shifted from the Fermi energy by ≈ 200meV corresponding to a carrier
concentration n = 2× 1012cm−2.

Some STM experiments on graphene exfoliated on SiO2 reported a gap at the Fermi level
which was attributed to inelastic tunneling into graphene (via phonon scattering) [42]. In
other experiments though, the gap is seen only above certain tunneling currents [41]. In most
cases a dip at the Fermi level is observed in the tunneling spectra of graphene on SiO2 [9, 36]
which can be attributed to a zero bias anomaly.

2.3 Doping and electron hole puddles

Theoretically, in neutral graphene the Fermi level should coincide with the Dirac point.
However, it is observed that graphene is often doped such that there is an energy differ-
ence between the Dirac point energy (ED) and the Fermi energy (EF ). To find the dopant
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concentration, the carrier density can be calculated as follows:

n =
N

A
= 4

πk2
F

(2π)2
=
k2
F

π
=

1

π

E2
F

h̄2v2
F

(6)

Here the Fermi velocity is vF = 106m/s and taking EF = 1meV we get n ≈ 108/cm2.
The origin of this doping is not yet well understood. However, the most likely causes are

trapped charges and absorbed species at edges/defects etc. Recent STM experiments using
graphene films doped on purpose with nitrogen (N) were aimed at characterizing at atomic
scales the electronic structure modifications due to individual dopants [44]. It was found that
N, which bonds with the carbon in the lattice, can contribute to the total number of mobile
carriers in graphene resulting in a shift of the Dirac point. Moreover, the electronic properties
of graphene are modified around an individual N dopant on length scales of only a few atomic
spacings [44].

The existence of electron-hole puddles was first pointed out by single electron transistor
studies with a spatial resolution of a hundred nm [6]. Higher resolution studies of the spatial
fluctuations of the carrier distribution using STM showed even finer density fluctuations on
nm scales [7]. The typical variation in the Dirac point of graphene deposited on SiO2 was
found to be 30-50meV corresponding to carrier densities of (2×1011−4×1011)cm−2 [6, 7, 9].

In the presence of scattering centers, the electronic wave functions can interfere to form
standing wave patterns which can be observed by measuring the spatial dependence of dI/dV
at a fixed sample bias voltage. By using these interference patterns, it was possible to dis-
cern individual scattering centers in the dIt/dVBias maps obtained at energies far from the
Dirac point when the electron wave length is small. No correlations were found between the
corrugations and the scattering centers, suggesting that the latter play a more important
role in the scattering process. When the sample bias voltage is close to the Dirac point, the
electron wave length is so large that it covers many scattering centers. Thus, the dIt/dVBias
maps show coarse structures arising from the electron-hole puddles. The Fourier transform of
the interference pattern provides information about the energy and momentum distribution
of quasiparticle scattering, which can be used to infer band structure information [45]. For
unperturbed single layer graphene, interference patterns are expected to be absent or very
weak [46]. However, due to the strong scattering centers, clear interference patterns are ob-
served for graphene on SiO2 [7], where the main scattering centers are believed to be trapped
charges.

In contrast to graphene on SiO2, graphene on graphite shows very little variation of the
Dirac point (≈ 5meV) across hundreds of nm [14, 34] (Figure 5(b)). This is illustrated in
the spatial map of the distance between the Dirac point and the Fermi level shown in Figure
5(a). The value of the Dirac point was extracted by fitting the Landau level sequence, as
discussed in the next section. Further demonstration of the homogeneity of the graphene
flakes on graphite is given by the Fermi velocity which is found to vary by less than 5% across
the same area as shown in Figure 5(c),(d). For the histogram is Figure 5(d) the mean value
of the velocity is vF = 0.78× 106ms−1. Similarly, the fluctuations of the local charge density
in graphene on h-BN were recently found to be much smaller than on SiO2 [32, 33].

2.4 Landau levels

In the presence of a magnetic field, B, normal to the plane, the energy spectrum of 2D elec-
tron systems breaks up into a sequence of discrete Landau levels (LL). For the non-relativistic
case realized for example in the 2D electron system on helium [47] or in semiconductor het-
erostructures [48], the Landau level sequence consists of a series of equally spaced levels similar
to that of a harmonic oscillator: E = h̄ωc(N+1/2) with the cyclotron frequency ωc = eB/m∗,
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Figure 5: (a) Map of the Dirac point on graphene on graphite [14]. (b) Histogram of the values
of Dirac point in (a). (c) Map of the Fermi velocity on graphene on a graphite substrate [14].
(d) Histogram of the velocities in (c).

a finite energy offset of 1/2h̄ωc, and an effective mass m∗. In graphene, as a result of the
linear dispersion and Berry phase of π, the Landau level spectrum is different:

En = ±h̄ωG
√
|N |, ωG =

√
2vF
lB

(7)

Here, N = ... − 2,−1, 0,+1,+2... is the index of the Landau level, ωG is the cyclotron

energy for graphene and lB =
√

h̄
eB is the magnetic length.

Compared to the non-relativistic case the energy levels are no longer equally spaced, the
field dependence is no longer linear and the sequence contains a level exactly at zero energy,
N = 0, which is a direct manifestation of the Berry phase in graphene [49]. We note that the
LLs are highly degenerate, the degeneracy per unit area being equal to 4B/φ0. Here B/φ0

is the orbital degeneracy with φ0 = h/e the flux quantum and 4 = gs · gv, where gs and gv
(gs=gv=2) are the spin and valley degeneracy, respectively.

