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We review the dynamical mean-field theory of strongly correlated electron systems which is based on
a mapping of lattice models onto quantum impurity models subject to a self-consistency condition.
This mapping is exact for models of correlated electrons in the limit of large lattice coordination (or
infinite spatial dimensions). It extends the standard mean-field construction from classical statistical
mechanics to quantum problems. We discuss the physical ideas underlying this theory and its
mathematical derivation. Various analytic and numerical techniques that have been developed
recently in order to analyze and solve the dynamical mean-field equations are reviewed and compared
to each other. The method can be used for the determination of phase diagrams (by comparing the
stability of various types of long-range order), and the calculation of thermodynamic properties,
one-particle Green’s functions, and response functions. We review in detail the recent progress in
understanding the Hubbard model and the Mott metal-insulator transition within this approach,
including some comparison to experiments on three-dimensional transition-metal oxides. We present
an overview of the rapidly developing field of applications of this method to other systems. The
present limitations of the approach, and possible extensions of the formalism are finally discussed.
Computer programs for the numerical implementation of this method are also provided with this
article.
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I. INTRODUCTION

The discovery of the heavy fermion compounds and
of the high-temperature superconductors has revived in-
terest in strongly correlated electron systems. These are
systems in which the strength of the electron-electron
interactions is comparable to or larger than the kinetic

energy. The investigation of this class of systems goes
back to the early 1960s. The main motivations at the
time came from experiments on transition metal oxides,
from the Mott metal-insulator transition, and from the
problem of itinerant ferromagnetism.
Theoretical progress in the field has been impeded

however by the extreme difficulty of dealing with even
the simplest model Hamiltonians appropriate for these
systems, such as the Hubbard model and the Kondo lat-
tice model. Only in the one-dimensional case do we
have a variety of theoretical tools at our disposal to
study these models in a systematic manner. For two- and
three-dimensional models, one is often unable to assess
confidently whether a given physical phenomenon is in-
deed captured by the idealized Hamiltonian under con-
sideration or whether a theoretical prediction reflects a
true feature of this Hamiltonian, rather than an artifact
of the approximation used in its solution. These difficul-
ties originate in the nonperturbative nature of the prob-
lem, and reflect the presence of several competing physi-
cal mechanisms for even the simplest models. The
interplay of localization and lattice coherence, of quan-
tum and spatial fluctuations, and of various competing
types of long-range order are important examples.
Numerous approximation schemes have been em-

ployed to circumvent these difficulties, but many theo-
rists in the field have learned to consider with caution
those approximations (such as arbitrary resummations
of some class of diagrams) that are not based on some
controlled limit, by which we mean that some extreme
limit of the model is considered (often after some gen-
eralization) wherein the problem simplifies and can be
solved in a controlled manner. The reason to favor these
approaches is not that of out-of-place mathematical
rigor, but rather that it is often easier to identify which
of the physical aspects of the problem will be privileged
by a specific limit, and thus to choose that specific limit
best adapted to the physical phenomenon under consid-
eration. In favorable cases, the physical ingredients that
have been left out can be reintroduced by expanding
around this starting point. Of course the dramatic in-
crease in computational power has also stimulated a di-
rect numerical solution of these models using exact di-
agonalization and quantum Monte Carlo methods, as
recently reviewed by Dagotto (1994). However, the ex-
act diagonalization technique is limited by the exponen-
tial growth of the computations with system size, while
the quantum Monte Carlo method is restricted to rather
high temperatures by the minus-sign problem. Despite
the interest of these numerical studies, these limitations
have often prevented the extraction of reliable low-
energy information. Until these limitations are over-
come, analytic tools remain essential for the study of the
strong correlation problem.
This article reviews a new approach to the problem of

strong correlations that has been developed over recent
years and has led to some progress in our understanding
of these systems. The essential idea is to replace a lattice
model by a single-site quantum impurity problem em-
bedded in an effective medium determined self-
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consistently. The impurity model offers an intuitive pic-
ture of the local dynamics of a quantum many-body
system. Also, a large number of techniques developed
over a thirty-year period of intensive study of impurity
models are available. The self-consistency condition cap-
tures the translation invariance and coherence effects of
the lattice. We refer to this approach as the local impu-
rity self-consistent approximation (LISA) in this article.
The LISA is the natural generalization of quantum

many-body problems of the Weiss mean-field theory fa-
miliar from classical statistical mechanics. The term
‘‘mean-field theory’’ should be taken with caution how-
ever: the present approach does not assume that all fluc-
tuations are frozen (this would lead to the Hartree-Fock
approximation). Rather, it freezes spatial fluctuations
but takes full account of local quantum fluctuations (i.e.,
of temporal fluctuations between the possible quantum
states at a given lattice site). Hence the LISA method is
best characterized as a ‘‘dynamical mean-field theory.’’
The main difference with the classical case is that the
on-site quantum problem remains a many-body problem
(which nevertheless can be addressed with a variety of
techniques).
As in classical statistical mechanics, this dynamical

mean-field theory becomes exact in the limit of large
spatial dimensions d→`, or more appropriately in the
limit of large lattice coordination (note that the coordi-
nation z is already quite large for several three-
dimensional lattices: z=6 for a cubic lattice, z=12 for a
face-centered-cubic lattice). This ensures the internal
consistency of the approach and establishes 1/z as a con-
trol parameter. Indeed, it is the pioneering work of
Metzner and Vollhardt (1989) on the limit of large di-
mensions for strongly correlated fermion models that
triggered the developments leading to the LISA method
in the form reviewed here. However, this approach may
be viewed in a broader context, as a starting point for
the investigation of many finite-dimensional strongly cor-
related systems, in the same sense that the Weiss mean-
field theory is the starting point of most investigations in
the classical statistical mechanics of three-dimensional
systems. In particular, the method can be used as an
approximation to more realistic models of actual mate-
rials, taking into account several orbitals, and specific
lattice structure and density of states, as obtained, e.g.,
from local density approximation (LDA) calculations
(cf. Sec. VIII.C). Calculations along these lines are only
beginning to appear.
This article is a self-contained introduction to the

LISA approach, which has only partly the character of a
review. It contains (a) a discussion of the general theo-
retical formalism and several derivations of the dynami-
cal mean-field equations, (b) a description of the algo-
rithms which are useful for their solution, (c) source
codes of computer programs implementing these algo-
rithms, (d) a thorough discussion of analytic techniques
developed to analyze the dynamical mean-field equa-
tions, and (e) several examples of physical problems to
which the LISA approach has been successfully applied.
Our hope is that making this package widely available

will allow many workers to contribute in applying these
techniques to the countless number of open problems in
the field of strongly correlated electrons. With this idea
in mind, we have indicated some possible directions for
further research and pointed out the aspects of the for-
malism which need further improvement.
Several authors contributed in recent years to the

emergence of the LISA approach in its present form,
starting with the pioneering work of Metzner and Voll-
hardt (1989). These authors pointed out the scaling of
the hopping amplitude that leads to a nontrivial limit of
infinite spatial dimensions for lattice models of corre-
lated fermions. More importantly, they recognized the
potential usefulness of this limit by demonstrating the
local nature of perturbation theory in d=`. Müller-
Hartmann (1989a, 1989b, 1989c) also proved the locality
of many-body Green’s function perturbation theory and
used it in order to derive self-consistent equations for
the self-energy in terms of the (generally unknown)
Luttinger-Ward functional, which he evaluated to vari-
ous orders in weak-coupling perturbation theory. Fol-
lowing this work, self-consistent functional equations
were derived and solved for the Falicov-Kimball model
by Brandt and Mielsch (1989, 1990, 1991; see also, Janiš,
1991). These authors also pointed out how these equa-
tions could be formally extended to the Hubbard model.
A mean-field interpretation of these equations was given
for the Falicov-Kimball model by van Dongen and Voll-
hardt (1990). This interpretation is quite different from
the LISA ideas however. Functional equations for the
Green’s function and the self-energy of the Hubbard
model in infinite dimensions were derived by Janiš
(1991) following the dynamical coherent potential ap-
proximation analogy, but, in this formulation, these
functional equations did not lend themselves to explicit
calculations.
Further progress was made possible by the realization

(Ohkawa 1991a, 1991b; Georges and Kotliar, 1992) that
the functional equations can be interpreted as an Ander-
son impurity model subject to a self-consistent bath: this
is the main content of the LISA approach [see also the
subsequent work of Jarrell (1992)]. In the work of
Georges and Kotliar (1992), a precise correspondence
with the classical mean-field theory, and the proper iden-
tification of the quantum analog of the Weiss effective
field, was carried out. This allowed an immediate exten-
sion of the LISA method to phases with broken symme-
try and to a large number of models of strongly corre-
lated electrons (Georges, Kotliar, and Si, 1992). Using
general properties on the single-impurity Anderson
model in conjunction with the self-consistency condition,
Georges and Kotliar (1992) also established that the me-
tallic phase of the d=` Hubbard model is a Fermi liquid
for arbitrary doping and interaction strength. An impor-
tant lesson of that work is that reliable techniques for
treating the Anderson impurity model can be used to
study correlated electrons in large dimensions. For ex-
ample, the perturbative approach of Yosida and Yamada
(1970, 1975) can be turned into an efficient ‘‘iterated
perturbation theory’’ scheme in the LISA context
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(Georges and Kotliar, 1992). Another example is the
noncrossing approximation method first applied in the
LISA context by Jarrell and Pruschke (1993a, 1993b)
and Pruschke, Cox, and Jarrell (1993a, 1993b).
Many numerical methods have been recently imple-

mented for the solution of the dynamical mean-field
equations. The quantum Monte Carlo algorithm of
Hirsch and Fye (1986) was first applied to this problem
independently by Jarrell (1992), Rozenberg, Zhang, and
Kotliar (1992), and Georges and Krauth (1992). Two dif-
ferent exact diagonalization algorithms were later intro-
duced by Caffarel and Krauth (1994) and by Si et al.
(1994). The Wilson numerical renormalization group ap-
proach to the single-impurity problem has been recently
applied to the d=` Hubbard model by Sakai and Kura-
moto (1994) and Shimizu and Sakai (1995), and a pro-
jective renormalization method using in an essential way
the self-consistency condition has been recently intro-
duced by Moeller et al. (1995). One of the major appli-
cations of these methods and of the LISA approach has
been the study of the Mott transition in the half-filled
Hubbard model (Rozenberg, Zhang, and Kotliar, 1992;
Georges and Krauth, 1992, 1993; Pruschke, Cox, and
Jarrell, 1993a, 1993b; Zhang, Rozenberg, and Kotliar,
1993; Caffarel and Krauth, 1994; Laloux, Georges, and
Krauth, 1994; Rozenberg, Kotliar, and Zhang, 1994; Ro-
zenberg, Moeller and Kotliar, 1994; Moeller et al., 1995).
The important lesson learned from these studies is that
no single technique stands out as the most appropriate,
but a thorough understanding of the many-body phe-
nomena associated with this problem required a combi-
nation of various numerical methods and of analytical
approximations.
Having reviewed the recent history of the LISA ap-

proach, it is interesting to mention that early related
ideas can be traced back in the literature, starting with
the papers of Hubbard (1964, 1979) and Wang, Evenson,
and Schrieffer (1969). Impurity models (without a self-
consistent embedding) have been used to model the
photoemission spectra of correlated solids for a long
time (Zaanen and Sawatzky, 1987, 1990; Fujimori, Mi-
nami, and Sugano, 1984). The LISA method also has
some relationship with the dynamical coherent potential
approximation method for random alloys: indeed, a
functional integral approach reduces the quantum
many-body problem to averaging a free-particle prob-
lem over external fields with random variations in space
and time (for recent work along those lines, see Turov
and Grebenikov, 1988; Kakehashi, 1992). In this context,
Schwartz and Siggia (1972) first recognized the impor-
tance of the inverse coordination number as the small
parameter justifying the coherent potential approxima-
tion. In fact, the LISA equations first appeared in the
literature as early as 1987, in the context of the periodic
Anderson model, in an interesting but little known pa-
per of Kuramoto and Watanabe (1987) that also empha-
sized the limit of large lattice coordination. Finally, the
assumption of local vertices has sometimes been used as

a simplifying hypothesis in many-body perturbation
theory calculations (see, e.g., Treglia, Ducastelle, and
Spanjaard, 1980).
The LISA dynamical mean-field approach can be

compared and contrasted to other frequently used ap-
proximation schemes for lattice models of correlated fer-
mions. In the Hartree-Fock approximation, the starting
point is a mean-field theory in which all fluctuations,
both spatial and temporal, are frozen. Fluctuations can
then be treated by making random phase approximation
expansions around the static and uniform saddle point.
Local quantum fluctuations, however, are often nonper-
turbative in character (being associated, like in the
Kondo problem, with tunneling events between degen-
erate minima), so that such expansions do not capture
them correctly. The purpose of the dynamical mean-field
approach is to privilege these fluctuations, by treating
them from the beginning in a nonperturbative manner.
Another type of approximation is based on the con-
trolled limit of extending the spin symmetry from SU(2)
to SU(N) (or some other group) and considering the
large N limit (see, e.g., Newns and Read, 1987; Kotliar,
1993a, 1994 for reviews). These approaches make use of
some auxiliary degrees of freedom (e.g., slave bosons) to
describe the enlarged Hilbert space. The saddle point
which holds at N=` generally replaces the problem with
a gas of renormalized quasiparticles. High-energy inco-
herent excitations are completely absent at the saddle-
point level, and must be reintroduced by expanding in
1/N . In contrast, the LISA dynamical mean-field theory
treats the local aspects of both quasiparticles and inco-
herent high-energy excitations on the same footing. This
is crucial for calculating thermodynamic properties or
when considering systems having no characteristic low-
energy scale. The limit of large lattice coordination is
also a natural playground where one can test the differ-
ent numerical techniques used in the treatment of the
many-body problem in finite dimensions, without deal-
ing with the additional complications of lattices of finite
size (the thermodynamic limit is built in from the begin-
ning in this approach).
The general organization of this article is as follows

(see the Table of Contents). Section II gives a general
overview of the method (without any formal justifica-
tion), and introduces the reader to the dynamical mean-
field equations, to the mapping onto a self-consistent im-
purity model, and to the connection with the limit of
infinite dimensions. Sections III to V set up the theoreti-
cal framework: various useful derivations are presented
in Sec. III, the calculation of response functions is con-
sidered in Sec. IV, and the extension of the formalism to
phases with long-range order is described in Sec. V. Sec-
tion VI reviews the various techniques available to solve
the self-consistent impurity problem, including a de-
tailed discussion and comparison of various numerical
methods. This section has a deliberately technical char-
acter: the goal here is to provide sufficient information
so that the reader can use these methods independently.
To this aim, FORTRAN programs are provided with this
article (accessible via the internet, see Appendix D).
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The numerous possible applications of the dynamical
mean-field approach to physical systems are only begin-
ning to be explored, and the field is currently very ac-
tive. We have chosen to discuss in detail only one of
these applications. This is the purpose of Sec. VII, which
reviews the recent progress made on the Hubbard
model and the Mott metal-insulator transition. The
LISA method has solved many open questions related
to this phenomenon, which had proven intractable by
previous techniques. Recently, concrete applications to
the physics of transition-metal oxides have also ap-
peared. Comparison to some experiments can be found
in this section. In Sec. VIII, several other strongly cor-
related models are considered and a much less exhaus-
tive approach is adopted. In each case, the associated
impurity model and the self-consistency equations are
given in order to illustrate the wide scope of the method,
and a short summary of recent results obtained for these
models is made. The purpose of this section is simply to
provide a guide to the literature and to stimulate further
work.
The dynamical mean-field method discussed in this

paper can be applied as an approximation scheme di-
rectly to three-dimensional lattice problems (this is also
true of the usual mean-field theory of classical spin sys-
tems). We have provided several derivations of the
mean-field equations which, besides showing that they
become exact in infinite dimensions, are aimed to give
them an intuitive content. This approach is advocated
throughout this article, and particularly in Sec. VIII.C.
For this reason, this article is restricted to those aspects
of the d=` limit that are closely related to the idea of a
dynamical mean-field approach and omitted (or briefly
mentioned) other applications of this limit, such as the
studies of variational wave functions in the d→` limit.
Excellent expositions of these omitted topics already ex-
ist, and we refer the reader to the review articles of Voll-
hardt (1991, 1993, 1994). Earlier reviews of some of the
topics treated in the present paper can be found in Kot-
liar (1993b), Freericks and Jarrell (1994b), and Prus-
chke, Jarrell, and Freericks (1995).
Finally, Sec. IX stresses the limitations of the mean-

field approach in its present form and explores possible
extensions of the formalism to systems where the dy-
namical effects of intersite interactions, the influence of
long-wavelength collective modes, or certain forms of
short-range order are important. This is currently one of
the main theoretical challenges in the field, and the main
role of Sec. IX is to outline what we perceive to be fruit-
ful directions for further research.

II. THE LOCAL IMPURITY SELF-CONSISTENT
APPROXIMATION: AN OVERVIEW

This section is devoted to a survey of the LISA
method. We shall first describe the dynamical mean-field
equations but, for the sake of clarity, will postpone de-
tailed derivations to Sec. III. In order to stress the anal-
ogy with the familiar Weiss mean-field theory of classical
statistical mechanics, we shall review in parallel the clas-

sical case and its quantum generalization. The connec-
tion with quantum impurity models will be explained in
Sec. II.B. In Sec. II.C, the limit of infinite spatial dimen-
sions of lattice fermion models will be presented. The
dynamical mean-field equations become exact in this
limit.

