Nightmare

Find the frequency of small oscillations of the mass \(m \) in the system shown in Fig. 1. (Assume that the pulley is a solid disc of mass \(M \) and radius \(R \), and the string does not slip on the pulley).

Solution

The first thing to do is to notice that before the “small” displacement \(x \) is made, the spring is already stretched by some \(x_0 \), which can be found by considering the static equilibrium of the system. In this case,

\[
T_1 = mg
\]

and, since the pulley does not rotate in this state,

\[
T_2 = T_1
\]
Finally:

\[T_2 = \kappa x_0 \]

and all of these equations together yield:

\[\kappa x_0 = mg \] \hspace{1cm} (1)

as expected. If you did not do this step, your final answer would still have remained unchanged since \(\kappa x_0 \) and \(mg \) merely contribute a constant in that case and do not affect the frequency of oscillations.

When the small displacement \(x \) is made, the system now is not in equilibrium. If we assume \(x \) was made above the equilibrium position, then the system will tend to retract back, pulling \(m \) up in the process. In this scenario, Newton’s second law for the system may be written down as, starting from the right:

\[T_2 = \kappa (x + x_0) \] \hspace{1cm} (2)

For the pulley, since it rotates, we have:

\[T_2 R - T_1 R = I \alpha = \frac{1}{2} MR^2 \alpha \] \hspace{1cm} (3)

and for the mass \(m \):

\[T_1 - mg = ma \] \hspace{1cm} (4)

Substituting (2) and (4) into (3), we have:

\[\kappa (x + x_0)R - (mg + ma)R = \frac{1}{2} MR^2 \alpha \]

Upon noticing that the angular acceleration \(\alpha \) is related to the linear acceleration \(a \) as \(\alpha = a/R \), and using the equilibrium equation (1), we end up with:

\[\kappa x - ma = \frac{1}{2} Ma \]

or:

\[a = \frac{\kappa}{m + \frac{1}{2} M} x \]

We are essentially done... All we need to note is that \(a = -\frac{d^2 x}{dt^2} \), since \(x \) is decreasing, while the acceleration needs to be a positive quantity. This is where the negative sign of the simple harmonic motion comes from. Therefore, identifying this with

\[\frac{d^2 x}{dt^2} = -\omega^2 x \]

we have:

\[\omega = \sqrt{\frac{\kappa}{m + \frac{1}{2} M}} \]

as the frequency of oscillations.

A simple exercise in writing down Newton’s second law!