In Figure 6 an illustration of the quantized LL is presented. The conical dispersion of
graphene in the absence of a magnetic field is transformed into a sequence of Landau levels
corresponding to electron carriers above the Dirac point (DP) and holes below it. In the
density of states, represented on the left side, a LL corresponds to a peak in the DOS. The
indexes of the LLs are indicated as N < 0 for holes and N > 0 for electrons. Assuming that
the Fermi level is exactly at the DP (the case of neutral graphene), the gray area in Figure 6
represents electronic states that are already filled.

Experimentally, a direct way to study the quantized Landau levels is through STS as
was demonstrated in early studies on HOPG [50, 51] and adsorbate-induced two dimensional
electron gases (2DEGs) formed by depositing Cs atoms on an n-InSb(110)surface [52].
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Figure 6: Illustration of quantized energy levels in graphene and their signature in the density
of states. Right side: Dirac cone which in a magnetic field no longer has a continuum energy,
but discrete levels: red rings for electrons, blue rings for holes. Left side: the vertical axis is
energy; the horizontal axis is the density of states. For each Landau level there is a peak in
the density of states which is broadened by electron-electron interactions in ideal systems. In
the presence of disorder, the LL are further broadened. The indexes of the LLs are N=0 for
the one at the Dirac point and N=+1,+2,+3... for the electron side and N=-1,-2,-3,... for the
hole side.

2.4.1 Landau Levels in almost ideal graphene

STM studies of graphene flakes on graphite in a magnetic field by Li et al. [34] gave
direct access to the LL sequence and its evolution with magnetic field. The main results are
presented in Figure 7. In Figure 7(a) the high resolution spectrum at 4T shows sharp LL
peaks in the tunneling conductivity dIt/dVBias. The field dependence of the STS spectra,
shown in Figure 7(b), exhibits an unevenly spaced sequence of peaks flanking symmetrically,
in the electron and hole sectors, a peak at the Dirac point. All peaks, except the one at
the Dirac point, which is identified as N=0, fan out to higher energies with increasing field.
The peak heights increase with field, consistent with the increasing degeneracy of the LL.
To verify that this sequence of peaks does indeed correspond to massless Dirac fermions, the
field and level-index dependence of the peak energies in the sequence was measured. It was
then compared to the expected values (Equation (7)) measured relative to the Fermi energy
(the convention in STS) as shown in Figure 7(c). This scaling procedure collapses all the
data onto a straight line. Comparing to Equation (7), the slope of the line gives a direct
measure of the Fermi velocity, vF = 0.79 · 106m/s. This value is 20% less than expected
from single particle calculations and, as discussed later, the reduction can be attributed to
electron-phonon interactions. The presence of a N=0 field-independent state at the Dirac
point together with the square-root dependence of the LL sequence on both field and level
index, are the hallmarks of massless Dirac fermions.

The technique described above, Landau level spectroscopy, can be used to obtain the
Fermi velocity of Dirac fermions, the quasiparticle lifetime, the electron phonon coupling,
and the degree of coupling to the substrate [14, 53]. LL spectroscopy gives access to the
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electronic properties of Dirac fermions when they define the surface electronic properties.
This technique was adopted and successfully implemented to probe massless Dirac fermions
in other systems including graphene on SiO2 [9], epitaxial graphene on SiC [54], graphene on
Pt [55] and topological insulators [56, 57].

An alternative, though less direct, method of accessing the LLs is to probe the allowed
optical transitions between the LLs by using cyclotron resonance measurements. This was
done on exfoliated graphene on SiO2 [58, 59], epitaxial graphene [60] and graphite [15]. Other
indirect methods include scanning electron transistor or similar capacitive techniques [61, 62].

(a) (b) (c)

Figure 7: (a) STS spectrum of graphene on graphite showing the presence of Landau levels.
(b) The evolution of the LLs with magnetic field. (c) The energy dependence of the LLs on
the reduced parameter sgn(N)

√
|N |B [34], where sgn refers to ± signs.

Electron-phonon interaction and velocity renormalization. The basic physics of
graphene is captured in a tight-binding model. However, many-body effects are often not
negligible. Ab initio density functional calculations show that the electron-phonon (e-ph)
interactions introduce additional features in the electron self-energy, leading to a renormalized
velocity at the Fermi energy [63]. Away from the Fermi energy, two dips are predicted in
the velocity renormalization factor, (vF − vF0)/vF , at energies E ± h̄ωph where ωph is the
characteristic phonon energy. At the energies of the phonons involved, such dips give rise to
shoulders in the zero field density of states which can be measured in STS experiments.

Figure 8(a) plots the tunneling spectra measured on a decoupled graphene flake on graphite.
Two shoulder features on both sides of the Fermi energy are seen around 150meV. These fea-
tures are independent of tip-sample distance for tunneling junction resistances in the range
3.8−50GΩ. In Figure 8(b) the corresponding two dips in the renormalized velocity are visible.
This suggests that the optical breathing phonon, A

′
1 with energy E ≈ 150meV plays an im-

portant role in the velocity renormalization observed in graphene [63]. The line width of the
A
′
1 phonon decreases significantly for bilayer graphene and decreases even more for graphite

[64, 65]. Therefore the electron-phonon coupling through the A
′
1 phonon is suppressed by

interlayer coupling and the induced velocity renormalization is only observed in single layer
graphene decoupled from the substrate.