A. Dynamical mean-field equations

The goal of a mean-field theory is to approximate a
lattice problem with many degrees of freedom by a
single-site effective problem with less degrees of free-
dom. The underlying physical idea is that the dynamics
at a given site can be thought of as the interaction of the
degrees of freedom at this site with an external bath
created by all other degrees of freedom on other sites.
The simplest illustration of this idea is the Ising model

with ferromagnetic couplings Jij>0 between nearest-
neighbor sites of a lattice with coordination z :

H52(̂
ij&

JijSiSj2h(
i
Si . (1)

The Weiss mean-field theory views each given site (say,
o) as governed by an effective Hamiltonian:

Heff52heffSo . (2)

All interactions with the other degrees of freedom are
lumped into the effective field heff :

heff5h1(
i
Joimi5h1zJm , (3)

where mi5^Si& is the magnetization at site i , and trans-
lation invariance has been assumed (Jij5J for nearest-
neighbor sites, mi5m). Hence heff has been related to a
local quantity which can in turn be computed from the
single-site effective model Heff . For the simple case at
hand, this reads m=tanh(bheff), which can be combined
with (3) to yield the well-known mean-field equation for
the magnetization:

m5tanh~bh1zbJm !. (4)

These mean-field equations are, in general, an approxi-
mation of the true solution of the Ising model. They
become exact however in the limit where the coordina-
tion of the lattice becomes large. It is quite intuitive in-
deed that the neighbors of a given site can be treated
globally as an external bath when their number becomes
large, and that the spatial fluctuations of the local field
become negligible. As is clear from Eq. (3), the coupling
J must be scaled as J5J* /z to yield a sensible limit
z→` (this scaling is such that both the entropy and in-
ternal energy per site remain finite, so as to maintain a
finite Tc).
These ideas can be directly extended to quantum

many-body systems. This will be illustrated here on the
example of the Hubbard model:

H52 (
^ij& ,s

t ij~cis
1 cjs1cjs

1 cis!1U(
i
ni↑ni↓ . (5)
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It will be assumed in this section, for simplicity, that no
symmetry breaking occurs, i.e., that one deals with the
translation-invariant paramagnetic phase. Phases with
long-range order will be dealt with in Sec. V.
Again, the mean-field description associates with this

Hamiltonian a single-site effective dynamics, which is
conveniently described in terms of an imaginary-time ac-
tion for the fermionic degrees of freedom (cos ,c os

1 ) at
that site:

Seff52E
0

b

dtE
0

b

dt8(
s

cos
1 ~t!G 0

21~t2t8!cos~t8!

1UE
0

b

dt no↑~t!no↓~t!. (6)

G 0(t−t8) plays the role of the Weiss effective field
above. Its physical content is that of an effective ampli-
tude for a fermion to be created on the isolated site at
time t (coming from the ‘‘external bath’’) and being de-
stroyed at time t8 (going back to the bath). The main
difference with the classical case is that this generalized
‘‘Weiss function’’ is a function of time instead of a single
number. This, of course, is required to take into account
local quantum fluctuations. Indeed, the mean-field
theory presented here freezes spatial fluctuations but
takes full account of local temporal fluctuations (hence
the name ‘‘dynamical’’). G 0 plays the role of a bare
Green’s function for the local effective action Seff , but it
should not be confused with the noninteracting local
Green’s function of the original lattice model.
A closed set of mean-field equations is obtained by

supplementing Eq. (6) with the expression relating G 0 to
local quantities computable from Seff itself, in complete
analogy with Eq. (3) above. As will be shown below, this
self-consistency condition reads

G 0~ ivn!215ivn1m1G~ ivn!212R@G~ ivn!# . (7)

In this expression, G(ivn) denotes the on-site interact-
ing Green’s function calculated from the effective action
Seff :

G~t2t8![2^Tc~t!c1~t8!&Seff, (8)

G~ ivn!5E
0

b

dt G~t!eivnt, vn[
~2n11 !p

b
(9)

and R(G) is the reciprocal function of the Hilbert trans-
form of the density of states corresponding to the lattice
at hand. Explicitly, given the noninteracting density of
states D(e),

D~e!5(
k

d~e2ek!, ek[(
ij

t ije
ik•~Ri2Rj!, (10)

the Hilbert transform D̃(z) and its reciprocal function R
are defined by

D̃~z![E
2`

1`

de
D~e!

z2e
, R@D̃~z!#5z . (11)

Since G can in principle be computed as a functional of
G 0 using the impurity action Seff , Eqs. (6)–(8) form a

closed system of functional equations for the on-site
Green’s function G and the Weiss function G 0 . These
are the basic equations of the LISA method. In practice,
the main difficulty lies in the solution of Seff . These
equations can hardly be attributed to a single author, as
detailed in the Introduction. They appeared first in an
early work of Kuramoto and Watanabe (1987) for the
periodic Anderson model. Following the paper of
Metzner and Vollhardt (1989) that emphasized the inter-
est of the d→` limit, these equations were obtained by
several authors. Brandt and Mielsch (1989) derived and
solved them for the Falicov-Kimball model; the case of
the Hubbard model was considered by Janiš (1991), Oh-
kawa (1991a, 1991b), Georges and Kotliar (1992), and
Jarrell (1992). The presentation followed here is closest
to those of Georges and Kotliar (1992) and Georges,
Kotliar, and Si (1992).
It is instructive to check these equations in two simple

limits:
(i) In the noninteracting limit U=0, solving (6) yields

G(ivn)=G 0(ivn) and hence, from (7), G(ivn)
5D̃(ivn1m) reduces to the free on-site Green’s func-
tion.
(ii) In the atomic limit t ij=0, one only has a collection

of disconnected sites and D(e) becomes a d function,
with D̃(z)=1/z. Then (7) implies G 0(ivn)

215ivn+m and
the effective action Seff becomes essentially local in time
and describes a four-state Hamiltonian yielding
G(ivn)at=(12n/2)/(ivn1m)1n/2(ivn1m2U), with
n/25(ebm1eb(2m2U))/(112ebm1eb(2m2U)).
Solving the coupled equations above not only yields

local quantities but also allows us to reconstruct all the
k-dependent correlation functions of the original lattice
Hubbard model. For example, the Fourier transform of
the one particle Green’s function Gij(t2t8)
[2^Tci ,s(t)c j ,s

1 (t8)& can be shown to read

G~k,ivn!5
1

ivn1m2ek2S~ ivn!
, (12)

where the self-energy can be computed from the solu-
tion of the effective on-site problem as

S~ ivn!5G 0
21~ ivn!2G21~ ivn!. (13)

It is therefore k-independent in this approach i.e., purely
local in space: ( ij(ivn)5d ijS(ivn) (Metzner and Voll-
hardt, 1989, Müller-Hartmann, 1989a, 1989b, 1989c).
From this expression one sees that the ‘‘self-consistency
condition,’’ Eq. (7), relating G and G 0 , ensures that the
on-site (local) component of the Green’s function, given
by Gii(ivn)=(kG(k,ivn), coincides with the Green’s
function G(ivn) calculated from the effective action
Seff . Indeed, summing Eq. (12) over k yields
D̃(ivn1m2S(ivn)). Identifying this expression with
G(ivn) and using Eq. (13) leads to Eq. (7).
Thermodynamic quantities for the Hubbard model

can all be simply related to their single-site model coun-
terparts: the relevant expressions for the free energy and
internal energy are given by Eqs. (46) and (47) in Sec.
III.B. Two-particle Green’s functions, dynamical re-
sponse functions, and transport properties for the lattice
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model can also be related to vertex functions of the on-
site action Seff ; this will be reviewed in Sec. IV.

B. Physical content and connection with impurity models

The structure of the dynamical mean-field theory is
that of a functional equation for the local Green’s func-
tion G(ivn) and the ‘‘Weiss function’’ G 0(ivn). In con-
trast to mean-field theory for classical systems, the on-
site effective action Seff remains a many-body problem.
This is because the present approach freezes spatial fluc-
tuations but fully retains local quantum fluctuations. As
a function of imaginary time, each site undergoes tran-
sitions between the four possible quantum states u0&, u↑&,
u↓&, u↑,↓& by exchanging electrons with the rest of the
lattice described as an external bath. The dynamics of
these processes is encoded in the Weiss function
G 0(t−t8).
For these reasons, no Hamiltonian form involving

only the on-site degrees of freedom (cos ,c os
1 ) can be

found for the effective on-site model: once the bath has
been eliminated, Seff necessarily includes retardation ef-
fects. In order to gain physical intuition and to make
some practical calculations with Seff , it is useful to have
such a Hamiltonian formulation. This is possible upon
reintroducing auxiliary degrees of freedom describing
the ‘‘bath.’’ For example, one can view (cos ,c os

1 ) as an
‘‘impurity orbital’’ and the bath as a ‘‘conduction band’’
described by operators (als ,a ls

1 ) and consider the
Hamiltonian

HAM5(
ls

ẽ lals
1 als1(

ls
Vl~als

1 cos1cos
1 als!

2m(
s

cos
1 cos1Uno↑no↓ , (14)

where the subscript AM denotes the Anderson mod-
el. This Hamiltonian is quadratic in a ls

1 ,als ; integrat-
ing these out gives rise to an action of the form (6), with

G 0
21~ ivn!AM5ivn1m2E

2`

1`

dv
D~v!

ivn2v
,

D~v![(
ls

Vl
2d~v2 ẽ l!. (15)

Hence Eq. (14) can be viewed as a Hamiltonian repre-
sentation of Seff provided D(v) (i.e., the parameters
Vl , ẽ l) is chosen such as to reproduce the actual solution
G 0 of the mean-field equations. The spectral representa-
tion Eq. (15) is general enough to permit this in all cases.
Note that the ẽ l’s are effective parameters that should
not be confused with the single-particle energies ek of
the original lattice model. The Hamiltonian (14) is the
familiar Anderson model of a magnetic impurity
coupled to a conduction bath (Anderson, 1961). Note
however that the shape of the conduction bath density
of states D(v) is not known a priori in the present con-
text but must be found by solving the self-consistent

problem. The isolated site o plays the role of the impu-
rity orbital, and the conduction bath is built out of all
other sites.
There is of course a degree of arbitrariness in the

Hamiltonian representation of the local action Seff . In-
stead of viewing it as an Anderson model, we can con-
sider the Wolff model (Wolff, 1961), in which the inter-
action term acts only at a single-site of a conduction-
electron lattice representing the bath

HWM5(
ls

ẽ lals
1 als1Uno↑no↓ . (16)

If we adopt this point of view the Weiss function is given
by

G 0
WM5E

2`

1`

dv
D~v!

ivn2v
, D~v![(

l
d~v2 ẽ l!, (17)

and it merely corresponds to a different spectral repre-
sentation of G 0 .
Hence, the LISA approach to the Hubbard model

maps the lattice problem onto that of an Anderson im-
purity embedded in a self-consistent medium (Ohkawa
1991a, 1991b; Georges and Kotliar, 1992; Georges, Kot-
liar, and Si, 1992; Jarrell, 1992). The solution of the
mean-field equations involves the determination of G 0
such that, when inserted into the Anderson model, the
resulting impurity Green’s function obeys the self-
consistency condition (7).
The reduction of a lattice problem to a single-site

problem with effective parameters is a common feature
to both the classical and quantum mean-field construc-
tions. The two constructions parallel each other quite
precisely, as summarized in the ‘‘dictionary’’ displayed in
Table I. The main difference is that the Weiss field is a
number in the classical case, and a function in the quan-
tum case. Physically, this reflects the existence of many
energy scales in strongly correlated fermion models. (We
note in passing that this also occurs in the mean-field
theory of some classical problems with many energy
scales, such as spin glasses.) This points to the limita-
tions of other ‘‘mean-field’’ approaches, such as the
Hartree-Fock approximation or slave bosons methods,
where one attempts to parametrize the whole mean-field
function by a single number (or a few of them). This in
effect amounts to freezing local quantum fluctuations by
replacing the problem with a purely classical one, and
can only be reasonable when a single low-energy scale is
important. This is the case, for instance, for a Fermi-
liquid phase. However, even in such cases, parametrizing
the Weiss field by a single number can only be satisfac-
tory at low energy, and misses the high-energy incoher-
ent features associated with the other energy scales in
the problem. When no characteristic low-energy scale is
present, a single number parametrization fails com-
pletely: this is the case, for example, when correlation
functions have power-law decays as a function of fre-
quency (as in x-ray edge problems). This occurs, e.g., in
the Falicov-Kimball model (Sec. VIII.B).
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Finally, besides its intuitive appeal, the mapping onto
impurity models has proven to be useful for practical
calculations. These models have been studied intensively
in the last 30 years by a variety of analytical and numeri-
cal techniques, and this knowledge can be put to good
use in order to understand strongly correlated lattice
models in large dimensions. The crucial step is to use
reliable tools to solve Seff . Recent progress in the field
came from an effort in exploiting the connection with
impurity models in a qualitative and quantitative man-
ner.

C. The limit of infinite dimensions

The above mean-field equations become exact in the
limit of infinite coordination on various lattices. In this
section, we discuss several such examples and in each
case we give the relation (7) between the local Green’s
function and the Weiss function G 0 in explicit form. No-
tice that, in the paramagnetic phase, the lattice enters
the mean-field equations only through the noninteract-
ing density of states D(e). Since many different lattices
give rise to the same density of states in the limit of large
coordination, one can construct models with the same
single-particle properties (i.e., the same Green’s func-
tion) in the paramagnetic phases but very different
properties regarding magnetic responses and transitions
to phases with long-range order (Müller-Hartmann,
1989a). We refer to Sec. IV and Appendix A for a more
detailed explanation of this point, and to Sec. VII.D for
explicit examples.
The first case to be discussed is the d-dimensional cu-

bic lattice with nearest-neighbor hopping (with coordi-
nation z52d). In order that the kinetic and interaction
energies remain of the same order of magnitude in the
d→` limit, the hopping amplitude must be scaled ap-
propriately (Metzner and Vollhardt, 1989). The correct
scaling is easily found from the Fourier transform ek of
t ij , which for a generic vector k involves ( n51

d cos(kn), a
sum of d numbers with essentially random signs. Hence
t ij must be scaled as

t ij5
t

A2d
. (18)

More precisely, this ensures that the density of states has
a well-defined d→` limiting form, which reads (from
the central-limit theorem)

D~e!5
1

tA2p
expS 2

e2

2t2D . (19)

This expression, and various useful properties of tight-
binding electrons on a d→` cubic lattice, is derived in
Appendix A. The Hilbert transform of (19) reads (for
t=1/&):

D̃~z!52isAp exp~2z2!erfc~2isz!, (20)

where s=sgn[Im(z)] and erfc denotes the complemen-
tary complex error function. There is no simple explicit
form for the reciprocal function R(G) in this case and
hence (7) must be used as an implicit relation between
G 0 and G . The Gaussian density of states (19) is also
obtained for the d→` cubic lattice with longer-range
hopping along the coordinate axis. As discussed by
Müller-Hartmann (1989a) and reviewed in Appendix A,
next-nearest-neighbor hopping along the diagonals does
change the density of states and provides an interesting
d=` model in which magnetic order is frustrated.
A second important example is the Bethe lattice

(Cayley tree) with coordination z→` and nearest-
neighbor hopping t ij5t/Az . A semicircular density of
states is obtained in this case (see, e.g., Economou,
1983):

D~e!5
1

2pt2
A4t22e2, ueu,2t . (21)

The Hilbert transform and its reciprocal function take
very simple forms

D̃~z!5~z2sAz224t2!/2t2, R~G !5t2G11/G (22)

so that the self-consistency relation between the Weiss
function and the local Green’s function takes in this case
the explicit form

TABLE I. Correspondence between the mean-field theory of a classical system and the (dynami-
cal) mean-field theory of a quantum system.

Quantum case Classical case

−(^ij&st ijc is
1 cjs1U( ini↑ni↓ H52(^ij&JijSiSj2h( iSi Hamiltonian

t ij;(1/Ad) ui2ju Jij;(1/d) ui2ju (ferromagnet) Scaling

Gij(ivn)52^c i
1(ivn)cj(ivn)& ^SiSj& Correlation function

Gii(ivn)52^c i
1(ivn)ci(ivn)& mi5^Si& Local observable

−**cs
+(t)G 0

−1(t−t8)cs(t8)+*Un↑n↓ Heff=−heffS0 Single-site Hamiltonian
Heff=( lsẽ la ls

1 als1( lsVl(a ls
1 cs+H.c.)

