Semi-Analytic Forecasts for JWST
high-redshift galaxy demographics
& implications for reionization

L. Y. Aaron Yung
Supervised by Rachel S. Somerville

special thanks to key collaborators:
Romeel Davé (Edinburgh)
Harry Ferguson (STScI)
Steve Finkelstein (UT Austin)
Gergö Popping (MPIA)

the growth of galaxies in the early universe

Jan 23, 2018
Some Promising Predictions

- The Santa Cruz semi-analytic model (SC SAM) has been shown to reproduce observations at low redshifts ($z < 6$)

- These predictions are made with model parameters only calibrated to $z \sim 0$ observations

- goal of this project: examine the predictions of these models for high redshift galaxy physical and observable properties ($4 < z < 15$), and study the implications for reionization

see Paper I [arXiv:1803.09761]

Paper II [arXiv:1901.05964]
SAM — a comprehensive galaxy factory

Physical Parameters
- A_{SF} - SF relation normalization
- N_{SF} - SF relation slope
- $\tau_{\star,0}$ - SF timescale
- etc...

Physical Properties
(e.g. M^\star, SFR, ...

Forward Model
Synthetic SED / JWST filters
/Dust recipe, etc

Recipes / Prescriptions
(e.g. star formation, stellar feedback, …)

Observables
(e.g. M_{UV}, m_{F200W})

Calibrated only to $z \sim 0$ observations

semi-analytic model
DM halo merger trees

Log $10 \Sigma_{\text{SFR}}$ (M_\odot yr$^{-1}$ kpc$^{-2}$) vs. Log $10 \Sigma_{\text{H}_2}$ (M_\odot pc$^{-2}$)

$\Sigma_{\text{SFR}} \propto \left(\sum m_{\text{cold}} \right)^{N_{\text{SF}}}$

$z = 6$
Efficiency is KEY! The semi-analytic approach

• **Semi-analytic Merger Trees**
 (Somerville & Kolatt 1999, Somerville+2008)
 - 1. grid of root halo masses → large dynamic range \(V_c = 20 - 500 \text{ km/s} \)
 - 2. create Monte Carlo realizations of merging history based on Extended Press-Schechter (EPS) formalism
 - 3. trace merger history down to progenitor halo mass of \(\sim 10^{10} M_\odot \), or 1/100th of the root halo mass, whichever is smaller.

 - Metallicity-based multiphase gas partitioning
 \[M_{\text{cold}} \rightarrow M_{H_1} + M_{H_II} + M_{H_2} \] (Gnedin & Kravtsov 2010)
 - \(H_2 \)-based star formation:
 \[\Sigma_{\text{SFR}} \propto (\Sigma_{H_2})^{N_{\text{SF}}} \] (Bigiel+2008)
Comparison with other models

- Baseline: SAM Fiducial vs. Song et al.
- SAM vs. numerical simulations
 - pretty good agreement
- SAM vs. (semi-)empirical models
- larger dispersion between ‘a priori’ and (semi-)empirical models
L.Y. Aaron Yung

Comparison with other models

• Baseline: SAM Fiducial vs. Song et al.
• SAM vs. numerical simulations - pretty good agreement
• SAM vs. (semi-)empirical models - larger dispersion between 'a priori' and (semi-)empirical models
Fraction of galaxies detectable in wide, deep, and lensed JWST surveys from $z = 4–10$ calculated using a sliding boxcar filter of width $\Delta M^* = 0.2$ in stellar mass. The dotted and dot-dashed lines show detection fractions of 90% and 50%.

make sure you explain why the mass at a given completeness is lower at high redshift (counterintuitive)
JWST detection limit

- Let’s use $z = 4$ as an example
- **Vertical lines**: 50% completeness at detection limit
- **Horizontal lines**: where ~1 object is expected per survey volume
- **do not account for survey geometry / field-to-field variance**

JWST - F200W

Table 1. Summary of assumed detection limits for the NIRCam F200W filter and survey areas for representative JWST surveys.