Landau level linewidth and electron-electron interactions The lineshapes of the LLs
for the case of graphene on graphite were found to be Lorentzian rather than Gaussian [34],
suggesting that the linewidth reflects the intrinsic lifetime rather than disorder broadening.
Furthermore, looking closer at the linewidth of the LLs in Figure 8(c), it is found that the
width increases linearly with energy. This dependence is consistent with the theoretical pre-
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dictions that graphene displays a marginal Fermi liquid behavior: τ ∝ E−1 ≈ 9ps [66].

(a) (b) 

(c) (d) 

Figure 8: (a) STS data for graphene flakes on HOPG showing how the Fermi velocity is
renormalized below a certain energy (≈150meV). (b) The calculated renormalization of the
Fermi velocity versus sample bias from the data in (a). (c) Fit of the LL lineshape with
Lorentzians. (d) Tunneling spectra taken with higher resolution revealing a 10meV gap at
the Dirac point [34].

Another interesting feature is the presence of an energy gap with Egap ≈ 10meV in the
B=0T spectrum as shown in 8(d) which may have the same origin as the splitting of the
N = 0 level in finite field. One possible explanation for the presence of this gap is the broken
A-B symmetry due to the Bernal stacking of the graphene layer with respect to the graphite
substrate, but more work is needed to elucidate its origin.

Lifting of the LL degeneracy was observed in quantum Hall effect measurements on the
highest quality suspended graphene devices [67, 68] and in STM experiments on epitaxial
graphene on SiC [69].

2.4.2 Effects of interlayer coupling

For graphene flakes on graphite one can also address the effect of interlayer coupling in
regions where the graphene flakes are weakly coupled to the substrate. It was found that the
LL spectrum of graphene which is weakly coupled to a graphite substrate strongly depends
on the degree of coupling.

In Figure 9(a) the topography image shows two regions: G, where the top layer is decoupled
and displays signatures of a single layer graphene and below it, a different region, W, where
there is weak coupling to the underlying graphite substrate. In the presence of weak coupling
the LL spectrum changes into a complex sequence resulting from splittings of the levels due to
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lifted level degeneracy. This is illustrated by the spatial dependence of the LLs in Figure 9(b)
where the LL sequence changes after crossing the boundary between G and W [14]. By fitting
the LL sequence in W to the theoretical model described in [53], the coupling was found to
be a tenth of the one in a regular Bernal stacked bilayer [14].
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Figure 9: (a) STM image showing two distinct regions: G- where the graphene flake is
decoupled from graphite; W- where the graphene flake is weakly coupled to the graphite
substrate. (b) The evolution of the Landau levels from region G to region W. The vertical
axis is the position where the spectrum is measured indicated by d in (a); the horizontal axis
is the sample bias. (c),(d) Fits of the LLs in (b) to the theoretical model [53], in which t is
the coupling parameter between the layers, for no coupling (c) and weak coupling (d) [14].

2.4.3 Landau Levels in disordered graphene

For graphene device applications which require gating and the ability to do transport
measurements, it is necessary to use insulating substrates. Therefore, although the quality of
graphene on graphite is far superior to that on an insulating substrates, graphite substrates
cannot be used in practical applications.

Initially, the disorder potential found on standard SiO2 substrates, was too large to allow
observation of LLs by STS even in the highest magnetic fields [41] so further improvement
of the substrate was needed. One procedure that was demonstrated to dramatically improve
sample quality is to remove the SiO2 substrate under the graphene which becomes suspended
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[67, 68, 70, 71]. However, such samples are fragile and small, so studying them is challenging.
Therefore, exploring ways to improve the substrate is of interest. In the semiconductor

industry it is known that the quality of SiO2 can be greatly improved using dry oxidation in
the presence of chlorine. This process reduces the number of trapped charges in the oxide,
improving the uniformity and quality of the insulator [72, 73, 74, 75]. When using such
substrates treated by chlorination, the STM and STS measurements show that it is possible
to see well defined quantized levels for high enough magnetic fields [9]. The broadening of
the LLs, however, together with the deviation from a V-shaped zero-field density of states,
indicate that such samples are not ideal.

STS in zero field was used to give an estimate of the average length scale of the disorder,
the electron-hole puddle size, d ≈ 20nm [9]. In order to observe well defined levels, the
magnetic length should be at most (d/2) ≈ 10nm, corresponding to a magnetic field B = 6T .
In Figure 10(a) the STS data taken for graphene on chlorinated SiO2 shows how indeed, for
smaller fields, below 6T, the levels are not well defined, while above 6T in Figures 10(a),(b)
they become clearly defined.

In such samples it is expected that the levels are broadened by disorder [76, 77, 78]. The
measured width of the levels is typically γ ≈ 20 − 30meV , much larger than on HOPG and
corresponds to a carrier lifetime of τ ≈ 22− 32fs consistent with values obtained by different
techniques [58, 61, 62].

The Fermi velocity obtained by LL spectroscopy is vF = (1.07 ± 0.02) · 106m/s (Figure
10(d)) and varies by 5− 10% depending on the position on the sample. To further illustrate
the effect of disorder on the LLs, Figure 10(c) shows how the sequence of levels changes along
a 60nm long line across the sample. The variation in brightness indicates spatial dependence
of the LLs width and height due to disorder.

2.4.4 Gate dependence of Landau levels

Due to its band structure, in particular the electron-hole symmetry, graphene shows an
ambipolar electric field effect. STS of gateable graphene on an insulating substrate can be
used to study the evolution of the electronic wave function and density of states as the Fermi
energy is moved through the LLs. The ability of STS to access both electron and hole states
makes this a particularly powerful technique. In an STS experiment EF is usually situated at
zero bias and therefore it is convenient to define the EF as the origin of the energy axis and
to measure the Dirac point energy with respect to it.