−m(sc s
1cs1Un↑n↓

G 0(ivn) heff Weiss field/function

G 0
−1(ivn)5vn1m1G(ivn)

21 heff=z J m+h Relation between Weiss
2R[G(ivn)] field and local observable
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

25t2/N (see
Sec. VII).
Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d→` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).
Other lattices can be considered, such as the d=` gen-

eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.
Let us first illustrate this on the Ising model. The ef-

fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,iÞo

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in^Si1•••Sin&c

~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d
ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d→` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i
Joi^Si&

~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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ther simplification to this expression: because each site
has of the order of d neighbors, removing a single site
produces an effect of order 1/d in local quantities, which
can be neglected. Hence the magnetization ^Si&

(o) calcu-
lated for the cavity Hamiltonian equals the magnetiza-
tion ^Si& for the full Hamiltonian. Furthermore, transla-
tion invariance implies ^Si&5^So&[m , so that
heff=h1zJm . On the other hand, the single-site effective
Hamiltonian Heff is easily solved to yield m=tanhbheff .
Hence, a closed set of mean-field equations is found.
Let us mention that the relation between the magne-

tizations with and without the cavity is more involved
for Ising models with nonuniform signs of Jij . For spin-
glass models with Jij= + 1, −1 at random, one is forced to
scale the couplings as 1/Ad so that a correction term
must be retained in the difference ^Si&2^Si&

(o) (Thou-
less, Anderson, and Palmer, 1977; see also Mezard, Pa-
risi, and Virasoro, 1987). This correction term, first dis-
covered by Onsager (1936) in his studies on dielectrics,
accounts for local-field effects created by the removal of
one site (‘‘reaction terms’’).
This derivation extends in a straightforward manner

to quantum many-body models. It is convenient to write
the partition function of the Hubbard model (5) as a
functional integral over Grassmann variables:

Z5E )
i
Dcis

1Dcise
2S, (29)

S5E
o

b

dtS (
is

cis
1 ]tcis2(

ij ,s
t ijc is

1 cjs2m(
is

cis
1 cis

1U(
i
ni↑ni↓D . (30)

We follow closely the Ising analogy: all fermions are
traced out except for site o in order to obtain an effec-
tive action:

1
Zeff

e2Seff@cos
1 ,cos#[

1
Z E )

iÞo ,s
Dcis

1Dcise
2S. (31)

Note that the knowledge of Seff allows us to calculate all
the local correlation functions of the original Hubbard
model, since we can couple sources to degrees of free-
dom at site o . This observation is valid in any number of
dimensions. In order to obtain a formal expression for
Seff , the original action is again split into three parts:
S5S(o)1So1DS , where S(o) is the lattice action in the
presence of the ‘‘cavity,’’ and

So5E
0

b

dtS (
s

cos
1 ~]t2m!cos1Uno↑no↓D , (32)

DS52E
0

b

dt(
is

t io~cis
1 cos1cos

1 cis!. (33)

Again, h i[t iocos plays the role of a source coupled to
c is

1 , and the integration over fermions for iÞo brings in
the generating functional of the connected Green’s func-
tions G(o) of the cavity Hamiltonian:

Seff5 (
n51

`

(
i1•••jn

E h i1
1~t i1!•••h in

1~t in!h j1
~t j1!

3•••h jn
~t jn!Gi1•••jn

~o ! ~t i1•••t in,t j1•••t jn!1So

1const. (34)

As before, the large d limit (with a scaling 1/Ad ui2ju of
the hopping t ij) brings in a crucial simplification: the nth
order term is of order (1/d)n22 so that only n=2 survives
the d→` limit. This is easily seen by considering the first
few terms. The scaling of t ij ensures that G ij

(o)

; (1/Ad)ui2ju and so the first term is of order 1. The
second-order term involves a connected four-point func-
tion G ijkl

(o) which falls off as (1/Ad)ui2ju(1/Ad)ui2ku

(1/Ad)ui2lu. When i ,j ,k ,l are all different, there are four
sums which give d4 and four factors of t giving 1/d2. The
net result is, since ui2ju, ui2lu, and ui2ku are at least 2,
of order 1/d . Similarly, the terms where i5j (distinct
from k and l with kÞl) contain three sums, which give
d3, four factors of t giving 1/d2, and a factor 1/d2 from
G(o) since ui2lu and uk2iu are at least two. The result is
again of order 1/d . The effective action therefore re-
duces to Eq. (6) as d→`, with

G 0
21~ ivn!5ivn1m2(

ij
toitojGij

~o !~ ivn!. (35)

Expression (35) is important because it relates the Weiss
function G 0 to the Green’s function G ij

(o) of a Hubbard
model with one site removed. In order to obtain a closed
set of equations, one still needs to relate the latter to the
Green’s function of the original lattice. Again, the d→`
limit makes this possible here, but this relation takes, in
general, a slightly more complicated form than for the
classical Ising case discussed above. On the Bethe lat-
tice, however, it remains very simple. In this case, the
summation in (35) can be restricted to i5j (since neigh-
bors of o are completely disconnected on this lattice
once the cavity has been introduced), and again, in the
limit of infinite connectivity, removing one site does not
change the Green’s function so that G ii

(o)5Gii . Using
translation invariance, one finally obtains Eq. (23) for
the Weiss function on this lattice: G 0

−1=ivn
1m2t2G(ivn).
For a general lattice, the relation between the cavity

and full Green’s functions reads

Gij
~o !5Gij2

GioGoj

Goo
. (36)

This equation is most easily proven by using the expan-
sion of Green’s functions in the hopping matrix elements
tkl , which is described in Sec. III.C. First, we note that
the additional paths contributing to Gij and not to G ij

(o)

are those which connect sites i and j through site o .
Then, one observes that, in the d = ` limit, only those
paths that go once through site o need to be considered.
This is true provided we allow an arbitrary dressing of
each site in a path by the irreducible cumulant M1 de-
fined in Sec. III.C. Because of this property, the contri-
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bution of these additional paths is obviously propor-
tional to GioGoj , but this quantity has to be divided by
Goo in order to count only once the contribution of
paths leaving and returning to the intermediate site o .
Interestingly, Eq. (36), which is essential to the whole
formalism, already appears in early works of Hubbard
himself: this is Eq. (36) of the so-called ‘‘Hubbard III’’
paper (Hubbard, 1964).
Inserting (36) into (35) we have to compute

S ijt iot joGij2(S it ioGio)
2/Goo . To proceed, let us use

Fourier transforms and insert the form (12) of the lattice
Green’s function, assuming a local self-energy (this has
to be justified independently by power counting in 1/d).
The above expression reads

E
2`

1`

deD~e!
e2

z2e

2S E
2`

1`

deD~e!
e

z2e D 2 YE
2`

1`

deD~e!
1

z2e

with z[ivn1m2S(ivn). This can be simplified further
using the following relations:

E
2`

1` D~e!e2

z2e
5zE

2`

1` D~e!e

z2e
,

E
2`

1` D~e!

z2e
e5211zE

2`

1` D~e!

z2e
. (37)

We have used too=Sktk=*D(e)e=0. Finally, inserting (36)
into (35) yields

G 0
215S11/D̃~ ivn1m2S!, (38)

which coincides with (7) and (13).

B. Local nature of perturbation theory
in infinite dimensions

From a historical perspective, the notion that in infi-
nite dimensions the local Green’s function obeys a
closed set of functional equations was derived by various
authors from considerations on perturbation theory in
the interaction strength U .
Indeed, remarkable simplifications in the many-body

diagrammatics occur in this limit, as first noticed by
Metzner and Vollhardt (1989; see also Metzner, 1989;
Müller-Hartmann, 1989a). Consider a given diagram
(Fig. 2), in which the interaction term Uni↑ni↓ is de-
picted as a four-leg vertex at site i , and in which each
line stands for a free-fermion propagator between two
sites (it is easier to proceed in real space). The crucial
observation is that whenever two internal vertices (i ,j)
can be connected by at least three paths, they must cor-
respond to identical sites i5j . This property is of course
only true for d=`, and can be shown by simple power
counting. Since the hopping has been scaled by 1/Ad ,
each path made of fermion propagators connecting i to j
will involve at least a factor (1/Ad) ui2ju. On the other
hand, i being held fixed, the eventual summation to be
performed on the internal vertex j will bring in a factor

of order dR. Indeed, this is the number of sites j located
at a (Manhattan) distance ui2ju[R from i (R can be
summed over afterwards). Hence, one obtains an overall
factor of dR(1/Ad)RP ij where P ij is the number of (in-
dependent) paths joining i to j in the diagram. Thus, if
P ij>2, only those contributions with i5j (R=0) will sur-
vive the d→` limit. (Notice that this argument com-
pares the contribution with i5j to that with iÞj , for a
given value of the external vertices of the Green’s func-
tion). Alternatively, in the perhaps more familiar
momentum-space formulation of perturbation theory,
this property means that whenever two vertices can be
‘‘collapsed’’ according to the rule above, the fermion
propagators G(0) (k,ivn) connecting them can be
replaced by their local, k-independent counterpart
SkG

(0) (k,ivn), ignoring momentum conservation at the
vertices. Frequency conservation is retained however as
d→`. Figure 2 illustrates these considerations with two
diagrams contributing to the self-energy at second and
fourth orders.
This simplification of weak-coupling expansions is of

course very useful in practice, since evaluating momen-
tum sums is the main practical obstacle in going to high
orders. In fact, discarding momentum conservation at
some vertices has sometimes been used in perturbative
calculations as a simplifying ‘‘local approximation’’ (see,
e.g., Treglia, Ducastelle, and Spanjaard, 1980). The d=`
limit provides a framework in which this approximation
can be justified. Various authors have exploited this sim-
plification to perform weak-coupling studies of various
models much beyond what is commonly feasible if one
attempts to perform Brillouin-zone summations. Müller-
Hartmann (1989b, 1989c) and Menge and Müller-
Hartmann (1991) have studied self-consistent perturba-
tion theory schemes for the Hubbard model. Similar
schemes were applied to the periodic Anderson model
by Schweitzer and Czycholl (1989, 1990a, 1991b). Sch-
weitzer and Czycholl (1990b, 1991a) also used the d=`
simplifications in order to facilitate the weak-coupling
studies of finite-dimensional models. The main idea is to

FIG. 2. Example of diagrams contributing to the self-energy at
second and fourth order which can be ‘‘collapsed’’ to a single-
site.
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perform a summation over successive shells of neighbors
in real space, rather than momentum summations.
Besides this practical use, these properties of pertur-

bation theory in d=` can also be used to formally derive
the dynamical mean-field equations. Consider the real-
space self-energy S ij(ivn). It is clear that not all dia-
grams of a standard weak-coupling expansion for this
quantity can be fully collapsed to a local form. An ex-
ample of a diagram which cannot be collapsed is pro-
vided by Fig. 3. We can consider making, however, a
‘‘skeleton’’ expansion of S rather than a direct expan-
sion: this amounts to grouping together all corrections to
internal propagators, so that all lines of a skeleton dia-
gram stand for the full interacting fermion propagator
Gij . The diagrams in Fig. 2 are skeleton diagrams, but
the one in Fig. 3 is not. In this way, the self-energy can
be viewed as a functional of the interacting Green’s
functions:

S ij5S ij
skel@$Gkl%# . (39)

It is easily seen that two internal vertices of a skeleton
diagram can always be connected by more than two
paths, so that all diagrams contributing to S in a skel-
eton perturbation expansion can be fully collapsed to a
single-site. More generally, this is true of the Luttinger-
Ward free-energy functional F[$Gij%], which is the sum
of all vacuum-to-vacuum skeleton graphs (Fig. 4). This
functional is such that (see, e.g., Abrikosov et al., 1965):

S ij~ ivn!5
dF

dGij~ ivn!
. (40)

Hence, as d→`, F and S ij
skel depend only on the local

(site-diagonal) Green’s functions Gii :

F5(
i

f@Gii# , d→` , (41)

in which f is a functional of the local Green’s function at
site i only. An obvious consequence is that the self-
energy is site diagonal:

S ij~ ivn!5d ijS~ ivn!. (42)

Furthermore, it must be possible to generate the func-
tionals f[G] and Sskel[G] from a purely local theory. A
simple inspection of Feynman rules shows that the effec-
tive action Seff in Eq. (6) precisely achieves this goal.
From this point of view, the Weiss function G 0 just plays
the role of a dummy variable which never enters the
final forms of f, Sskel. Once these functionals are known,
the actual value of S is found by writing that the local
lattice Green’s function is given by SkG(k,ivn), namely:

G~ ivn!5E
2`

1`

de
D~e!

ivn2e2Sskel@G~ ivn!#
. (43)

This should be viewed as a functional equation for
G(ivn), which is of course equivalent to the self-
consistency condition (7). This point of view is formally
useful to prove reduction to a single-site problem, but is
not practical because of the difficulty in handling skel-
eton functionals. In fact, it has been so far impossible to
obtain exact or even approximate expressions of Sskel for
the Hubbard model, which would give reasonable re-
sults when inserted in (43), except for very small U . A
remarkable case for which Sskel[G] can be obtained in
closed form is the Falicov-Kimball model (Sec. VIII.B),
which is exactly solvable as d→` (Brandt and Mielsch,
1989–1991). For most models, it is much more useful in
practice to think of all quantities as functionals of G 0
and to promote the latter to the rank of a fundamental
quantity which has a clear physical interpretation as a
‘‘Weiss function’’ (Georges and Kotliar, 1992).
This formalism is also useful for establishing the rela-

tion between the lattice and the impurity model free-
energies, V and Vimp (Brandt and Mielsch, 1991). In-
deed, V is related to the Luttinger-Ward functional F by
(see, e.g., Abrikosov et al., 1965):

V5F1T (
n ,k,s

@ lnGs~k,ivn!2Ss~ ivn!Gs~k,ivn!# ,

(44)

while, for the impurity model (6),

V imp5f@G#1T(
ns

@ lnGs~ ivn!2Ss~ ivn!Gs~ ivn!# .

(45)

Eliminating the functional F between these two equa-
tions [using Eq. (41)], and taking into account transla-
tion invariance, one obtains the following expression for
the free-energy:

V

N
5V imp2T(

ns
S E

2`

1`

de D~e!

3ln@ ivn1m2Ss~ ivn!2e#1ln Gs~ ivn! D , (46)

Note also that the internal energy can be expressed in
terms of local quantities only (see, e.g., Fetter and Wa-
lecka, 1971):

FIG. 3. Example of a diagram that cannot be ‘‘collapsed’’ to a
single-site, because only two independent paths connect site i
to site k (or j to l). Note that this is not a skeleton diagram,
since it contains a correction to the ij propagator.

FIG. 4. First two contributions to the Luttinger-Ward func-
tional.
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E

N
5T(

n ,s
E

2`

1`

de
eD~e!

ivn1m2Ss~ ivn!2e

1
1
2
T(
n ,s

Ss~ ivn!Gs~ ivn!. (47)

C. Derivation based on an expansion
around the atomic limit

In this section we derive the LISA equations on the
basis of an expansion around the atomic limit. This is
more than an academic exercise since a successful re-
summation of the atomic expansion has long been
sought, starting with the pioneering work of Hubbard
(1964). It is reassuring to see that a systematic analysis
of this expansion leads one back to the LISA equations.
This section builds upon early work of Metzner (1991;

see also, Hülsenbeck and Stephan, 1994). For any spatial
dimension, one can write a general expansion of the free
energy and the correlation functions in terms of hopping
matrix elements t ij and bare cumulants c r

0 which are lo-
cal in space but nonlocal in time. The bare cumulants
are defined by

cr
0~t1•••tr t18•••tr8!5

d lnZat

dh̄~t1!•••dh̄~tr!dh~t18!•••dh~tr8!
,

in which Zat is the partition function in the atomic limit,

Zat@h ,h̄#5E dc1dc e2*0
b
Lat1*0

bh̄c1c1h,

where Lat=Ssc s
1(]t2m)cs1Un↑n↓ is the Lagrangian

in the atomic limit. The rules for the calculation of a
Green’s function are given by Wortis (1974) and by
Metzner (1991). The basic idea is to carry out an expan-
sion of physical quantities in powers of the hopping ma-
trix element, and eliminate all disconnected graphs using
linked-cluster type arguments. The diagrammatic rules
for the one-particle Green’s function Gij ,s(t−t8) follow.
(i) Draw all topologically distinct connected diagrams

composed of point vertices, directed ‘‘internal’’ lines
connecting two vertices (corresponding to hopping ma-
trix elements), and two ‘‘external’’ lines (one entering
and one leaving a vertex) such that at each vertex (bare
cumulant) the number of entering lines equals the num-
ber of exiting lines.
(ii) Label each line with a time and a spin variable.

The entering external line is labeled by t8,s, the exiting
one by t,s. Label each vertex with a lattice site index;
the vertex with the entering external line is labeled by j8,
the one with the exiting line by j (the external vertices
may coincide: in this case j5j8).
(iii) Each line running from a vertex j to a vertex i

yields a factor t ij ; each vertex j with m entering lines
(labeled by s18 , . . . ,sm8 ) and m exiting lines (labeled by
s1 ,. . . ,sm) yields a factor cm

0 (s1 ,. . . ,smus18 , . . . ,sm8 ).
(iv) Determine the sign of each diagram (plus/minus

for an even/odd number of loops).
(v) Determine the symmetry factor g(D) for each dia-

gram D , i.e., the number of distinct permutations of (la-

beled) vertices and lines which do not alter the topologi-
cal structure of the diagram.
(vi) For each diagram D , multiply the associated hop-

ping matrix elements and cumulants, integrate each time
variable from 0 to b, sum each spin variable and lattice
vector on internal lines over the whole lattice, and mul-
tiply by the sign; the labels of external lines and vertices
are kept fixed.
Collecting all these factors, one obtains the weight

w(D) of a given diagram D . The one-particle Green’s
function is finally given by the sum of the weights w(D)
of all connected diagrams. The lowest-order diagrams
are shown in Fig. 5 from Metzner (1991).
The expansion around the atomic limit is quite com-

plex, and different truncations lead to the Hubbard I
and Hubbard III (Hubbard, 1964) approximations
(Metzner, 1991). It is natural to define the notion of ir-
reducibility with respect to one line (representing t ij).
This leads to the definition of an irreducible cumulant
M1 as the sum of all graphs with two external legs, which
cannot be divided into two parts by cutting a single line.
Fourier transforming the spatial dependence, one ob-
tains the exact relation between the one-particle irreduc-
ible cumulant and the one-particle Green’s function,

G~k,ivn!5
1

@M1
21~k,ivn!2ek#

(48)

in which ek is the Fourier transform of the hopping ma-
trix element. An exact relation between the irreducible
one-particle cumulant and the self-energy is thus ob-
tained:

M1
21~k,ivn!5ivn1m2S~k,ivn!. (49)

FIG. 5. First few diagrams for the expansion around the
atomic limit for the Hubbard model [from Metzner (1991)].
The dots represent bare cumulants.
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Equation (48) is represented graphically in Fig. 6, in
which the first terms in the expansion of M1 in terms of
bare t ij lines and bare cumulants (c

0’s) are also depicted.
The expansion described so far is completely general

and valid in arbitrary dimensions. The summation over
sites are totally unrestricted except for the external ver-
tices which are taken at the same site, say o . In infinite
dimensions several important simplifications occur,
which are easily explained by means of an example.
Consider the diagram in Fig. 7. One shows, just as in the
discussion of the weak-coupling expansion in the previ-
ous section, that all the bare cumulants connected by
more than two lines give a nonzero contribution in d=`
only when evaluated at the same site. In Fig. 7, i and l
have to be equal to o . The contribution from sites i , lÞ0
are of higher order in 1/d . Notice that the index j in that
figure is free. Hence, the irreducible cumulant
M1(k,ivn) becomes local (k independent) in d=`, and
so does the self-energy.
With this observation, we can identify all the graphs

that survive in the d→` limit as originating from the
expansion of an Anderson impurity model (AIM) in
powers of the hybridization. For the model

ZAIM5E dc1dc e2*(scs
1

~t!@]t2ef2D̃~t2t8!#cs~t8!1Un↑n↓.