<table>
<thead>
<tr>
<th>Survey Type</th>
<th>Detection Limit</th>
<th>Survey Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide-field</td>
<td>28.6</td>
<td>~ 100 arcmin2</td>
</tr>
<tr>
<td>Deep-field</td>
<td>31.5</td>
<td>2×2.2^2 arcmin2</td>
</tr>
<tr>
<td>Lensed-field</td>
<td>34.0</td>
<td>$\frac{1}{16}(2 \times 2.2^2)$ arcmin2</td>
</tr>
</tbody>
</table>
JWST detection limit

- Let’s use $z = 4$ as an example
- **Vertical lines:** 50% completeness at detection limit
- **Horizontal lines:** where ~ 1 object is expected per survey volume
- **do not account for survey geometry / field-to-field variance**

JWST - F200W

<table>
<thead>
<tr>
<th>Survey Type</th>
<th>Detection Limit</th>
<th>Survey Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide-field</td>
<td>28.6</td>
<td>~ 100 arcmin2</td>
</tr>
<tr>
<td>Deep-field</td>
<td>31.5</td>
<td>2×2.2^2 arcmin2</td>
</tr>
<tr>
<td>Lensed-field</td>
<td>34.0</td>
<td>$\frac{1}{10}(2 \times 2.2^2)$ arcmin2</td>
</tr>
</tbody>
</table>

Table 1. Summary of assumed detection limits for the NIRCam F200W filter and survey areas for representative JWST surveys.
Predictions for the low-mass-end of SMFs

- Current SNe feedback model:
 \[\dot{m}_{\text{out}} = \epsilon_{\text{SN}} \left(\frac{V_0}{V_c} \right)^{\alpha_{\text{rh}}} \dot{m}_* \]

- no guarantee that these parameters are a good representation of the physical scaling laws at different cosmic epochs

- important to explore sensitivity of model predictions to parameter values

- future JWST observations will be able to help constrain modeling of stellar-driven outflows
observers

simulators

Paper II [arXiv:1901.05964]
Implications for reionization and f_{esc}

- We extended our predicted UV LFs to $z \sim 15$ (use with caution!! **)

- For now, let’s consider UV escape fraction as a “population-averaged” quantity

- f_{esc} is treated as a free parameter such that the ionizing photon emissivity (\dot{n}_{ion}) and CMB optical depth match observations.

Paper III coming soon
Implication on reionization and f_{esc}

- We use a simple analytic reionization model (e.g. Kuhlen & Faucher-Giguere 2012)
- We show that assuming a redshift dependent mean f_{esc}, our galaxies can reionize the Universe while matching both IGM and CMB constraints!
what if we change the stellar feedback model…

- weaker feedback means a lower f_{esc} is required, or the Universe reionizes earlier
- converse for stronger feedback — becomes in possible tension with observations

![Graph showing the relationship between ionization fraction and CMB optical depth](image)
We also tried a physically motivated model

- We assume f_{esc} is proportional to the optical depth of dust, with no explicit dependence on redshift (qualitatively consistent with observed trends at lower redshift)

- it naturally suppresses the overproduction of ionizing photons that would otherwise happen with a non-evolving f_{esc} — but not quite enough
Fraction of all ionizing photons responsible for by galaxies grouped by luminosities.

Fraction of all ionizing photons responsible for by galaxies detectable by JWST surveys.
Summary & Conclusions

• SAMs are an efficient method for generating forecasts and mock catalogues for joint wide- and deep-field surveys. Predictions agree well with hydrodynamic simulations with similar physical ingredients.

• Taking advantage of the SAM’s efficiency, we can systematically vary the physics and subgrid parameters within our physically motivated model to explore how this shapes the formation of galaxies over time.

• Both wide and deep surveys are crucial to fully constrain the physical processes that shape galaxy populations at high redshift, as well as their physical properties.

• The predicted galaxy populations in our fiducial model are consistent with observational constraints on reionization from the IGM and CMB, assuming reasonable escape fractions.

Paper I [arXiv:1803.09761]
Paper II [arXiv:1901.05964]
Paper III coming soon

Project summary and all data products available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/
bkup slide: Dust Model

V-band, face-on extinction optical depth of the diffuse dust

\[\tau_{V,0} = \tau_{\text{dust},0} Z_{\text{cold}} m_{\text{cold}} / r_{\text{gas}}^2 \]

Dust attenuation in the V-band for a galaxy with inclination \(i \)

\[A_v = -2.5 \log_{10} \left[\frac{1 - \exp\left[-\tau_{V,0} / \cos(i) \right]}{\tau_{V,0} / \cos(i)} \right] \]

\(A_{\text{UV}} \) starburst attenuation curve (Calzetti et al. 2000)