Figure 11(a) shows a set of data taken at B=12T in which the spectrum was recorded
for different gate voltages. Each vertical line is a spectrum at a particular gate voltage VG.
The intensity of the plot represents the value of the dI/dV, the lighter color corresponding to
the peaks in the spectrum. The vertical axis is the sample bias and the horizontal axis is the
gate voltage. The gate voltage was varied in the range −15V < VG < +43V corresponding
to carrier densities: 3× 1012cm−2 > nc > −0.5× 1012cm−2. In the spectrum taken at VG=-
15V a very faint N=0 level is seen at ≈ 240meV . Because the sample was hole doped at
neutral gate voltage already, in the energy range that we probe, we only measure the Landau
levels corresponding to hole states: N = −1,−2,−3.... At higher gate voltages though, for
VG > 40V the levels corresponding to electron states N = +1,+2,+3... also become visible.

Qualitatively, one can understand the overall step-like features in Figure 11 (plateaus fol-
lowed by abrupt changes in slope) as follows: the LL spectrum contains peaks, corresponding
to high DOS, separated by regions of low DOS (Figure 11(a)). It takes a large change in the
charge carrier density to fill the higher DOS regions - therefore plateaus appear; at this point
the Fermi level is pinned to the particular Landau level being filled. On the other hand, filling
the regions of low DOS in between the LLs does not require much change in carrier density
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Figure 10: (a) STS data for graphene on SiO2 for magnetic fields up to 7T. (b)STS data on
graphene on SiO2 for magnetic fields between 7T and 12T. (c) Example of typical evolution
of the LL across a line of 60nm for the graphene on SiO2 sample in B=10T. (d) Fermi velocity
extracted from the LL sequence in (a) and (b) [9]. The energies of the LLs were shifted so
that the Dirac point is the same for all fields. The spread in the LLs for different fields reflects
slight variations of the Fermi velocity due to the fact that the spectra for the different fields
were not taken at the exact same location on the sample.

- therefore an abrupt change in slope appears. For broad Landau levels the DOS in between
the peaks is larger, thus smearing the step-like pattern.

A simulation considering the LL broadening and using vF =(1.16 ± 0.02)x106 m/s is
plotted in Figure 11(b) and shows good agreement with the measured data in Figure 11(a).

Similar experiments on graphene exfoliated on SiO2, probing areas of different disorder
across the sample, where reported by Jung et al. [36].

In the two-dimensional electron system (2DES) of very high mobility GaAs samples, this
pinning of the Fermi level to the LL was observed by time domain capacitance spectroscopy
[79].

In contrast to electrical transport measurements that typically probe states near the Fermi
surface, STS can access both filled and empty states. Therefore, in a magnetic field, through
LL spectroscopy one can probe the full shape of the Dirac cone in the measured energy range.
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The shape of the cone was investigated as a function of carrier concentration by measuring
the Fermi velocity from the LL sequence as a function of doping. Within the investigated
range of charge carrier density (3 × 1012cm−2 > nc > −0.5 × 1012cm−2), it was found that
closer to the Dirac point, the velocity increases by ≈ 25% as seen in Figure 11(c).

At low carrier density the effects of electron-electron interactions and reduced screening on
the quasiparticle spectrum are expected to become important. The observed increase in the
Fermi velocity is consistent with a renormalization of the Dirac cone close to the neutrality
point due to electron-electron interactions [66, 80]. If the random potential is further reduced
such that LLs can be observed already in small fields, the fact that the spacing between the
levels is smaller will make it possible to probe the reshaping of the cone with higher accuracy.

A similar result was obtained by Elias et al. on suspended graphene samples by measuring
the amplitude of the Shubnikov de Haas oscillations as a function of temperature [81].

(a)
(b)

(c)
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N

N

N

N

N

Figure 11: (a) Map of the dependence of the LL in graphene on SiO2 on charge carrier density
for B=12T. The vertical axis is the sample bias, the bottom horizontal axis is the gate voltage
and the upper horizontal axis is the corresponding charge carrier density. The LL indexes
are marked N=...±3,±2,±1,0. (b) Simulation of the evolution of the LL spectrum in (a). (c)
Gate voltage dependence of the Fermi velocity. The Dirac point, at VG = 35 V, is marked.

2.4.5 Disorder effects: extended and localized states

Impurities and the resulting random potential strongly affect the electronic wave function
in graphene. By measuring STS in the presence of a perpendicular magnetic field, one can
visualize the wavefunctions corresponding to the LLs in real space.

To this end, STS spectra are acquired on a fine grid of points across a chosen area. At
a particular energy one can plot an intensity map having the x,y spatial coordinates and as
z-coordinate the value of the dI/dV (∝ DOS) at that energy. This map will illustrate the
density of states variation in real space.
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Figure 12: (a) Averaged tunneling spectra across the area in the inset showing LLs with index
N=0,+1,... . The letters E and L indicate the energies where the STS maps in (b) and (c)
are taken. The scale bar of the inset is 16nm. (b) STS map across the area in the inset of (a)
at Vbias = 0V . (c) STS map across the area in the inset of (a) at Vbias = 55mV [82].