(50)

one can derive a diagram expansion in powers of D̃ . The
elements of a diagram are the bare local cumulants
(which we still denote by a dot as in the lattice case), and
wavy lines corresponding to D̃(t−t8). One can introduce
the notion of irreducibility with respect to lines, and ex-
press the local Green’s function in terms of irreducible
cumulants. The relation between the impurity orbital
Green’s function and the renormalized cumulant then
becomes

G~ iv!5
1

@M1
21~ iv!2D̃~ iv!#

. (51)

This allows us to identify the renormalized cumulant as

M1
21~ iv!5iv2e f2S~ iv!.

Finally, one can expressM 1
21(iv) in terms of cumulants

and D̃(t−t8). The diagrammatic expansion is identical to
that in Fig. 6 for the Hubbard model, provided that one
identifies the dotted line representing D̃ with the lines
beginning with toi and ending with t jo as described in
Fig. 7. Thus, we conclude that the two expansions coin-
cide provided

D̃~ iv!5(
~ ij !

toitojGij
~o !~ iv!, (52)

where G ij
(o) denotes, as in Sec. III.A, the Green’s func-

tion between sites i and j in the absence of site o (and
bonds connected to it). This is because the contributions
from the site o to the hopping lines that originate from
the site labeled j in Fig. 7 vanish in the d→` limit. Other
contributions from site o to the diagram described in
this figure (such as l5o) have been included explicitly in
the diagram, thus they should not be included also in the
dotted line so as to avoid double counting. The corre-
spondence between the diagrams of the Anderson
model and of the d=` Hubbard model is illustrated in
the case of a specific example in Fig. 7.
Equation (52) is precisely the self-consistency condi-

tion (35) derived in the previous sections following dif-
ferent methods. It would be interesting to analyze the
effects of the leading order 1/d corrections in this frame-
work, in conjunction with a high-temperature expansion.

D. Effective medium interpretation

The dynamical mean-field equations also have a
simple interpretation as an effective medium (or ‘‘coher-

FIG. 6. Diagrammatic representation of the Dyson equation
defining the irreducible cumulant M1 (crossed circle), and its
expansion in terms of bare cumulants.

FIG. 7. Examples of the simplifications that take place in the
d=` limit. The upper plot is a typical graph for M1 . The lower
plot is the corresponding Anderson impurity model represen-
tation [the dotted lines stand for the hybridization function
D̃(t−t8)].
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ent potential’’) approximation (Janiš, 1991; Janiš and
Vollhardt, 1992a; see also Janis̃ 1986, 1989). (For a re-
view of the coherent potential approximation in the
noninteracting case, see, e.g., Elliott, Krumhansl, and
Leath, 1974). In this approach, one envisions replacing
the interacting lattice model by a noninteracting medium
with a propagator specified by a local self-energy S(ivn)
to be determined self-consistently. The action of this ef-
fective medium thus reads

S med52E dtE dt8(
ks

cks
1 ~t!Gmed

21 ~k,t2t8!cks~t8!,

(53)

Gmed~k,ivn!215ivn1m2ek2S~ ivn!. (54)

One then imagines that the local interaction Uno↑no↓ is
introduced at a single site o of this effective medium, and
that the self-energy S has simultaneously been removed
at this single-site only. The action of this new lattice
model with a single-site embedding thus reads

S emb5S med1UE dt no↑no↓

2E dtE dt8(
s

cos
1 ~t!S~t2t8!cos~t8!. (55)

This can be turned into an effective action for site o
only, by integrating out all other sites. Note that sites
iÞo enter only quadratically in S emb , and that this in-
tegration is thus performed exactly. This is to be con-
trasted with the cavity method which is rather different
in spirit. One obtains

Seff52E dtE dt8(
s

cos
1 ~t!G 0

21~t2t8!cos~t8!

1UE dt no↑no↓ (56)

with

G 0
21~ ivn!5D̃~ ivn1m2S!211S~ ivn!. (57)

One then requires that the interacting Green’s function
obtained from Seff for the embedded site coincides with
the on-site (local) Green’s function of the medium:

G~ ivn![2^Tc1~ ivn!c~ ivn!&Seff

5(
k
Gmed~k,ivn![D̃~ ivn1m2S!. (58)

Hence, S is identified with the self-energy of the effec-
tive (impurity) model itself, and this set of self-
consistent equations is seen to be exactly identical to the
dynamical mean-field equations above.

IV. RESPONSE FUNCTIONS AND TRANSPORT

In this section, we show that the response functions
for the lattice can be obtained from the knowledge of
the self-energy and of two-particle Green’s functions of
the impurity model only (Brandt and Mielsch, 1989;

Zlatić and Horvatić, 1990; Jarrell, 1992; Jarrell and
Pruschke, 1993a, 1993b; Pruschke, Cox, and Jarrell,
1993a, 1993b). Note that, in the d→` limit, no precursor
effect of the instability of a given phase towards some
kind of symmetry breaking can, in general, be observed
at the level of one-particle properties (Müller-Hartmann,
1989b). Indeed, the self-energy only probes local prop-
erties in this limit, and is thus sensitive only to those
instabilities arising simultaneously from all wave vectors
in the Brillouin zone. One such example is the Mott
transition discussed in Sec. VII. Instabilities associated
with a specific wave vector (such as a ferromagnetic or
antiferromagnetic transition) will not be detectable from
the knowledge of S(ivn) in the high-temperature phase.
Hence it is very important to be able to evaluate re-
sponse functions within the LISA framework. Alterna-
tively, dynamical mean-field equations directly adapted
to the study of phases with some symmetry breaking can
also be established, as described in Sec. V.

A. General formalism

Consider the response function x(q,ivn) associated
with some operator O (R,t), namely,

x~q,ivn!5E
0

b

dt eivnt(
j
e iq.Rj^TO ~Rj ,t!O ~0,0!&.

(59)

Some examples are the charge susceptibility, with
O (Rj)=Ssc js

1 cjs ; spin susceptibilities xab (a ,b5x ,y ,z),
with O a(Rj) 5 1/2Sss8cjs

1 sss8
a cjs8 ; and the frequency-

dependent conductivity tensor sab(v) related to the
real-frequency current-current correlation function by
sab(v)5[x jj

ab(v1i01)2x jj
ab(i01)]/iv , with the

x-component of the current on the hypercubic lattice
givenby jx(Rj)5 iSscjs

1 (cj1 x̂ ,s 2 cjs).
All these expressions can be Fourier transformed to

yield

O ~q,t!5(
ks

vkscks
1 ck1q,s , (60)

where the vertex factor vks equals 1, sgn(s), 2 sin(kx) in
the three examples above, respectively.
Let us define the two-particle vertex function

Gkk8q
ss8 (in ,in8;iv) appropriate to each of these cases and

irreducible in the particle-hole channel (Fig. 8). x(q,ivn)
is obtained from the ladder sum depicted in Fig. 8, in
which a thick line stands for the interacting fermion
propagator G(k,ivn). Explicitly,

x~q,ivn!52 (
k,in ,s

vk,sG~k,in!G~k1q,in1iv!vk1q,s

1 (
k,in ,s

(
k8,in8,s8

vk,sG~k,in!G~k1q,in1iv!

3Gkk8q
ss8 ~ in ,in8;iv!G~k8,in8!

3G~k81q,in81iv!vk81q,s81••• . (61)

A crucial simplification arises in the d→` limit: G can be
replaced in this equation by a purely local quantity
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Gss8(in ,in8;iv) depending on frequencies only (Zlatić
and Horvatić, 1990). This results from the power-
counting rules stated in Sec. III.B, since any two sites
belonging to G in the real-space representation of the
ladder series are certainly connected by more than two
independent paths. If it were not so, the diagram could
be disconnected by cutting two internal propagators in
contradiction with the assumption that G is irreducible.
Note that this assumes that all vertices in G can be con-
sidered internal (i.e., summed over) and thus G can be
collapsed to a fully local form only when inserted in the
ladder sum above. (When considered by itself, G does
have some momentum dependence, but only its local
component contributes to the ladder sum.) As a result of
this simplification, the summation over momenta can be
performed in each particle-hole bubble independently,
ignoring momentum conservation at the vertex G. In
contrast, note that frequency conservation must be fully
taken into account.
For the sake of simplicity, we shall proceed with the

example of the spin susceptibility xzz. All the other re-
sponse functions can be obtained in an analogous man-
ner. The special case of the frequency-dependent con-
ductivity will also be dealt with in detail below. Only the
spin-antisymmetric component GA contributes to xzz

(the superscript A will be omitted everywhere below).
We denote by x̃q(in ,in8;iv) the result of the above lad-
der sum in which the summation over the first and last
frequencies n,n8 have been omitted [so that the dynami-
cal susceptibility is obtained by summing over frequen-
cies, x(q,iv)=Snn8x̃q(in ,in8;iv)]. x̃ satisfies an integral
equation:

x̃q~ in ,in8;iv!5x̃q
0~ in ;iv!dn ,n8

1x̃q
0~ in ;iv!

1
b (

n9
G~ in ,in9;iv!

3x̃q~ in9,in8;iv! (62)

in which x̃q
0(in ;iv) is obtained by performing the sum-

mation over the internal momentum k in the elementary
particle-hole bubble,

x̃q
0~ in ;iv!52(

k
G~k,in!G~k1q,in1iv!. (63)

It is clear from Eq. (62) that the q dependence of
x(q,ivn) stems entirely from that of x̃q

0. We shall now
characterize more precisely this momentum depen-
dence, concentrating on the case where one really stud-
ies a d=` lattice model (we choose for simplicity the
hypercubic lattice). Later in this section, we shall de-
scribe how dynamical mean-field approximations for
q-dependent response functions of a finite-dimensional
model can be generated in the general spirit of the LISA
approach.
For the d=` hypercubic lattice, the momentum de-

pendence of the response functions simplifies drastically:
as shown in Appendix A, x̃q

0 depends on q (for the hy-
percubic lattice) only through the following quantity
(Brandt and Mielsch, 1989; Müller-Hartmann, 1989a):

X~q!5
1
d (

i51

d

cosqi (64)

Let us discuss in more detail the quite peculiar q depen-
dence of this quantity [and hence of x(q,ivn) in the
d→` limit]. For a ‘‘generic’’ q vector (i.e., for all q’s
except a set of measure zero), the summation in Eq. (64)
is over arguments that are random in sign, and hence is
of order Ad , so that, as d→`,

X~q!50 ~ ‘‘generic’’ q!. (65)

This implies that, for any generic q, x(q,ivn) coincides
with its local (on-site) component:

x~q,ivn!5(
q

x~q,ivn![x loc~ ivn! ~ ‘‘generic’’ q!.

(66)

X(q) may take arbitrary values −1<X<1 for specific
values of q, however. Important examples are the
uniform wave vector q=0 (appropriate for ferromagnetic
ordering) and the zone-corner wave vectors
q=(6p , . . . ,6p) (appropriate for two-sublattice com-
mensurate antiferromagnetic ordering):

X~0!511, X~6p , . . . ,6p!521. (67)

Intermediate values −1<X<1 correspond to incommen-
surate orderings. It is important to realize that even
though these types of ordering are not very easy to vi-
sualize in real space in the d→` limit, they can be stud-
ied through the X(q) dependence of x and indeed are

FIG. 8. (a) Two-particle irreducible vertex function. (b) Lad-
der decomposition of the response function x(q,ivn); the mo-
mentum dependence of G can be ignored inside the ladder sum
in d=`.
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known to occur in several models including the d=`
Falicov-Kimball model (Freericks, 1993a, 1993b, 1993c
cf. Sec. VIII.B), Hubbard model (Freericks and Jarrell,
1995a, cf. Sec. VII.H), and Holstein model (Ciuchi et al.,
1993, cf. Sec. VIII.E), away from half-filling.
Because of this specific q dependence, the calculation

of response functions for a d=` model can be reduced to
the evaluation of correlation functions of the effective
impurity model only. In order to see this, we apply Eq.
(62) to a ‘‘generic’’ wave vector q. This allows us to ex-
press the irreducible vertex function in terms of local
quantities:

G5@ x̃ loc
0 #212@ x̃ loc#

21 (68)

in which the x̃’s are viewed as matrices in the two indices
n,n8 and [x̃]−1 denotes matrix inversion. This equation
can be used to reexpress G in Eq. (62), leading to the
important expression (Zlatić and Horvatić, 1990; Jarrell,
1992)

x̃q
215@ x̃ loc#

211@ x̃q
0#212@ x̃ loc

0 #21. (69)

The right-hand side of this equation involves impurity
model quantities only, since x̃q

0 requires only the knowl-
edge of the self-energy S(ivn), and the local quantities
xloc(ivn) and x̃ loc(in ,in8;iv) are response functions of
the impurity model effective action Seff . For the ex-
ample of the spin susceptibility xzz, we have explicitly

x̃ loc~ in ,in8;iv!5
1
4 E

0

b

dt1E
0

b

dt2E
0

b

dt3E
0

b

dt4

3ein~t12t2!ein8~t42t3!

3eiv~t42t2!Sss8~21 !s~21 !s8

3^Tcs
1~t1!cs~t2!cs8

1
~t3!cs8~t4!&Seff.

(70)

The numerical methods reviewed in Sec. VI for the cal-
culation of the impurity model Green’s function can be
used to evaluate such a local correlation function (cf.
Sec. VI.A.5).
The other ingredients entering Eq. (69) are the uncor-

rected response functions x̃q
0. These are obtained from

the knowledge of the one-particle Green’s function by
evaluating the momentum sum in Eq. (63). On the d=`
hypercubic lattice, this sum can be evaluated further in
order to show that x̃q

0 only depends on q through X(q).
The relevant expressions for an arbitrary X(q) are given
in Appendix A. Here, we shall simply note the impor-
tant expressions for a generic q and for q=0, valid for an
arbitrary density of states:

x̃q
05x̃ loc

0 52D̃~zn!D̃~zn1v! ~ ‘‘generic’’ q!, (71)

x̃q50
0 52

D̃~zn!2D̃~zn1v!

zn1v2zn
(72)

with zn[in1m2S(in), as usual.
Hence, Eq. (69) is crucial in that it allows the deter-

mination of any q dependent response function for a

d=` lattice model from the knowledge of the effective
impurity model self-energy and correlation functions. It
is instructive to have a closer look at this equation for
the case of a uniform and static response q=0, v=0. Us-
ing the above expressions of x̃0 and Eq. (69), we obtain,
in that case,

x̃q50
21 ~v50 !5x̃ loc

21~v50 !1dn ,n8S 1

D̃~zn!2
1

1

D̃8~zn!
D

(73)

with D̃85]D̃/]z . This expression simplifies in two spe-
cial cases. For a Lorentzian density of states,
D̃(z)215z1it so that the second term in the right-hand
side of Eq. (73) vanishes and one obtains that uniform
and local response functions coincide for this model:
x̃q50 5 x̃ loc . This parallels the observation made in Sec.
II.C that the self-consistency condition becomes trivial
for this model, which is really just an impurity model
without the interesting feedback effects from the lattice.
For all other cases however, the additional term on the
right-hand side of Eq. (73) reflects how a static field ap-
plied to the lattice induces a spin dependence of the
Weiss function G 0s(ivn) (see Sec. V). For the z=`
Bethe lattice (with our standard normalization), this
term simplifies to yield

x̃q50
21 ~v50 !5x̃ loc

21~v50 !1t2dn ,n8 . (74)

This formula has a simple physical interpretation. Even
when the local susceptibility diverges, e.g., near the Mott
transition x̃ loc

−1→0 the uniform susceptibility may remain
finite due to the t2 term. This term cuts off the diver-
gence in the frequency summation x(q=0,v=0)
5Snn8x̃q50(v 5 0) 5 Snn8@ x̃ loc

21 1 t2dn ,n8#
21, and gener-

ates the finite spin-exchange scale J.t2/U .
Finally, we conclude this section by mentioning how

approximations of q dependent response functions for a
finite-dimensional lattice can be obtained in the LISA
framework, in the spirit of a dynamical mean-field ap-
proximation. The idea is to neglect the momentum-
dependence of the irreducible vertex function G, and to
use again Eq. (62) in order to relate G to local quantities.
However, it is no longer strictly true that xq coincides
with xloc for a ‘‘generic’’ value of q, so that using Eq. (68)
to calculate G is in fact a supplementary approximation.
Other choices could be made to define G, but Eq. (68) is
certainly a natural possibility. Thus, one can follow the
strategy of computing the self-energy and the local re-
sponse function x̃ loc from the self-consistent impurity
model, and to compute q-dependent response functions
from Eq. (69). For an arbitrary lattice, the quantities
x̃q
0 are obtained from their definition (63) and the

knowledge of the self-energy as

x̃q
0~ in ;iv!52E

2`

1`

de1D~e1!E
2`

1`

de2D~e2!

3
Dq~e1 ,e2!

~zn2e1!~zn1v2e2!
, (75)
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where zn[in+m−S(in), and Dq is the lattice-dependent
function:

Dq~e1 ,e2!5(
k

d~ek2e1!d~ek1q2e2!. (76)

For a d=` lattice, Dq only depends on q through X(q),
as mentioned above, and the distribution Sqd(X2X(q))
is a delta function d(X), so that the above approxima-
tion becomes exact.

B. Frequency-dependent conductivity, thermopower and
Hall effect

We now deal in detail with the case of the frequency
dependent conductivity s(v,q=0). In this case, we have
seen that the current vertex vk is odd under parity
k→−k. Since all k dependence of G can be ignored and
ek is even under parity, this implies that all vertex cor-
rections drop out of the current-current correlation
function at q=0 in the d→` limit. This observation was
first made by Khurana (1990). A more detailed proof
follows from the Ward identity

VG0~k1q,k!1 (
i51,d

D~q! iG i~k1q,k!

5G21~k1q,v1V!2G21~k,v!, (77)

where G0 and Gi denote the density and current vertex
respectively and D(q) i=2 sin[(qi)/2] on the hypercubic
lattice. Since in large dimensions the self-energy is inde-
pendent of momentum, and the density vertex is even in
q while the current vertex is odd in q, expanding Eq.
(77) to lowest order in D(q) proves that the current ver-
tex is unrenormalized. Notice that this conclusion is false
as soon as q is finite, because there are nontrivial can-
cellations between the density and the current vertex at
finite q so as to obey Eq. (77).
Hence, only the elementary particle-hole bubble sur-

vives in Eq. (62) for the current-current correlator at
q=0, and one obtains, for the paramagnetic contribution
to the optical conductivity (the diamagnetic term cancels
the 1/v divergence of the real part of the retarded
current-current correlator),

s~ iv!5
1
v

1
b (

knns

1
d (

l51

d

4 sin2~kl!G~k,inn!

3G~k,inn1iv!. (78)

One could make use of this expression (inserting the
self-energy calculated from the impurity model) to gen-
erate approximations of the optical conductivity of a
finite-dimensional lattice, in the general spirit of the
LISA method. For a d=` model however, the sum over
momenta can be further simplified by expressing it
as an energy integration, and noting that
SkS lsin

2(kl)d(e−ek).dD(e)/2 for d→`. This leads to
the final form (Schweitzer and Czycholl, 1991b; Moeller,
Ruckenstein, and Schmidt-Rink, 1992; Pruschke, Cox,
and Jarrell, 1993a, 1993b):

s~ iv!5
1
v

1
b (

nn
E

2`

1`

de D~e!G~e ,inn!G~e ,inn1iv!.

(79)

Using the spectral representation of the Green’s func-
tions, this is also conveniently expressed in terms of the
one-particle spectral density r(e,n)=−(1/p)
ImG(e,n+i0+):

s~ iv!5
1
v E

2`

1`

deE
2`

1`

dnE
2`

1`

dn8

3D~e!r~e ,n!r~e ,n8!
f~n!2f~n8!

n2n81iv
, (80)

where f is the Fermi function. Performing the analytic
continuation yields (reintroducing dimensional prefac-
tors):

Re s~v1i01!5p
e2

\ad E
2`

1`

deE
2`

1`

dn D~e!r~e ,n!

3r~e ,n81v!
f~n!2f~n1v!

v
. (81)

Finally, we conclude by noting that the absence of vertex
corrections to the current-current correlation function
for d=` models is not restricted to that correlation func-
tion, but actually applies to the q=0 correlation function
of any operator such that the vertex factor nk satisfies

(
k
vk50. (82)

One additional example is the thermopower Q, asso-
ciated with the heat current (ek2m)“kek. The following
d=` expression can be established (Schweitzer and Czy-
choll, 1991b; Pruschke, Jarrell, and Freericks, 1996):

Q5

*dv*de~v2m!
]f

]v
r~e ,v!2

eT*dv*de
]f

]v
r~e ,v!2

. (83)

Notice, however, that this expression neglects the con-
tribution to the thermal current due to the transport of
doubly occupied sites, which has not been analyzed in
detail yet.
Vertex corrections can also be shown to drop out from

the Hall coefficient. The proof in this case is more in-
volved, since one needs to consider three-point correla-
tions at finite q, and the limit of small wave vector is
taken only at the end of the calculation. Following the
careful analysis of Kohno and Yamada (1988), it may be
shown that the diagrams neglected in their treatment on
the basis of being higher in the small damping constant
are in fact higher order in an expansion in 1/d relative to
the leading terms. This leads to the following expression
at finite temperature:
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sxy}BE dv
]f

]v(
k

r~k ,v!3S ]ek
]kx

D 2
3F]2ek

]ky
2 2S ]ek

]ky
D 2 ]2ek

]kx]ky
G (84)

Taking the zero-temperature limit of this expression,
one observes that the noninteracting result is recovered,
leading to the Hall number:

RH5 2
a3

e

1
N

(k ,sd~ek2m0!S vx2 ]vy
]ky

2vy
2]vy
]kx

D
S 1N(k ,sd~ek2m0!vx

2D 2 , (85)

where vk[“kek. It is quite remarkable that the Hall
coefficient is given by the bare band structure at T=0
even when the correlations are strong. This has been
applied to the case of La12xSrxTiO3 near the Mott tran-
sition by Kajueter, Kotliar, and Moeller (1995).
These expressions can all be simplified further if one

considers the special case of the d=` hypercubic lattice
Eq. (19), in which case summations over k can be re-
placed by averages weighted by the bare density of
states D(e), leading to (Pruschke, Jarrell, and Freericks,
1995; Kajueter, Kotliar, and Moeller, 1995; Majumdar
and Krishnamurthy, 1995b):

sxy}2BE de D~e!eE dv r~e ,v!3
]f

dv
, (86)

RH~T50 !5
a3

t2e

m0

D~m0!
. (87)

V. PHASES WITH LONG-RANGE ORDER

For simplicity, the dynamical mean-field equations
have been derived in Secs. II and III under the assump-
tion that no long-range order is present. In the previous
section, it was shown how response functions signalling
some symmetry breaking can be computed. In this sec-
tion, it will be shown that the dynamical mean-field
equations can be generalized to phases with broken
symmetry, and a description of the mapping onto an im-
purity model for these cases will be given (see, e.g.,
Brandt and Mielsch, 1990, 1991; Georges, Kotliar, and
Si, 1992).

A. Ferromagnetic long-range order

In the presence of a magnetic field h coupled to Sz , or
if there is a spontaneous uniform magnetization, the
Green’s functions for up and down electrons are not
equivalent. Then one has to retain the spin dependence
of the local Green’s functions and of the Weiss function
in the derivations of Sec. III. The local effective action
associated with the Hubbard model in a ferromagnetic
phase or in the presence of a uniform field reads

Seff52E
0

b

dtE
0

b

dt8(
s

cs
1~t!G 0,s

21~t2t8!cs~t8!

1UE
0

b

dtn↑~t!n↓~t!. (88)

The self-consistent equations for the two functions G↑ ,
G↓ and their corresponding Weiss functions are straight-
forward generalizations of Eq. (7) to this spin-
dependent case. They read

Gs~ ivn!5E
2`

1`

de
D~e!

ivn1m1hs2Ss~ ivn!2e
, (89)

where

Gs~ ivn![^cs
1~ ivn!cs~ ivn!&Seff,

Ss~ ivn!5G 0,s
212Gs

21. (90)

Note that the dependence of G 0
−1 on the external field h

is, in general, more complicated than just a linear term
hs : a uniform field coupling linearly to the lattice model
induces a nonlinear, frequency dependent term in the
impurity effective action.
From the solution of Eqs. (88) and (89), one can re-

construct the lattice Green’s functions:

Gs~k,ivn!5
1

ivn1m1hs2ek2Ss~ ivn!
. (91)

The magnetization as a function of the external field is
given by

m5
1
b (

n
eivn0

1
@G↑~ ivn!2G↓~ ivn!# . (92)

A ferromagnetic phase is signalled by a non-zero spon-
taneous magnetization limh→0m(h)Þ0. It is a straight-
forward but lengthy exercise to check that Eq. (73) for
the uniform magnetic susceptibility can be recovered by
expanding Eqs. (88) and (89) for small h .

B. Antiferromagnetic long-range order

Similar considerations can be used to study commen-
surate antiferromagnetic long-range order in the Hub-
bard model. Note that the 1/Ad scaling of the hopping
amplitude is such that the exchange coupling obtained at
large U for a given pair of sites, Jij.t ij

2 /U , scales as 1/d ,
which is just the scaling to be performed on a spin model
to preserve a Néel transition at a finite temperature
TN5O(1). For simplicity we shall again concentrate on
the Hubbard model and we shall add to the Hamiltonian
in Eq. (5) a staggered magnetic field:

hs(
is

eiQ•Ricsi
1 csi (93)

with Q=(p,...,p).
Let us first derive the mean-field equations in the or-

dered phase using the cavity method on the z=` Bethe
lattice. There are two inequivalent sublattices, A and B
and a simple relation in the Néel phase between the

31A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



local Green’s functions on each sublattice: Gii ,s
5GA ,s ,GB ,s for iPA ,B with

GAs~ ivn!5GB ,2s~ ivn!. (94)

Let us focus on a site belonging to sublattice A , and
eliminate all other degrees of freedom. The resulting ef-
fective action is identical to Eq. (88), but in the present
case the Weiss functions read G 0,s

−1 =ivn1m
2 hss2t2GBs . Using Eq. (94), we see that a single-site
description still holds, with (on the Bethe lattice)

G 0,s
215ivn1m2t2G2s2shs. (95)

This is easily generalized to an arbitrary lattice. The
d→` skeleton functional F now depends on the two
local Green’s functions: F=F[GAs ,GBs]. The self-
energy is purely local and can take two values with
SAs(ivn)5SB ,2s(ivn). It is convenient to write the
Hamiltonian in terms of two sublattice operators in the
reduced Brillouin zone (RBZ):

H05 (
skeRBZ

ek~cAks
1 cBks1cBks

1 cAks!

1 (
skeRBZ

shs~cAks
1 cAks2cBks

1 cBks!. (96)

The Green’s functions are obtained by inverting the ma-
trix:

S zAs

2ek

2ek
zBs

D
with zAs5ivn1m2shs2SAs and zBs5ivn1m
1shs2SBs . The impurity model to be considered is
still Eq. (88), but the self-consistency conditions now
read (Brandt and Mielsch, 1990, 1991):

Gas5zāsE
2`

`

de
D~e!

zAszBs2e2
(97)

with a=A ,B and ā=B ,A . When a semicircular density of
states is inserted in this equation, Eq. (95) is recovered.
The staggered magnetization and the free energy of the
antiferromagnetic phase are given by similar equations
as above.
It is instructive to notice that the simplest approxima-

tion to the self-energies, SAs5(U/2)(nAs2nBs), repro-
duces the usual Hartree-Fock approximation for the
staggered magnetization. Also, as soon as Néel order is
established and SAsÞSBs , it is possible to open a gap in
the single particle spectrum, i.e., ImG(v1i01)=0 if
uv+m+(SB2SA)/2u<(SA1SB)/2. This will always be
the case, particularly at half-filling for a nested, bipartite
lattice. Note that the effective conduction electron bath
entering the impurity model is then also gapped. These
are peculiarities of the d→` limit, in which long-
wavelength spin-wave excitations are absent. Neverthe-
less, the LISA method has proven useful for studying
the quantum transition between a strongly correlated
paramagnetic metal and a metal with spin-density wave
order, and some of the results are expected to hold in
finite dimensions as well (Sachdev and Georges, 1995;
see also Sec. VII.D.3).

In order to study the phase transitions between differ-
ent magnetic phases we have to compare the free ener-
gies of all possible magnetic states, using straightforward
generalizations of Eqs. (46) and (47). Alternatively, one
can calculate directly the relevant divergent susceptibil-
ity, along the lines of Sec. IV (keeping in mind, however,
the possibility of first-order transitions). For incommen-
surate magnetic orderings, no simple set of mean-field
equations can be written inside the ordered phase in the
general case, and one must resort to the study of suscep-
tibilities.

C. Superconductivity and pairing

The LISA mean-field equations are easily extended to
take into account superconducting long-range order
(Georges, Kotliar, and Krauth, 1993). We illustrate this
on the one-band Hubbard model, but the equations are
easily generalized to other models, such as the multi-
band Hubbard model described in Sec. VIII.C. One in-
troduces anomalous Green’s functions:

F~k,t![2^Tck↑~t!c2k↓~0 !&. (98)

In the following, we shall consider only pure singlet pair-
ing, for which F(−k,−t)=F(k,t) and pure triplet pairing
with Sz=0 for which F(−k,−t)=−F(k,t). Within the
present d=` formalism, the k dependence of F will be
only through ek , so that only pairing states having the
symmetry of the original lattice are possible in the limit
of d=`. This can be shown using the absence of vertex
corrections to the pair susceptibility (Sec. IV) for pairing
states with a different symmetry (Jarrell and Pruschke,
1993a). Pairing with a different symmetry, such as d
wave, requires an extension of the LISA formalism to
self-consistent clusters, see Sec. IX). However, the time
dependence of F can be highly nontrivial, which is in fact
expected to be crucial for models with repulsive interac-
tions. The underlying physical idea is that on-site equal-
time pairing is likely to be strongly suppressed in the
presence of a strong on-site repulsion, but that pairing
involving a time-lag between the members of a pair may
occur. This idea dates back to Berezinskii’s proposal
(Berezinskii, 1974) for triplet pairing in 3He, a generali-
zation of which has been recently considered for cuprate
superconductors by Balatsky and Abrahams (1992).
In the presence of a nonzero F , it is convenient to

work with Nambu spinors C i
1[(c i↑

1 ,ci↓)—or, in Fourier
space, Ck

1 [ (ck↑
1 ,c2k↓)—and with the matrix formula-

tion of one-particle Green’s functions:

Ĝ~k,t![2^TCk~t!Ck
1~0 !&

5SG~k,t! F~k,t!

F~k,t!* 2G~2k,2t!
D . (99)

With these notations, the kinetic term of the Hubbard
Hamiltonian reads −S^ij&t ijC i

1s3C j , where s3 denotes
the Pauli matrix. We shall first illustrate the derivation of
the mean-field equations on the z=` Bethe lattice. Fol-
lowing the cavity method, we integrate out fermionic

32 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



variables on all sites except a single one. The impurity
action obtained in this way now reads

Seff5UE
0

b

dt n↑~t!n↓~t!

2E
0

b

dtE
0

b

dt8C1~t!G 0
21~t2t8!C~t8!, (100)

where the self-consistency equation relating G 0 to the
interacting (matrix) Green’s function of Seff reads

G 0
21~ ivn!5ivn1ms32t2s3Ĝ~ ivn!s3 . (101)

We can account for an externally applied dynamic pair-
ing field on all sites in the original lattice problem by
adding a forcing term D(ivn) to the off-diagonal com-
ponents of the right-hand side of Eq. (101).
For an arbitrary lattice, the impurity action keeps the

same form, and we introduce a matrix self-energy:

G 0
212Ĝ215S S~ ivn! S~ ivn!

S~ ivn! 2S~ ivn!* D . (102)

S(ivn) contains information on the time dependence of
the pairing. Here and in the following, we have assumed
that the symmetry of the pairing is such that the off-
diagonal self-energy obeys: S(ivn)5S(2ivn)* . The lat-
tice Green’s function reads, in matrix form,

Ĝ21~k,ivn!

5S ivn1m2ek2S~ ivn! 2S~ ivn!

2S~ ivn! ivn2m1ek1S~ ivn!* D .
(103)

The self-consistency equation is obtained by requiring
that the impurity Green’s function coincides with the on-
site Green’s function of the lattice. This yields the rela-
tions

G~ ivn!5E
2`

1`

de D~e!
z*2e

uz2eu21S2
,

F~ ivn!52S~ ivn!E
2`

1`

de D~e!
1

uz2eu21S2
(104)

with z[ivn1m2S(ivn) as above.
The impurity action (100) describes an Anderson im-

purity in a superconducting medium. This model is thus
the effective local model associated with the supercon-
ducting state of a strongly correlated system. Since this
problem is known to be highly nontrivial, even with
static pairing, we may expect that the self-consistent so-
lution of Eqs. (104) will allow for very intricate densities
of states.
The existence of superconducting phases in concrete

models is only beginning to be explored. Odd and even
frequency pairing is absent in the single-band Hubbard
model (Jarrell and Pruschke, 1993a). Some hints that the
two-band Hubbard model may have a stable supercon-
ducting phase were reported by Georges, Kotliar, and
Krauth (1993) and Caffarel and Krauth (1994).