Such a procedure is shown in Figure 12. Figure 12(a) represents the average over spectra
taken in B=12T over a grid of points across the area of the sample shown by the STM image
in the inset. The LLs with indexes N=0,+1,+2... are resolved at this field value. Figure
12(b) and (c) are the dIt/dVbias maps at energies marked in (a) as E and L where It is the
tunneling current and Vbias is the bias voltage. At E ≈ 0 eV corresponding to the peak of
the N=0 LL, Figure 12(b) shows bright regions of high DOS forming an extended percolating
state. At E ≈ 55 meV in between N=0 and N=+1, Figure 12(c) shows the complementary
localized states around impurities [82].

The presence of extended and localized states on the peaks and valleys of the LL spectrum
is often used to qualitatively understand the integer quantum Hall effect (IQHE). A typical
IQHE measurement in a Hall bar configuration [83] measures the Hall (transverse) resistivity
ρxy and the longitudinal resistivity ρxx while varying the filling factor ν = (nsh)/(eB) with
ns the carrier density, B the magnetic field, h the Planck constant and e the electron charge.

When the filling is such that the Fermi level lies in between two LLs the electrons are
trapped in the localized states around the impurities and they do not play any role in the
conduction. At this point ρxx = 0 and ρxy is quantized. When the Fermi level is at a peak of
a Landau level, the electrons occupy the percolating state across the sample so ρxx is finite
and ρxy increases making the transition between the quantized plateaus.

STM/STS experiments probing the extended and localized quantum Hall states were
reported on the adsorbate-induced two dimensional electron gas on n-InSb(110) [52] and on
epitaxial graphene on SiC [84].

2.5 Measuring small graphene devices with scanning probes

The discovery of graphene opened exciting opportunities to study a 2D system by surface
probes. However the fact that the cleanest samples obtained by exfoliation are only a few
microns in size poses technical challenges. Some room temperature experimental set-ups
containing optical microscopes can overcome this problem. Even low temperature experiments
which are equipped with long range optical microscopes or scanning electron microscopes can
find small samples, but most low temperature and magnetic field setups are lacking such tools.
For this reason, a capacitive method was developed in order to guide the STM tip towards
micron size samples as detailed in [85].
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Figure 13: (a)General set-up of the sample separated by a SiO2 layer from the back gate and
the quantities of interest: pick-up current Ĩ, the ac voltage applied to the sample Ṽs, and the
gate voltage Ṽgate . (b) Electric field lines above the sample when the tip is not taken into
account, but only the sample at V=+1V and the back gate at V=-1V. The arrows point to
the edges of the sample. (c) Sketch of the metallic lead connected to the sample. The tip will
travel across the largest pad on the indicated dashed line and after that towards the smaller
pad as pointed by the arrow. (d) The typical measured current versus position for the tip
moving across one of the pads as well as its derivative.

To measure STS one usually applies a small ac modulation to the sample bias voltage, Ṽs,
so that there is an ac current, Ĩ , flowing through the STM tip: Ĩ = Gt · Ṽs + iωCṼs, where
Gt is the tunneling conductance and C is the tip-sample capacitance. The contributions to
the ac current are from tunneling (first term) and from capacitive pickup (second term). The
pick-up signal can be used to resolve small structures when the tip is far from the surface and
it is not in the tunneling regime.

The schematic set up for this method is shown in Figure 13 (a). The output voltage from
the reference channel of a lock-in amplifier is split into two with 180o phase shift between
them. One of the signals (+) is applied to the sample directly as Ṽs , the other (-) is applied
to the gate − ˜Vgate through a pot resistor to adjust the amplitude. The capacitive pickup
current measured from the tip is Ĩ. One key aspect of the procedure is tuning the voltage
applied to the back gate in order to minimize the background pick-up current as detailed in
[85].

To qualitatively illustrate the sensitivity of this method in detecting sample edges, Figure
13 (b) shows the electric field lines around the sample, when Vs = 1V and Vgate = −1V ,
highlighting the presence of steep potential lines at the edges of the sample.

Another novel component is the design of the metallic lead connected to the sample. This
lead is made of connected pads which are becoming smaller in size closer to the sample, as

18



shown in a sketch of the typical design in Figure 13(c). This contact pad geometry makes it
possible to locate small (micron size) samples on large (mm size) substrates with an STM tip
alone, without the aid of complicated optical microscopy setups.

The measured pick-up current across one of the pads is shown in 13(d). The vertical left
axis is the measured current and the horizontal axis is the position on the pad. The signal is
higher when the tip is above the pad and smaller when it is off the pad, riding on top of an
overall background signal. In the derivative of this current with respect to position, the edges
of the pad can be identified as seen in the Figure 13(d)-right vertical axis.

Such a signal is dependent on the tip-pad distance, so after the edges of a large pad have
been identified, one can approach the tip to the conductive surface in the STM mode and
retract a smaller number of steps in order to resolve the edges of the next smaller pad. The
fact that the tip is far from the surface while moving across the large pads prevents it from
crashing.

This procedure is repeated until the smallest pad and the sample are found. The sensi-
tivity of this method is sufficient for finding samples of a few microns in size as demonstrated
by Luican et al. [9].

2.6 Graphene edges

The two high symmetry crystallographic directions in graphene, zig-zag and armchair are
described in Figure 14(a). A graphene flake can terminate in one of the two or it can have
an edge that is irregular and contains a mixture of zig-zag and armchair. The type of edge is
predicted to have a significant impact on its electronic properties [87, 88].

One of the highest resolution imaging experiments of a graphene edge was done using
Transmission Electron Microscopy [89]. However, to simultaneously characterize the atomic
structure and probe the electronic properties of the graphene edges, STM/STS are the tech-
niques needed.