VI. METHODS OF SOLUTION

As explained in the previous sections, lattice models
of correlated fermions can be mapped, in the limit of
infinite coordination number, onto a single-impurity
model which has to satisfy a self-consistency condition.
This condition specifies, for a given lattice, the relation
between the Weiss function G 0 (entering the impurity
model effective action) and the local Green’s function
G . On the other hand, G itself is obtained by solving the
effective impurity model. Hence, we have a coupled
problem to solve for both G and G 0 . In practice, all
methods deal with this coupled problem in an iterative
manner: the local Green’s function is obtained by solving
the impurity effective action given a G 0 (in the first step
a guess for G 0 is used). Then, the calculated G (and the
self-energy S) is used as an input into the self-
consistency condition to produce a new Weiss function
G 0 . The process is iterated until a converged solution
(G ,G 0) is reached (Fig. 9). Knowing this converged so-
lution, all k-dependent response functions can be con-
structed from the impurity model response functions,
along the lines of Sec. IV.
To be definite, we concentrate in this section on the

case in which the impurity model effective action has the
form given by Eq. (6):

Seff52E
0

b

dtE
0

b

dt8(
s

cs
1~t!G 0

21~t2t8!cs~t8!

1UE
0

b

dt n↑~t!n↓~t! (105)

that corresponds to the local site of the single-impurity
Anderson model. In the LISA framework, the $c ,c1%
operators are associated with a local fermionic variable
of the lattice problem.
The most difficult step in the iterative procedure is the

repeated solution of the impurity model, for an essen-
tially arbitrary G 0 (i.e., an arbitrary conduction electron
effective bath). Even though spatial degrees of freedom

FIG. 9. All methods of solution of the coupled LISA equa-
tions involve going through the iteration schematically de-
picted here. Given G 0 , a local interacting Green’s function G
is obtained by solving the impurity model. This function is
used in the self-consistency condition to produce a new bath
Green’s function G 0 . This loop is iterated until a converged set
(G , G 0) is reached.
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have been eliminated, the impurity model remains a true
many-body problem. It is crucial to use reliable methods
to handle it. Fortunately, quantum impurity models have
been studied for over thirty years, and several tech-
niques are available. In this section we review some of
these techniques along with some recently developed
ones. In particular, we describe in detail a general nu-
merical method which is based on the exact diagonaliza-
tion of small clusters. We then describe a projective
technique, inspired by the renormalization-group
method for impurity models, which can be applied to
problems with a separation of energy scales.
In contrast to the solution of the single-impurity prob-

lem, the implementation of the self-consistency condi-
tion in the numerical methods is relatively straightfor-
ward. Even though no rigorous proof exists concerning
the convergence of the iterative process, practice has
shown that it is usually not difficult to reach a self-
consistent solution of the LISA equations. Convergence
is usually attained after a few iterations. Close to transi-
tion points one encounters critical slowing down of the
convergence (in the broken symmetry phase) which can
however be easily overcome by standard accelerated
convergence methods.
This section is organized as follows: we first describe

in Sec. VI.A two numerical techniques. These methods
are based on a quantum Monte Carlo method and an
exact diagonalization solution of the effective impurity
problem, and are discussed in full detail. Section VI.A.4
is devoted to the discussion of the problem of the ana-
lytic continuation of data from the imaginary to the real
axis, which is relevant for some numerical techniques,
most notably, the quantum Monte Carlo method. In Sec.
VI.A.5, we discuss the calculation of susceptibilities and
vertex functions. In Sec. VI.B we review various analyti-
cal approximate methods. Among these we devote spe-
cial attention to the iterated perturbation theory method
(Georges and Kotliar, 1992) that is based on the pertur-
bation theory for impurity problems of Yosida and Ya-
mada (1970, 1975). In Sec. VI.C we describe a projective
method which allows the detailed solution of problems
with separation of energy scales.
The reader is not assumed to have any previous

knowledge of the algorithms, which will be thoroughly
described in this section. Moreover, we provide with this
article a FORTRAN library of programs. The directions to
obtain these programs via the internet are explained in
Appendix D.

A. Numerical solutions

In this section we review two techniques, the quantum
Monte Carlo (QMC) and the exact diagonalization.
Both are fully numerical in the sense that the only ap-
proximation that is used is a discretization of the mean-
field equations. Both methods, when extrapolated to the
limit of vanishing discretization, give the exact answer to
the problem.
The numerical schemes applied to the LISA equations

involve a discrete parametrization of the Green’s func-

tion, and the Weiss field G 0 , through a finite number NP
of parameters. This reduces the system of functional
equations to a system of NP nonlinear equations in NP
unknowns. The hope is that as NP increases, physical
quantities converge relatively quickly to their physical
values so that the NP→` value can be inferred by ex-
trapolating results obtained from a finite (and usually
small) number of parameters NP .
We quickly characterize the two numerical techniques

and then turn to a detailed description:
(i) The quantum Monte Carlo (QMC) method, and

more specifically, the Hirsch-Fye (1986) algorithm con-
siders the single-impurity problem in discretized imagi-
nary time. The effective bath only enters through G 0 ,
and there is no need to discretize the conduction band.
The first numerical solutions of the LISA equations us-
ing this QMC method were obtained independently by
Jarrell (1992), Rozenberg, Zhang, and Kotliar (1992),
and Georges and Krauth (1992; see also Jarrell,
Akhlaghpour, and Pruschke, 1993b).
(ii) The exact diagonalization method (Caffarel and

Krauth, 1994; Rozenberg, Moeller, and Kotliar, 1994; Si
et al., 1994). In this method, the single-impurity problem
is solved exactly with an effective bath that is approxi-
mated by a few orbitals only. This introduces a param-
etrization of the effective bath. The parameters corre-
spond to the site energies and hopping amplitudes of the
fictitious electrons and to an appropriate choice of the
geometry of their connections. Obviously, many differ-
ent geometries of the electronic bath are possible (cf.
Fig. 10). It is the physical insight on a particular problem
that indicates the most appropriate choice, which allows
one to determine an appropriate parametrization. The
number of orbitals that one can effectively treat is se-
verely limited by the size of an exponentially growing
Hilbert space. In spite of this limitation, it turns out that
the freedom associated with the parametrization more
than makes up for the limitations. This freedom con-
cerns the geometry of the electronic bath, and the physi-
cal parameters of the orbitals—the site energies and
hopping amplitudes. As a consequence, the exact diago-
nalization algorithm has proven to be very powerful, and
in our opinion, clearly superior to the Monte Carlo
method.

1. Quantum Monte Carlo method

a. Introduction: A heuristic derivation

The most successful Quantum Monte Carlo method
for solving a general impurity problem is due to Hirsch
and Fye (1986). Before embarking on a rigorous and
self-contained derivation of their method, we describe in
this section the algorithm taking a rather different,
though less rigorous, approach for the sake of an intui-
tive understanding of the key ingredients of this method.
The method is concerned with the calculation of the lo-
cal Green’s function at finite temperature, which was
first introduced in Eq. (8).
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(i) The basic principle of the method can be under-
stood as a discretization of the impurity model effective
action, Eq. (105):

Seff→(
tt8s

cs
1~t!G 0

21~t ,t8!cs~t8!1U(
t
n↑~t!n↓~t!,

(106)

where the imaginary time is discretized in L ‘‘slices’’
t=1,2, . . . , L of size Dt, and the timestep Dt is defined by
b=LDt.
(ii) The remaining quartic term can be decoupled us-

ing a discrete Hubbard-Stratonovich transformation
(Hirsch, 1983):

e2DtUn↑n↓1~DtU/2!~n↓1n↓!5
1
2 (

s561
els~n↑2n↓!, (107)

where l=arccosh (eDtU/2) and the discrete field s is an
Ising-like variable taking the values 61. Performing this
transformation at every time slice, we are led to a qua-
dratic action, and the partition function becomes

Z5 (
st561

E D@c ,c1#expH 2(
tt8

cs
1~t!G 0

21~t ,t8!cs~t8!

1l(
t
st@n↑~t!2n↓~t!#J (108)

with

Gs
21~t l,t l8![G 0s

21~t l,t l8!1slsld l ,l811 (109)

the inverse propagator for a particular realization of the
Ising spins (s1 ,. . . ,sL). The antiperiodic delta function is
defined by dl ,l811=1 if l5l811,l52,.. . ,L21, d l ,l811
5 2 1 if l=1, l85L , and is zero otherwise. Its origin is in
the proper time ordering of the creation and destruction
operators (Blankenbecler, Scalapino, and Sugar, 1981).
In the actual implementation of the algorithm, Eq. (109)
is replaced by

Gs ,~s1 ,.. . ,sL!
21 ~t ,t8![G 0s

21~t ,t8!eV1eV21, (110)

where eV is the diagonal matrix with elements eV(t ,t)
5 eslst. This choice of discretization results from the rig-
orous derivation in Sec. VI.A.1.b following the original
Hamiltonian formulation of Hirsch and Fye (1986).
(iii) The replacement of a quartic term for an extra

summation on the auxiliary Ising variables (s1 ,. . . ,sL)
renders the action quadratic and allows us to apply
Wick’s theorem at each time slice. We can now perform
the Gaussian integration of the Grassmann variables, to
obtain

Z5 (
$s1 ,.. . ,sL%

det@G↑
21~s1 ,. . . ,sL!#det@G↓

21~s1 ,. . . ,sL!# .

(111)

In principle, the trace over the auxiliary field gives the
full interacting Green’s function:

Gs5
1
Z (

$s1 ,.. . ,sL%
det@G↑

21~s1 ,. . . ,sL!#

3det@G↓
21~s1 ,. . . ,sL!#Gs~s1 ,. . . ,sL!; (112)

this requires the sum over 2L configurations. Each term
in the sum (112) involves the inversion of an L3L ma-
trix as is clear from Eq. (110). In practice, the full trace
can only be performed for small values of L .
(iv) Usually, the interacting Green’s function is there-

fore calculated by stochastic Monte Carlo sampling: the
term det[G ↑

21(s1,. . . ,sL)]det[G ↓
21(s1 ,. . . ,sL)] in Eq.

(112) is interpreted as a stochastic weight, and configu-
rations (s1 ,. . . ,sL) are generated by a Markov process
with a probability corresponding to their statistical
weight.
(v) The Markov process visits configurations of Ising

variables (s1 ,. . . ,sL) with a single spin-flip dynamic,
in which a possible movement consists in
(s1 ,s2 ,. . . ,sk , . . . ,sL)→(s1 ,s2 ,. . . ,2sk , . . . ,sL). The for-
mulas given in Sec. VI.A.1.b will allow a rapid calcula-
tion of the change in statistical weight, and of the new
Green’s function for a single spin-flip change.

b. The Hirsch-Fye algorithm: Rigorous derivation

The above derivation leaves us with the impression
that there are two discretizations involved: the one of
the bath Green’s function, and the subsequent discreti-
zation of the functional integral. Using a Hamiltonian
description of the general Anderson impurity model one

FIG. 10. Various possible geometries used to represent the
effective conduction bath in the exact diagonalization algo-
rithm.
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can show (Hirsch and Fye, 1986) that only a single well-
defined discretization of the partition function needs to
be performed (given by the Trotter breakup). Green’s
functions corresponding to this discretized partition
function can be defined naturally (with the help of the
transfer operators). Then, the decoupling using the bi-
nary Ising field is performed, and Equation (110) ap-
pears as an (exact) Dyson equation relating different
discretized Green’s functions.
This section is intended mainly for the reader inter-

ested in a detailed understanding of the algorithm [this
reader should also realize that, in accordance with the
entire QMC literature, we define in this section temporal
Green’s functions without the minus sign in Eq. (8)]. In
order to make it self-contained, the section is accompa-
nied by Appendix B which contains mest derivations.
We temporarily introduce the Hamiltonian descrip-

tion of the local impurity problem, which permits a
local-in-time description of the partition function. In or-
der to preserve the standard notations for this model,
the impurity orbital (that is associated with a local de-
gree of freedom of the original lattice) will be taken as a
d orbital in this section. The conduction bath orbitals
are numbered from p52,.. . ,ns , and the impurity orbital
is equivalently denoted by a1s[ds, i.e., corresponds to
p=1. The Hamiltonian of a general Anderson impurity
model reads

H5 (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1ed(
s

ds
1ds1Und↑nd↓ . (113)

It is written as a sum of terms H=H0+H i, where H0 is
quadratic in the fermion operators:

H0[ (
p>2,s

ẽpaps
1 aps1 (

p>2,s
Vp~aps

1 ds1ds
1aps!

1~ed1U/2!(
s

nds , (114)

whereas H i is the interaction term:

H i5U@nd↑nd↓2
1
2 ~nd↑1nd↓!# . (115)

As in Sec. VI.A.1.a, the imaginary time interval [0,b]
is now discretized into L time slices, but on the level of
the original Hamiltonian H. With tl5lDt , with
l51,.. . ,L and Dt[b/L , the partition function is written
as

Z5Tr e2bH5Tr )
l51

L

e2Dt@H01Hi# (116)

Using the Trotter breakup: exp[−Dt(H0+H i)]
.exp(−DtH0)exp(−DtH i), Z can be approximated by
the discretized partition function:

Z.ZDt[Tr )
l51

L

e2DtH0
e2DtHi

. (117)

Green’s functions corresponding to ZDt can be defined
analogously, by using UDt[exp(−DtH0)exp(−DtH i) as
an evolution operator between time slices:

gp1 ,p2
Dt ~t l1,t l2![^ap1~t l1!ap2

1 ~t l2!&

5
TrUDt

L2l1ap1~t l1!UDt
l12l2ap2

1 ~t l2!UDt
l2

Tr UDt
L

~for l1.l2! (118)

(and similarly for l1,l2). It is important to understand
that the object gDt will be obtained essentially exactly:
The only systematic error of the QMC method will con-
sist in the replacement of exp(−DtH) by UDt as an evo-
lution operator between time slices. We are then ulti-
mately interested in the d-site Green’s function,
which we denote by a capital letter GDt(t l1,t l2)

[g1,1
Dt(t l1,t l2).
After the decoupling ofH i by the transformation Eq.

(102)

exp@2DtH i#5
1
2 (

s561
exp@ls~nd↑2nd↓!# ,

cosh~l![exp~DtU/2! (119)

and after inserting Eq. (119) into Eq. (117), the partition
function ZDt is reduced to

ZDt5
1
2L (

s1 ,.. . ,sL561
Zs1 ,.. . ,sL

Dt (120)

with

Zs1 ,.. . ,sL
Dt 5 )

s561~5↑ ,↓ !
Tre2DtH0

eV
s~s1!

3e2DtH0
eV

s~s2!•••e2DtH0
eV

s~sL!. (121)

In Eq. (121), the ns3ns matrix V
s(s) is diagonal with

eV
s~s !5S elss . . . . . . 0

.. . 1 .. . . . .

. . . . . . 1 .. .

0 .. . . . . 1
D . (122)

An important observation is that Zs1 ,.. . ,sL
Dt can be writ-

ten as Zs1 ,.. . ,sL
Dt 5 detO s1 ,.. . ,sL

(cf. Appendix B), with the
nsL3nsL matrix

O s1 ,.. . ,sL

5S 1 0 ••• 0 B~sL!

2B~s1! 1 ••• ••• 0

0 2B~s2! 1 ••• •••

••• ••• ••• 1 0

••• ••• ••• 2B~sL21! 1

D ,

(123)

where B(ss)[exp[−DtH0]exp[Vs(s)], and O has been
written as an L3L matrix of ns3ns matrices [O
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[ O $i l ,is%,$i l8 ,is8% with il51,.. . ,L and is51,.. . ,ns]. O is re-
lated to the discretized Ising-spin dependent Green’s
function by the identity (cf. Appendix B)

gs1 ,.. . ,sL
Dt 5O s1 ,.. . ,sL

21 . (124)

The matrix O s1 ,.. . ,sL
is large (of size nsL3nsL), but it

need not be manipulated explicitly, as will be shown be-
low.
The crucial fact noted by Hirsch and Fye is that the

Green’s functions for two different Ising spin configura-
tions, (s1 ,. . . ,sL) and (s18 , . . . ,sL8 ), are related to each
other by a Dyson equation (also derived in Appendix
B). Abbreviating g [ gs1 ,.. . ,sL

Dt and g8 [ gs18 , . . . ,sL8
Dt , etc, this

Dyson equation reads

g85g1~g21 !~eV82V21 !g8. (125)

This equation brings us back to the description of the
impurity problem given in paragraph (a). In fact, Eq.
(125) relates two Green’s functions g and g8 via a pro-
jection operator on the d site, namely [exp(V82V)21]

@exp~V82V !21#$i l ,is%,$i l8 ,is8%}d i l ,i l8d is,1d is8,1 . (126)

The presence of this projection operator comes from the
possibility of integrating out the conduction band. As a
consequence, the Dyson equation Eq. (125) directly re-
lates the Green’s functions on the d site one to another,
and this equation remains equally valid in the subspace
is51,is8 5 1. Hence, the d site Green’s functions
Gs1 ,.. . ,sL

Dt also satisfy

G85G1~G21 !~eV82V21 !G8, (127)

viewed as an L3L matrix equation. As a first applica-
tion of this Dyson equation, we use it to derive Eq.
(110), which follows by putting G8 [ Gs1 ,.. . ,sL

, G[G 0 .
Notice that the Dyson equation allows arbitrary values
for the auxiliary spins si .
Rearranging Eq. (125), it is straightforward to see that

Gs18 , . . . ,sL8
for an Ising configuration (s18 , . . . ,sL8 ) can be

obtained from Gs1 ,.. . ,sL
by inversion of an L3L matrix

A, defined in the following equation

AG85G , A[11~12G !@eV82V21#

~any two configurations!. (128)

In the special case in which (s18 , . . . ,sL8 ) differs from
(s1 ,. . . ,sL) by the value of a single spin, say sl , A takes
on a special form

A5S 1 0 A1l 0 •••

0 1 A2l ••• •••

••• 0 All ••• •••

••• ••• ••• 1 0

••• ••• ALl 0 1

D . (129)

In that case, detA 5 All 5 1 1 (1 2 Gll)@exp(Vl8
2Vl)−1]. ExpandingA

−1 in minors, it can easily be seen
that (A−1)lk=0 for kÞl . In that case Eq. (128) simplifies
to

Gl1l2
8 5Gl1l2

1~G21 ! l1le ll
V82V~All!

21Gll2

~single flip!, (130)

which is a special case of a Sherman-Morrison formula
(cf. Press et al., 1991). Equation (125) can also be used
to show that

det O 8

det O
5

det G
det G8

5det A511~12Gll!@exp~Vl82Vl!21# (131)

It is remarkable that all the Eq. (127)–(131) express ex-
act relations between discretized Green’s functions GDt.
The only error committed is related to the Trotter
breakup [cf. Eq. (121)]. Further comments on this dis-
cretization error can be found in Appendix B.

c. Implementation of the Hirsch-Fye algorithm

We can now assemble the essential ingredients of the
Hirsch-Fye algorithm:
(1) The calculation starts from the Green’s function

Gs1 ,.. . ,sL
Dt (t i ,t j), with all Ising spins formally set to

s1=•••=sL=0. In the LISA context, Gs150,.. . ,sL50
Dt (t i 2 t j)

is a discretized version G 0
Dt of the Weiss function G 0 ,

which generally has been determined in the previous it-
eration by the self-consistency condition (whose imple-
mentation will be discussed shortly). At the first step of
the iteration, an initial guess is made for G 0

Dt .
(2) The Green’s function Gs1 ,.. . ,sL

Dt (t l ,t l8) for an arbi-
trary initial configuration with s1561•••sL561 is cal-
culated by explicit inversion of the matrix A in Eq.
(128).
(3) From then on, configurations are visited using

single spin flips. In that case, Green’s functions can be
updated using Eq. (130) (every so often, one checks that
the precision has not degraded by doing a complete up-
date as indicated above).
(4) Physical Green’s functions GDt(t l2t l8) are deter-

mined as averages of the configuration-dependent func-
tions Gs1 ,.. . ,sL

Dt (t l ,t l8) with the Ising spin configurations
weighted according to Eq. (131).
The last point may benefit from some additional re-

marks. From Eqs. (118) and (120), it is easily seen that
the physical Green’s function is given by

GDt ,↑↓~t l ,t l8!

5
(s1 ,.. . ,sL

Ps561detO ~s!s1 ,.. . ,sLO
21~↑↓ !s1 ,.. . ,sL~t l ,t l8!

(s1 ,.. . ,sL
Ps561detO ~s!s1 ,.. . ,sL

(132)

[in order to be explicit, we have reintroduced the depen-
dence on physical spin in Eq. (132)]. If a complete enu-
meration of Ising spin configurations is possible, the
Green’s function can be readily evaluated using this for-
mula. It is advisable in this case (Georges and Krauth,
1993) to perform this enumeration using the so-called
Gray code, which allows enumerating all the configura-
tions of the Ising spins via single spin flips (cf. Appendix
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B). The Gray code enumeration of Eq. (132) produces
numerically exact results for GDt.
In a Monte Carlo simulation, Ising spin configurations

are generated with a probability proportional to
detO ↑ detO ↓, and the physical Green’s function GDt is
then given from Eq. (132) as an average of Gs1 ,.. . ,sL

Dt with
this measure. As usual, there is some freedom in the
choice of the Monte Carlo dynamics, which must, how-
ever, satisfy the detailed balance property:

P~s→s8!

P~s8→s !
5

PsdetO ~s!s8
PsdetO ~s!s

. (133)

Both the heat-bath and the Metropolis dynamics satisfy
this condition:

P~s→s8!5
PsdetO ~s!s8

@PsdetO ~s!s81PsdetO ~s!s#

~Heat bath!, (134)

P~s→s8!5H 1 if PsdetO ~s!s8.PsdetO ~s!s

PsdetO ~s!s8
PsdetO ~s!s

otherwise

(Metropolis). (135)

In both cases, the transition probability is a function of
the ratio of determinants, which can be computed easily
[cf. Eq. (131)] with a computational effort of O(1). If the
move s→s8 is accepted, Gs1 ,.. . ,sL

Dt is updated with a com-
putational burden of O(L2), using Eq. (130). The com-
putational effort is thus large for each accepted move
only. This fact renders the simulation rather insensitive
to the problem of small acceptance probabilities. Notice
also that the physical Green’s function GDt is translation
invariant in time GDt(t i ,t j)5GDt(t i2t j), a property
which the Ising spin dependent quantities Gs1•••sL

Dt lack.
This property can be used to reduce statistical noise. We
also note that the fermionic sign problem plays no role
in any of the calculations. The determinants in Eq. (133)
generally have the same sign, and their ratio can be in-
terpreted as a ratio of probabilities.

d. The LISA-QMC algorithm and a practical example

The Hirsch-Fye algorithm is remarkably stable, and a
full-size program (such as the program LISAQMC.F pro-
vided with this article) can be written relatively easily.
The only problem consists in reducing the statistical un-
certainties as much as possible, since GDt(t l2t l8) is
needed as an input for the self-consistency condition at
the next iteration step.
The numerical implementation of this condition—the

second building block of the full QMC-LISA
algorithm—is contained in the program LISASELF.F also
provided with this article. The self-consistency condition
is expressed in terms of the Fourier-transformed Green’s
functions G(ivn) and G 0(ivn). The direct Fourier
transform (FT)—say, calculated by a standard fast Fou-
rier transform (FFT) algorithm—is not applicable here,
since the periodicity of GDt(t l) would imply that its FFT

is a periodic function of ivn , rather than show the cor-
rect asymptotic behavior G(ivn);1/ivn for large argu-
ments. As detailed in Appendix B, it is more convenient
to calculate G(ivn) as the Fourier transform of a (linear
or spline) interpolation of GDt(t i), with due care paid to
the discontinuity of the Green’s function at t=0. Finally,
we also need to perform inverse Fourier transforms
(IFT), from the Matsubara frequency to imaginary time.
Again, we do not use the FFT for this purpose, since L ,
the number of t values, is usually very much smaller
than the number nmax of frequencies (typical values are
L;64,128 and nmax;213).
We have now described all the ingredients required to

set up the full QMC algorithm for the iterative solution
of the LISA equations. One loop of this iteration con-
sists in two steps. In the first step, the self-energy S(ivn)
is computed by performing the following operations:

G 0~t!→H ——→
Hirsch-Fye

G~t! →
FT
G~ ivn!

→
FT

G 0~ ivn!
J→S~ ivn!

[G 0~ ivn!212G~ ivn!21. (136)

The self-energy determined in Eq. (136) is then used for
the computation of a ‘‘new’’ Green’s function by evalu-
ating the Hilbert transform:

Gnew~ ivn!5E
2`

1`

de
D~e!

ivn1m2S~ ivn!2e
. (137)

From Gnew(ivn), the self-consistency loop is then closed
as follows:

Gnew~ ivn! ——→
G 0

21,new5G211S

G 0
new~ ivn! ——→

IFT
G 0

new~t!.

(138)

The reader may find additional technical comments in
the programs LISAQMC.F and LISASELF.F implementing
these various steps. Directions to obtain the FORTRAN
codes may be found in Appendix D.
The self-consistency loop in Eqs. (136) and (138) is

iterated until a converged solution (G ,G 0) is reached. It
is remarkable that the process actually converges in al-
most all cases that have been considered so far. Occa-
sionally, simple cycles appear. To avoid the cycles
it is generally sufficient to use [G 0(t)+G 0

new(t)]/2 instead
of G 0

new(t) in Eq. (138). A direct implementation of the
self-consistency loop does however not always converge.
A counter example is the Hubbard model in a magnetic
field close to the Mott transition. The solution to the
convergence problem in this case is described in Laloux
et al. (1994).
As a practical illustration of the LISA-QMC algo-

rithm, we invite the reader to perform the computation
of Green’s functions for the half-filled Hubbard model
with a semicircular density of states for U53(D/&)
and bD/&=6,8, . . . ,16. As will be discussed in Sec. VII,
for this choice of parameters solutions with and without
long range magnetic order may be obtained. To select
the paramagnetic solution it suffices to enforce the sym-
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metry of spin by averaging the spin up and down
Green’s functions entering the self-consistency condi-
tion. On the other hand, to obtain solution with mag-
netic order one must include a small difference in the
initial guess for G 0s.
Using the programs LISAQMC.F and LISASELF.F pro-

vided with this paper, it is a simple matter to reproduce
the results given in Fig. 11. Another simple calculation
consists in reproducing the results of Fig. 14, which will
be compared to the exact diagonalization results for the
same values of the parameters in Sec. VI.A.3.

e. Relationship with other QMC algorithms

Historically, the first applications of Quantum Monte
Carlo methods to impurity models did not use the
Hirsch-Fye algorithm, but the original method for per-
forming QMC calculations for lattice fermions, which is
due to Blankenbecler, Scalapino, and Sugar (1981). The
two methods are very closely related: The Blankenbe-
cler, Scalapino, and Sugar algorithm simply computes
the determinant of O s1 ,.. . ,sL

, as follows:

Zs1 ,.. . ,sL
Dt

5 )
s561

det@11B~ss1!B~ss2!. . .B~ssL21!B~ssL!#

[ )
s561

detWs1 ,.. . ,sL
~s!, (139)

which is further commented on in Appendix B. Simi-
larly, discretized Green’s functions can also be expressed
in terms of the matrices Bi :

Gs1 ,.. . ,sL
Dt ~t l ,t l8!5FB~sl!B~sl21!. . .B~sl811!

1

11B~sl8!. . .B~s1!B~sL!. . .B~sl811!
G
1,1

~ l>l8! (140)

[cf. Blankenbecler, Scalapino, and Sugar, (1981) for
l,l8]. The matrices in Eqs. (139) and (140) are of size
ns3ns , independently of the number of time slices, and
the determinant of Ws1 ,.. . ,sL

can be computed explicitly.
Notice that in this formulation Ws1 ,.. . ,sL

is a ns3ns ma-
trix, and the number of time slices is reflected solely by
the number of matrices appearing in the products of
Eqs. (139) and (140). Unfortunately, the product of ma-
trices B(s1)B(s2)•••B(sL21)B(sL) is usually very
badly conditioned. This generates numerical instabilities
that render the calculation of det(Ws1 ,...,sL

) difficult in
practice. As a result of the severe numerical instabilities,
the early attempts to treat the single impurity problem
with QMC methods (Gubernatis et al. 1986), which used
the Blankenbecler, Scalapino, and Sugar algorithm, have
met with little success. Note, however, that the more
recent ‘‘balancing schemes’’ for the Blankenbecler,

Scalapino, and Sugar algorithm (Sugiyama and Koonin,
1986; White et al., 1989) have to our knowledge not been
applied to impurity models, and could lead to an impor-
tant improvement.
In order to avoid misunderstandings, we clarify the

following: usual (finite-dimensional) QMC calculations,
which apply the Blankenbecler, Scalapino, and Sugar al-
gorithm, are haunted by two completely unrelated prob-
lems: the bad conditioning of the product of matrices
B(ss1)•••B(ssL), and the fermionic sign problem
@det(Ws1 ,...,sL

) may not always have the same sign]. In
impurity problems, one usually encounters neither of
these problems, since one is able to use a stable algo-
rithm (Hirsch-Fye), and since the fermionic sign prob-
lem is empirically found to play no role. There are
techniques—‘‘balancing schemes’’—which attempt to
solve the problem of the numerical instability.

FIG. 11. Self-consistent solution G↑(t) of the LISA equations
for the half-filled Hubbard model (with a semicircular density
of states of half-width D) at U53D/& and bD/&
=16,14,12,10,8,6 (bottom to top) obtained by the QMC method
with L=16. The self-consistency condition used in this calcula-
tion allows for antiferromagnetic order, which does appear for
b>8 [G↓(t)5G↑(b2t) has not been shown]. The paramag-
netic solution can also be continued to larger values of b, by
imposing G↓5G↑ and using the paramagnetic self-consistency
condition (the corresponding result at bD/&=32 is displayed
in Fig. 14).
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Rather than expand further on the relationship be-
tween the Hirsch-Fye and the Blankenbecler, Scalapino,
and Sugar algorithm, we illustrate the above consider-
ations on a toy example in which the Green’s function
Gs1 ,.. . ,sL

Dt is calculated using different approaches. To this
aim, a purely pedagogical test program QMCEXAMPLE.F
is provided with this paper (cf. Appendices B and D). In
this program, the case of an impurity coupled to a small
number of conduction electron orbitals (with given val-
ues of ẽp ,Vp) is solved by three possible routes (with
identical results):
(1) The original Blankenbecler, Scalapino, and Sugar

algorithm: In that case, the two different matrices Bi(s)
are calculated for s=61 and the Green’s function is ob-
tained by direct matrix multiplication [cf. Eq. (140)].
The eigenvalue spectrum of the large product of matri-
ces appearing in Eq. (139) is computed, and the numeri-
cal instabilities can be tracked explicitly.
(2) The explicit calculation of the matrix O : Here

detO and O −1 are computed by standard matrix inver-
sion. What looks like a very awkward method in this
case, in which the conduction orbitals are retained, has
in fact been used for calculations in lattice models be-
cause of its larger inherent stability (cf. Hirsch, 1988;
White et al., 1988 for an application to the two-
dimensional Hubbard model).
(3) The use of the Dyson equation, following Hirsch

and Fye.
Besides contributing to the reader’s understanding of

the auxiliary-field QMC method, and helping in the ac-
tual implementation of the Hirsch-Fye algorithm, the
test can also be used in order to illustrate the numerical
instabilities encountered in the Blankenbecler, Scala-
pino, and Sugar algorithm, which the Hirsch-Fye algo-
rithm overcomes.
Compared to the Blankenbecler, Scalapino, and Sugar

algorithm, the method of Hirsch and Fye thus not only
yields a very natural numerical implementation of the
impurity problem that integrates out the conduction
band electrons from the beginning (i.e., allows a general
Weiss field G 0). It also presents the enormous advantage
of being numerically stable at low temperature, and al-
lows the reaching of temperatures significantly lower
than the bandwidth. The remaining limitations of the
Hirsch-Fye algorithm can be described as follows:
(i) Only imaginary-time (or Matsubara frequency)

quantities can be obtained directly. Real-frequency cal-
culations require analytic continuation algorithms (cf.
Sec. VI.A.4).
(ii) The lowest temperatures that can be reached are

limited by the number of time slices that one can handle,
because the matrices to be multiplied become prohibi-
tively large. On a present-day workstation, the compu-
tations with, let us say, 256 time slices already present a
considerable investment in computer time. If the prob-
lem at hand is not altogether trivial, we may expect (and
notice in fact) that the finite Dt behavior is intricate,
which means that we have to choose Dt sensibly smaller
than 1 (cf. the discussion in Appendix B). Thus, even if
U is not too big, the range of accessible temperatures is

limited to temperatures of the order of b.30 or smaller
(in the units of the half-bandwidth D). We shall see in
the next section that very accurate descriptions of the
relevant impurity models, which are much more eco-
nomical in the number of parameters used (256 in the
present example), are possible. The condition for this is
that one uses an adaptive discretization, which may
change with the problem at hand, instead of a fixed grid,
as is done in the QMC procedure, in which t i5i•Dt .