Theoretically, the zig-zag edge is predicted to have a localized state [90], i.e. a peak in the
DOS at the Fermi level. Experimentally this was observed on HOPG by STM experiments
[91]. To determine the structure of the edges with STM, one compares the direction of the
edge with the one of the graphite lattice which can be measured inside the sample. Once the
type of edge was inferred from topography, Niimi et al. [91] found that when the spectrum
is measured on a zig-zag edge, it shows a peak close to the Fermi level which is absent in the
armchair case as expected from the theoretical calculations.

STM/STS experiments of graphene nanoribbons created by unzipping carbon nanotubes
are able in principle to detect the presence of edge states and correlate them to the ribbon
chirality [92].

However, to make a connection between the atomic structure of edges in graphene and
the magneto-transport experiments showing integer quantum Hall effect or evidence of many-
body physics, it is important to study graphene edges in a magnetic field. This was possible
on graphene flakes on graphite. The topographic image in Figure 14(b) indicates the zig-zag
edge as well as the positions where the spectra in Figure 14(c) were taken. The inset is the
honeycomb lattice measured on the decoupled flake. Figure 14(c) shows the spectra obtained,
in a perpendicular magnetic field B=4T, at distances from 0.5 lB (top curve) to bulk (bottom
curve). One feature that is unique to the zig-zag edge is the fact that while the higher index
LLs get smeared closer to the edge, the N=0 is robust. The decay of the LL intensity upon
approaching the edge is in good agreement with the theoretical prediction [93, 94] as shown
in the inset of Figure 14(d).
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Figure 14: (a) Sketch of the two crystallographic directions: zig-zag and armchair edges. (b)
Topography image of a decoupled graphene flake on graphite, its edge and the positions where
the tunneling spectra were taken. The inset is the atomic resolution image obtained on the
flake as indicated. (c) STS traces at various distances from the edge of the flake in (b) towards
the bulk. (d) Evolution of the LL intensities moving towards the edge. Inset: Data points
are heights of the peaks for N=1,2 and the curves are theoretical calculations [86].

2.7 Strain and electronic properties

Controlling strain in graphene is expected to provide new ways to tailor its electronic
properties [95, 96]. Interestingly, as a result of strain in the lattice, the electrons in graphene
can behave as if an external magnetic field is applied. The origin of this pseudo magnetic
field is the fact that strain will introduce a gauge field in the Hamiltonian which mimics the
presence of a magnetic field. In order to create a uniform field, however, the strain needs
to be designed in particular configurations such as stretching graphene along three coplanar
symmetric crystallographic directions [96].

Experimentally the effect of strain on the graphene spectrum was addressed by STM/STS
measurements of graphene nanobubbles grown on a Platinum (111) surface [55]. On such
samples, the peaks in the tunneling spectroscopy reported in [55] are interpreted as Landau
levels originating from the pseudo magnetic field.
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2.8 Bilayer graphene

Graphene layers stack to form graphite in the so-called Bernal stacking arrangement. If
we name the two inequivalent atomic sites in the graphene lattice A and B, the top layer will
have B atoms sitting directly on top of A atoms of the bottom layer and A atoms of the top
layer sit above the centers of the hexagons of the graphene underneath. A system consisting
of two layers of graphene in Bernal stacking, bilayer graphene, is characterized by a hyperbolic
energy dispersion of its massive chiral fermions.

In the presence of a magnetic field the LL sequence for an ideal Bernal-stacked graphene
sample is given by: En = ( eh̄Bm∗ )

√
N(N − 1) where m∗ is the effective mass of the carriers,

B is the magnetic field, e is the electron charge, h̄ is Planck’s constant divided by 2π and
N=0,1,2,3,... . The eight fold degeneracy occurring for N = 0, N = 1 can be broken either
by an applied electric field or by electron-electron interactions [97, 98, 99]. Experimentally,
magneto-transport measurements of high quality suspended bilayer samples have revealed the
presence of interaction-induced broken symmetry states [100, 101, 102].

In order to directly probe massive chiral fermions in bilayer graphene, STM/STS were
performed on mechanically exfoliated graphene placed on insulating SiO2 [103, 104]. It was
found that the measured LL spectrum was dominated by effects of the disorder potential
due to the substrate. The random potential creates an electric field between the two layers
which results in locally breaking the LL degeneracy and a LL spectrum that is spatially
nonuniform [104]. Therefore, in order to access the intrinsic properties of bilayer graphene,
an improvement of samples that can be measured by STM/STS is necessary .

3 Electronic properties of twisted graphene layers

An infinitesimally small rotation away from Bernal stacking will completely change the
electronic properties of the graphene bilayer system, suggesting the possibility of an extra
knob to tune the electronic properties.

These rotational stacking faults are common and have been observed on graphite surfaces
already in early STM studies [105, 106, 107, 108]. It was not until the discovery of graphene
that the electronic properties have been investigated both theoretically and experimentally.
With the new methods of preparing graphene by chemical vapor deposition it became even
more important to address questions regarding the properties of rotated layers since the
growth mechanism seems to favor the formation of twisted layers [21].

The consequence of superposing and rotating two identical periodic lattices with respect
to each other is the formation of Moiré patterns. Considering two hexagonal lattices, the
Moiré pattern emerging for an arbitrary rotation angle is illustrated in Figure 15(a). A
commensurate pattern is obtained for discrete families of angles that can be mathematically
derived [109, 110, 111, 112, 113, 114]. One such family of angles is: cos(θi) = (3i2 + 3i +
1/2)/(3i2 + 3i+ 1) with i = 0, 1, 2, .... The relation between the period of the superlattice L
and the rotation angle θ is:

L =
a

2sin( θ2)
(8)

where a ≈ 0.246nm is the lattice constant of graphene.
STM can reveal areas where a Moiré pattern resulting from the twist of graphene layers

is formed, as shown in Figure 15(b). In this case, the top graphene layer is misoriented with
respect to the underlying graphite and has a Moiré pattern just until its boundary. Different
angles will result in the formation of different patterns, as described by Eq. (8). Experimen-
tally this is demonstrated by STM images showing superpatterns of different periodicity in
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Figure 15: (a) Illustration of an emerging Moiré pattern from the rotation of two graphene lay-
ers. (b) STM topography image showing a Moiré pattern and its border in HOPG. (c)(d)(e)(f)
STM images for Moiré patterns corresponding to angles 1.16 o,1.79o, 3.5o, 21o, respectively
[50, 115]. Scale bar in (c)-(e) 2nm, (f) 1nm

samples with different twist angles. For example, at rotation angle θ = 1.79o the superperiod
is L = 7.7nm. The sequence of four topographic maps in Figure 15(c),(d),(e),(f) have approx-
imately the same field of view and they correspond to rotation angles of 1.16 o, 1.79o, 3.5o,
21o. The inset in Figure 15(d) (for θ= 1.79o) highlights the fact that the period of the atomic
lattice of the graphene layer is much smaller than the Moiré pattern and can be visible on top
of it. Typically the height observed in topography for the Moiré patterns is ≈ 0.1− 0.3nm.

3.1 Van-Hove singularities

In momentum space, the consequence of the twist between layers is the rotation of the
corresponding Dirac cones with respect to each other as sketched in Figure 16(a). The distance
between the cones is given by:

∆K =
4π

3a
2sin(

θ

2
) (9)

At the intersections of the two Dirac cones their bands will hybridize, resulting in the
key feature of the band structure, the two saddle points in both the electron and hole sides
[109, 50]. The theoretical calculation of the dispersion in the case of rotation angle θ= 1.79o

is presented in Figure 16(b).
In two dimensions, the saddle points in the electronic band structure lead to diverging

density of states, also known as Van Hove singularities (VHS)[116]. It is important to note
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that in the absence of interlayer coupling, the Van Hove singularities will not appear. Corre-
sponding to the saddle points in the dispersion shown in Figure 16(b), the VHS in the DOS are
presented in Figure 16(c). The distance between the cones and implicitly between the saddle
points is controlled by the rotation angle such that the distance in energy between the VHS
depends monotonically on the angle θ. For the small angle regime, 2o < θ < 5o the energy
separation is: ∆E = h̄vF∆K − 2tθ, where tθ is the interlayer coupling. The rotation-induced
VHSs are not restricted to the bilayer case. Qualitatively, if one layer is rotated with respect
to a stack of layers underneath, the VHSs are still preserved.

To explore the angle dependence of VHSs, Li et al. [50] studied graphene layers pre-
pared by chemical vapor deposition [21] as well as rotated graphene layers on graphite. The
experimental data obtained from STS for different angles, 1.16o,1.79o, 3.5o, is presented in
Figure 16(d),(e),(f). The corresponding Moiré patterns are shown as insets. In each case, the
measured spectra show two peaks, which are signatures of the VHS. The measured energy
separation between the VHSs together with the theoretical curves are shown in Figure 16(g)
indicating a monotonic increase with rotation angle.

An interesting situation arises in the limit of small angles [50]. Figure 17 (a) shows the
measured topography of the Moiré pattern corresponding to θ = 1.16o. The spectrum in
this case is presented in Figure 17(c) showing the two VHSs separated by a small energy
∆E ≈ 12meV . It is known that when the Fermi energy is close to the VHS, interactions,
however weak, are magnified by the enhanced density of states, resulting in instabilities, which
can give rise to new phases of matter [117, 118, 119]. This is consistent with the observation
that the STS maps in Figure 17(b), taken at the energy of the singularity, suggest the forma-
tion of an ordered state such as charge a density wave. Such localization by Moiré patterns
is also predicted by theoretical calculations [110].

3.2 Renormalization of the Fermi velocity

While for sufficiently separated cones, the low energy electronic bands still describe Dirac
fermions, the slope of the Dirac cone is influenced by the Van Hove singularities, leading to a
renormalized Fermi velocity.

Theoretically the equation describing the velocity renormalization was derived to be [109]

vF (θ)

v0
F

= 1− 9(
tθ⊥

h̄v0
F∆K

)2 (10)

where v0
F is the bare velocity, vF (θ) is the renormalized value at an angle θ; the interlayer

coupling is tθ⊥ ≈ 0.4t⊥ and t⊥ is the interlayer coupling in the Bernal stacked bilayer.
The curve corresponding to this relationship is plotted in Figure 18(g). For large angles

θ > 15o the renormalization effect is small, but the velocity is strongly suppressed for smaller
angles.

In order to probe vF , Luican et al. [115] measured the quantized LLs in a magnetic field
and from their field and index dependence the velocity was extracted. For the large angle
shown in Figure 18(a) the measured LL spectrum is presented in Figure 18(d). In this case of
large angles, the low energy electronic properties are indistinguishable from those in a single
layer and the measured vF = (1.10± 0.01)106m/s.

In Figure 18(b)the topography image shows two adjacent regions B and C. In region B, a
Moiré pattern with period of 4.0nm is resolved, while in region C, the pattern is not resolved,
indicating an unrotated layer (or a much smaller period not resolved within the experimental
resolution). In both regions STS in a magnetic field (Figure 18(e)) shows LL sequences specific
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Figure 16: (a) The relative rotation in momentum space of the Dirac cones corresponding to
two twisted graphene layers. (b) The calculated energy dispersion for two graphene layers
rotated by θ = 1.79o. (c) The DOS corresponding to (b). The inset represents a cut through
(b) along a line joining the two Dirac points. (d),(e),(f) STS for Moiré patterns corresponding
to different angles, 1.16 o,1.79o, 3.5o. The insets are the corresponding real space superpat-
terns. (g) Theoretical curves and experimental data obtained for the separation of VHSs as
a function of rotation angle [50, 115].

to massless Dirac fermions with different Fermi velocities: 0.87x106m/s and 1.10x106m/s for
regions B and C, respectively.

At very small angles, θ < 2o such as the area in Figure 18(c), the VHSs become so
dominant that massless Dirac fermions no longer describe the electronic states (Figure 18(f)).
This regime is marked by a question mark in Figure 18(g).

It is important to note that the mechanism for renormalization of the Fermi velocity due
to the presence of VHS is different from the case of graphene flakes on graphite discussed
previously. In the twisted layers the renormalization is a sensitive function of the misorienta-
tion angle. In contrast, the velocity renormalization observed in the the case of graphene on
graphite is due to electron-phonon interaction [34].

The results obtained on Moiré patterns on CVD graphene and graphite differ from the
ones on epitaxially grown graphene on SiC [54, 120] which report a single layer graphene
spectrum regardless of the twist angle. One clue towards understanding these results can be
found in the unusual presence of a continuous atomic honeycomb structure across the entire
Moiré superstructure in the case of epitaxial graphene. This is in contrast to Moiré patterns
generated by two rotated layers where one sees a correlation between the Moiré pattern and
the atomic structure which changes from triangular, to honeycomb, or in between the two,
depending on the local stacking within the superpattern [108, 50].

If in addition to the twist of the top most layer, a Moiré pattern is present under the first

24



a) b) c) 

Figure 17: (a) Topography of a Moiré pattern corresponding to a small rotation angle :
θ = 1.16o. The scale bar is 2nm. (b) dIt/dVBias map taken at the area in (a) at energy
E=1meV. The scale bar is 2nm. (c) STS on the peaks and valleys of the Moiré pattern in (a)
[50].

layer (layer 2 rotated with respect to layer 3), it is expected that a complex superstructure
involving several Moiré patterns will appear. This is the case in some of the experiments re-
ported on epitaxially grown graphene on SiC [121]. In the case of the CVD graphene samples
or graphite such multiple Moiré patterns were not observed. Therefore, the previously dis-
cussed features (VHS, reduction in Fermi velocity) are consequences of twisting only the top
most layer with respect to the underlying single layer graphene or Bernal-stacked multilayer
graphene.

4 Conclusions

In this chapter we presented a brief review of experimental results obtained by scanning
tunneling microscopy and spectroscopy of graphene systems with various degree of disorder.

When the charge carriers are minimally affected by potential fluctuations in the substrate,
as is the case for graphene flakes on the surface of graphite, one can access the intrinsic
properties of the massless Dirac fermions in graphene. STS measurements show that the
charge carriers in such flakes exhibit the hallmarks of massless Dirac fermions: the density of
states is V-shaped and vanishes at the Dirac point and in the presence of a magnetic field the
LL sequence contains a level at zero energy and follows the predicted square root dependence
on field and level index. The quality of such samples allows access to physics beyond the the
single particle picture and signatures of electron-phonon and electron-electron interactions
can be studied.

Tuning the charge carrier concentration in graphene requires placing it on an insulating
substrate such as SiO2. In this case, graphene conforms to the rough surface of the oxide
and the electrons are affected by the random potential introduced by the substrate. For this
system, in the presence of a magnetic field, the Landau levels are broadened by disorder. The
charge carrier density dependence of the LL spectrum shows pinning of the Fermi level at the
respective LL which is filled. In such measurements that can probe the shape of the Dirac
cone while tuning the carrier concentration, the velocity is found to increase upon reaching
the Dirac point suggesting the onset of many body interactions.

Twisting graphene layers away from the equilibrium Bernal stacking leads to novel elec-
tronic properties. In the topographical images one can identify twisted graphene layers by the
appearance of Moiré patterns dependent on the rotation angle. The twist gives rise to two Van
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Figure 18: (a) STM of a Moiré pattern due to rotation θ = 21o. (b) STM of an area with
two distinct regions: region B which has a Moiré pattern corresponding to rotation angle
θ = 3.5o and region C where there is no superpattern. (c) STM for a Moiré pattern with
θ = 1.16o. (d) STS in a magnetic field showing the LL sequence measured in the area in (a).
(e) STS in a magnetic field showing the spectrum for the area in (b) for regions B and C . (f)
STS of the area in (c) for the dark and bright regions. (g) Plot of the theoretically predicted
renormalization of the Fermi velocity together with the experimental values obtained from
areas with different Moiré patterns [50, 115].

Hove singularities which flank the Dirac point symmetrically on the electron and hole sides
and are centered at an energy that increases with the angle of rotation. The Fermi velocity
of the charge carriers in the twisted layers is indistinguishable from single layer graphene for
angles close to 30o , but vF is dramatically reduced at very small angles.
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