2. Exact diagonalization method

In this section we review the implementation of meth-
ods that are based on the exact diagonalization of the
effective Anderson impurity Hamiltonian Eq. (113). In
this method, a rational approximation for G 0 is found.
This corresponds to approximating the Anderson impu-
rity Hamiltonian in Eq. (113) by a Hamiltonian made up
of a finite number of orbitals ns (in practice ns;5–12).
This Hamiltonian can then be diagonalized exactly using
standard algorithms. In order to avoid misunderstand-
ings, we emphasize from the beginning that the exact
diagonalization method reviewed here does not deal
with a finite-size lattice for the original lattice model: the
discretization concerns only the effective conduction
bath in the impurity-model formulation. As in all meth-
ods of solution of the LISA equations detailed in this
article, the infinite-size limit for the actual spatial lattice
is implemented from the start. For studies of d=` mod-
els through a truncation of the physical lattice into sub-
clusters, see the work of Gros et al. (1994). We note that
analytical approximations involving a continuous frac-
tional expansion of the Green’s function, somewhat
close in spirit to the Lanczos method detailed below,
have recently been considered by Hong and Kee (1995a,
1995b) and Kee and Hong (1995).
All the exact diagonalization algorithms reviewed

here to solve the LISA equations adopt the following
three basic steps:
(i) The Weiss function

G 0~ ivn!215ivn1m2E
2`

1`

dv8
D~v8!

ivn2v8
(141)

is approximated by a discretized version, for instance:

G 0
ns~ ivn!215ivn1m2 (

p52

ns Vp
2

ivn2 ẽp
(142)

corresponding to the Anderson impurity Hamiltonian
(113). It is also useful to think of this replacement as a
projection onto a restricted functional subspace (Fig. 12)
containing all functions of the form (142) (for a given
fixed ns). The different algorithms that have been used
differ only in the choice of the projection operator. From
the mathematical point of view one is dealing with the
problem of rational approximation of functions. There
are many different algorithms (Pade approximation,
Continuous fractions, minimization with respect to a
given norm) for carrying out the task, and for a small
number of approximants the quality of the results may
depend on the method used.
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(ii) The ns-orbital Hamiltonian (113) corresponding
to Eq. (142) is then diagonalized exactly, and the Green’s
function G(ivn) is computed.
(iii) The self-consistency condition Eq. (137) then

leads to a new function G 0 , which in turn is approxi-
mated by a function G 0

ns with a new set Vp , ẽp . The
process is iterated until a converged set of parameters is
reached. Notice that the bath Green’s function G 0 ob-
tained at the previous step of the iteration has no reason
to belong to this subspace in general, but that it can be
projected onto this subspace.
Let us discuss in more detail the various steps of this

algorithm, starting with the diagonalization of H. In
contrast to the Monte Carlo method, the exact diagonal-
ization algorithm provides a numerically exact relation-
ship between G 0

ns and G , since G is the true Green’s
function ofH. (Note also that the QMC does not in fact
determine the Green’s function of a specific Hamil-
tonian, but a related object GDt, which approaches a
Green’s function in the limit Dt→0). The states of the
finite-dimensional Hilbert space of H are given by

un1
↑ ,n2

↑ , . . . ,nns
↑ &un1

↓ ,n2
↓ , . . . ,nns

↓ & (143)

with n p
s=0,1 and (pn p

s[ns. H does not mix the dif-
ferent sectors (n↑,n↓). In consequence, all sectors can be
diagonalized independently. The full diagonalization is
feasible for values of ns of the order of ns=6 [which
leads to the diagonalization of a 4003400 matrix in the
sector (n↑=3, n↓=3)] or ns=7 (122531225). At finite tem-
perature, the Green’s function is calculated from the full
set of states ui& (with eigenvalues Ei) according to

G~ ivn!5
1
Z (

i ,j

~^iud1uj&!2

Ei2Ej2ivn

3@exp~2bEi!1exp~2bEj!# . (144)

Using the Lanczos algorithm (cf. Golub and Van Loan,
1983; Gagliano et al., 1986; Lin and Gubernatis, 1993),
the zero-temperature Green’s function of much larger
matrices can be computed (ns<12). The algorithm is

used in a two-step procedure. In the first step, the
ground-state wave function uC0&

n↑,n↓ is determined in
each of the sectors (n↑,n↓). This is done in the usual way
by picking an arbitrary vector up0& [within the sector
(n↑,n↓)], and diagonalizing H in the linear hull of
up0&,H up0&,...H

nup0&. In a subsequent application of the
Lanczos procedure, the initial vector is taken to be
up0&5d1ug.s.& where ug.s.& is the overall ground state of
the Hamiltonian. This second Lanczos procedure allows
the computation of the ground-state Green’s function,
which is written in two continued-fraction expansions
that describe the ‘‘particle’’ (v>0) and ‘‘hole’’ (v<0) ex-
citations:

G~v!5G.~v!1G,~v! (145)

with

G.~v!5
^g.s.udd†ug.s.&

v2a0
.2

b1
.2

v2a1
.2

b2
.2

v2a2
.2•••

,

G,~v!5
^g.s.ud†dug.s.&

v2a0
,2

b1
,2

v2a1
,2

b2
,2

v2a2
,2•••

. (146)

It is the parameters entering this parametrization that
are determined by the second Lanczos procedure, in a
way further detailed in Appendix C.
The most subtle aspect of these methods is in the

implementation of the projection of G 0 onto G 0
ns. The

following methods for carrying out this projection have
been proposed.
(i) A distance d between G 0 and the finite-orbital

function G 0
ns is chosen (Caffarel and Krauth, 1994), e.g.:

d5
1

nmax11 (
n50

nmax

uG 0~ ivn!212G 0
ns~ ivn!21u2 (147)

(where nmax is a very large upper cutoff). For the runs at
finite temperatures, the vn are of course taken to be the
Matsubara frequencies. Even at zero temperature, they
are taken to be the Matsubara frequencies associated
with a ‘‘fictitious’’ temperature, which serves as a low-
energy cutoff. The precise functional form plays a minor
role in this formula, but the crucial aspect of the defini-
tion is that the Green’s functions are compared with
each other at imaginary frequencies, and not on the real
axis. This is illustrated pictorially on Fig. 13. As a prac-
tical matter, the ‘‘projection’’ is performed using a mini-
mization algorithm. A modern conjugate gradient algo-
rithm has of course no trouble in locating the minimum
of the (2ns)-dimensional function in Eq. (147) for
ns&12. Using repeated projection operations, converged
solutions G 0

ns within the subspace (142) can be found.
The quality of the solution can be assessed from the
‘‘distance’’ between G 0 and the corresponding G 0

ns, and
from the behavior of this distance as a function of ns .

FIG. 12. The exact diagonalization method involves a projec-
tion of the bath Green’s function G 0 onto the space of func-
tions $G 0

ns% built out of ns orbitals. At self-consistency G 0
ns

5 G 0
8ns. The quality of the approximation can be inferred

from the distance that separates G 0
new and G 0

ns. This distance is
usually very small, and decreases approximately by a constant
factor as ns is incremented by one.
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This distance is an estimate of the distance between the
actual solution of the LISA equations (which is generi-
cally not part of the restricted subspace for a finite ns)
and the converged discretized G 0

ns that has been found
within the restricted subspace. This state of affairs is no
different in principle from the QMC method (in which a
converged solution is found for a given discretization
Dt). An illustration of this comparison will be given in
Appendix C.
A key to the success of this approximation lies in that

both the positions of the orbitals ẽp and the hybridiza-
tions Vp are free to adjust themselves. The exact diago-
nalization method is thus formulated on an adaptive
‘‘grid’’ in v, and shows the excellent convergence and
economy common to variable-grid methods. The power
of such methods is lost when d=` models are studied by
exact diagonalization of subclusters of the original lat-
tice itself (cf. Gros et al., 1994).
A second reason behind the fast convergence of this

algorithm is related to the fact that the poles of the func-
tion G 0 all lie on the real axis, i.e., far away from the
region in which we search to fit the functions. Neverthe-
less, we will show in Sec. VI.A.4 that the real-frequency
properties are very well represented.
(ii) An alternative projection method (Si et al., 1994),

which avoids the need for a minimization procedure in
several variables, is based on the continued-fraction rep-
resentation of a rational function (cf. Haydock, 1985).
The basic idea is to write the hybridization function of
the Anderson model as a sum of two continuous fraction
expansions (describing the positive and negative parts of
the spectral function) D> and D< and define the projec-
tion as the truncation of the continued fraction down to
a given level. Because of the well-known connection be-
tween the moments and the coefficients of the continued
fraction expansion this can be thought of as a ‘‘moment
by moment’’ systematic fitting on the real axis of the
one-particle spectral density:

D.~v!5
b0

.2

v2a0
.2

b1
.2

v2a1
.2

b2
.2

v2a2
.2•••

,

D,~v!5
b0

,2

v2a0
,2

b1
,2

v2a1
,2

b2
,2

v2a2
,2•••

. (148)

The Hamiltonian that needs to be diagonalized now has
a natural representation in the form of two one-
dimensional chains, with parameters as shown in Fig. 10
(the b i

./, are hopping elements between sites of the
chains, and the a i

./, are atomic energies of the sites). It
is easy to see that the two chains generate the Weiss field
precisely in the truncated continued-fraction form (with
nc the length of the chain, 2nc115ns):

H5(
s

(
r5. ,,

S (
a50

nc21

aa
r cas

r1cas
r 1b0

r~c0s
r1ds1H.c.!

1 (
a51

nc22

~ba
r cas

r1ca11s
r 1H.c.!D

1U~nd↑2
1
2 !~nd↓2

1
2 !. (149)

This algorithm can be most easily programmed in the
case of the z=` Bethe lattice at zero temperature, be-
cause in this case the self-consistency condition reads
D>=t2G. and D<=t2G,. Since the Green’s function is
obtained in a continued-fraction representation [cf. Eq.
(146)] the variables a and b are obtained without further
work. The self-consistency is thus translated into the
self-consistent determination of the parameters of a con-
tinued fraction representation of G 0

−1, or equivalently,
G .
In this case, the approximation consists in the trunca-

tion of the length of the continued fractions due to the
finite size of the effective electron bath that can be dealt
with. This approximation relies on the fact that the
continued-fraction representation captures exactly the
moments of the Hamiltonian, up to the order retained in
the continued fraction.
This method avoids the multidimensional fit of the

Green function but has the disadvantage of giving a high
weight to the high-frequency features. This is because
the low-energy features of the spectral function have a
very small contribution to the moments. For this reason,
this method is best adapted to the calculation of the
total energy (for which it gives very accurate results),
and particularly well suited for the study of insulating
phases.
(iii) A third implementation of the projection in the

LISA exact diagonalization procedure (which is a mix-
ture of the two previous ones) was introduced to de-
scribe a strongly correlated metal (Rozenberg, Moeller,
and Kotliar, 1994). An extra site at the Fermi energy is
added to the scheme (ii) in order to better represent the

FIG. 13. Schematic representation of the fitting procedure
used by Caffarel and Krauth (1994). The spectral density asso-
ciated with G 0

−1 is represented by a finite set of poles ( ẽp) and
weights (V p

2) on the real frequency axis, but the fitting proce-
dure involves a minimization of the distance between G 0(ivn)
and G 0

ns(ivn) on the imaginary frequency axis.
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low-frequency region. The hopping amplitude to this ex-
tra site td1/2 is calculated by a (single-parameter) mini-
mization of the expression:

x2~d!5 (
n ;vL,vn,vH

uGA~ ivn ,d!2G~ ivn!u2, (150)

where now G is the full Green’s function and
GA(ivn ,d)5(d/ivn)1(12d)Gn(ivn). Gn is the
truncated Green’s function to length n5ns/221 and vL
and vH are low and high energy cutoffs that can be de-
fined, for instance, as the lowest poles of G and Gn ,
respectively. d decreases as ns is increased and scales as
1/ns as ns→`. This is the behavior expected from all the
residues in the spectral representation of the hybridiza-
tion function. For the half-filled Hubbard model with a
semicircular density of states of half-width D , the quasi-
particle residue as a function of U obtained with this
procedure vanishes at a value Uc/D.3, which is very
close to the more precise value obtained from the pro-
jective self-consistent method.
The projection via the moments captures most easily

the high-energy features, and is quite insensitive to the
low-energy features. Conversely, the x2 fit is most sensi-
tive to the low-energy behavior of the spectral features
but seems to capture the high-energy features reason-
ably well when ns is not too small. Combination of the
two approaches optimized for a specific problem are
worth exploring.
Working codes for the solution of the LISA equations

by exact diagonalization are provided with this article
(cf. Appendix D). Two versions of the code are avail-
able:
(1) The program LISADIAG.F performs an explicit

(sector-by-sector) diagonalization of the Hamiltonian,
and constructs the Green’s function from the eigenval-
ues and eigenvectors according to Eq. (144). This is the
code that is used for calculations at finite temperature.
We will apply it in the next section for a detailed com-
parison with the QMC calculations. For ns=6, a single
loop of the program will take of the order of one minute
to run on a modern workstation (HP 735, or IBM
RS6000).
(2) The program LISALANC.F uses the Lanczos algo-

rithm in a two-step procedure.
Naturally, the two completely independent programs

agree essentially to machine precision at zero tempera-
ture for the values of ns which can be handled by the full
diagonalization. There is also very good agreement be-
tween the different ways of choosing the projection op-
erator to compute G 0

ns, given a G 0 .
Both codes can more easily be written than explained,

and we refer for details to the well-documented
FORTRAN programs. Compared to the Monte Carlo pro-
grams, they are much faster, and easier to run, since the
difficult convergence problems of the stochastic QMC
algorithm are absent.

3. Comparison of exact diagonalization
and Monte Carlo methods

In this section we compare in detail the QMC and
exact diagonalization algorithms. The section serves two
purposes:

(i) First, by actually comparing the methods, we lend
credibility to both. Both methods are able to produce
well-converged results which can be taken as they stand,
since the thermodynamic limit has been built in from the
start. This is quite an exceptional situation in current
fermionic many-body simulations. In comparing the two
methods we will furthermore be able to clearly expose
the advantages of the exact diagonalization algorithm.
(ii) Secondly, we also judge it important to address the

wider issue of the confidence limits with which various
quantities can presently be computed. Given the impor-
tance of the numerical results in the field (in discussions
such as the Mott transition, for example), a critical dis-
cussion of the numerical methods is needed.
We will first consider three quantities in the context of

the d=` single-band Hubbard model: the calculation of
imaginary-time (or Matsubara frequency) Green’s func-
tions at finite temperature, the calculation of the quasi-
particle residue Z , and the computation of susceptibili-
ties. The more difficult question of real-frequency
quantities will be dealt with in Sec. VI.A.4, where a criti-
cal discussion of the results that can be obtained from
maximum-entropy analytic continuations of very high
precision Monte Carlo data will be given. These calcula-
tions will be compared to the discrete spectra obtained
from exact diagonalization and to results of analytic ap-
proximations.
The most instructive comparison between the QMC

and exact diagonalization methods is in imaginary time,
where the QMC result is guaranteed to converge qua-
dratically to the exact result [with an error O(Dt2), cf.
Appendix B]. In Fig. 14 we present results (Caffarel and
Krauth, 1994) for the Green’s function G(t) of the half-
filled Hubbard model with a semicircular density of

FIG. 14. Comparison between the imaginary-time Green’s
functions G(t) obtained by the QMC and the exact diagonal-
ization methods, for the half-filled Hubbard model with
U53D/&, bD/&=32). From top to bottom: Dt=1,1/2,1/4. The
bottom curve is the exact diagonalization result for ns=5
(which cannot be resolved from Dt=1/4 on the scale of the
figure). The inset shows the scaling of the QMC results for a
fixed value of t=4 as a function of (Dt)2: the result converges to
a value which is readily obtained within exact diagonalization.
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states of half-width D at U/D=3/& and bD/&=32. The
figure shows calculations at Dt=(1,1/2,1/4) for the Monte
Carlo algorithm, and ns=(3,4,5) for the exact diagonal-
ization (in the paramagnetic phase). The excellent
agreement between the numerical results is immediately
apparent. To see the differences between the methods,
we consider a single t value, as done for t=4 in the inset
of the figure. The Monte Carlo results are plotted
against (Dt)2. It is evident from the figure that the exact
diagonalization results for ns=5 (which the reader can
himself reproduce within a few minutes on a regular
work station using the program LISADIAG.F) are more
precise than the Monte Carlo data at Dt=1/4 (L=128),
which necessitate a few days of computer time.
The comparison for imaginary frequencies gives a

very similar picture, of course with the additional ingre-
dient that, for v>1/(Dt), the Monte Carlo data contain
no more information. An illustration of this is shown for
the self-energy at finite temperature in Fig. 15, which
compares again QMC and the exact diagonalization
data. The low-frequency behavior of the self-energy is
important in order to determine the nature of the physi-
cal state (insulating or metallic), and a good quantitative
knowledge is crucial in order to be able to calculate the
quasiparticle residue Z , a zero-temperature quantity
defined from the retarded self-energy as Z−1

=1−] Re((v+i0+)/]vuv=0. A plot of this quantity for the
half-filled Hubbard model will be displayed in Sec. VII,
in connection with our discussion of the Mott transition.
The exact diagonalization method and the (much more
costly) QMC method converge to the same values of
S(ivn) down to the first Matsubara frequency at a given

finite temperature. Therefore, these values are known
up to a precision of the order of 0.3%. Notice however
that the error on the quasiparticle residue Z may be
much larger, since this is a zero-temperature quantity.
More precisely, the estimate z(T)5[1−Im((iv1)/v1]

21

suffers from additional systematic errors because at
finite temperature the analytic continuation of S(ivn)
has a branch cut at zero frequency. For the half-filled
Hubbard model, these systematic errors are very small
for small or intermediate U , but become larger as the
Mott transition is reached. Very close to the transition
point, more elaborate methods (Sec. VI.C) are needed
to access the true low-frequency regime.
In the process of an actual computation, it is very im-

portant to track the behavior of the exact diagonaliza-
tion algorithm. This is done by analyzing the effect of
the ‘‘projection’’ in going from G 0 to G 0

ns at the self-
consistent solution (cf. Fig. 12). The behavior of the mis-
match between these functions as a function of ns allows
us to evaluate whether we may trust the results (in the
QMC algorithm, we would check whether the data scale
properly with 1/Dt). In general, G 0 and G 0

ns differ the
most at small imaginary frequencies, closest to the real
axis and very quickly agree to machine precision for
larger values of iv . An actual example for this compari-
son is displayed and discussed in Appendix C.
From the discussion of this section, the superiority of

the exact diagonalization method over the Monte Carlo
method is evident. We would, however, like to mention
the very costly scaling of the exact diagonalization algo-
rithm with the size ns, if we think, e.g., of the obvious
generalization to the self-consistent embedded clusters,
which are the subject of Sec. IX. Even a small cluster,
with a few surrounding orbitals per cluster site, could
not possibly be treated with the exact diagonalization
method. It seems to us that the QMC method still has a
lot of untapped potential: It seems very likely that such
systems would most easily be treated by a combination
of the Hirsch-Fye algorithm and the original BSS
method, suitably stabilized (cf. the detailed discussion of
Sec. VI.A.1.e).

4. Spectral densities and real frequency quantities:
Comparison of various methods

In this section, we provide some guidelines concerning
the calculation of real-frequency quantities, such as
the one-particle spectral function r(v)
=−(1/p) ImG(v1i01) [or the response functions x9(v)
=−(1/p) Imx(v+i0+)]. The determination of such quan-
tities faces some limitations in both numerical methods
treated in Secs. VI.A.1 and VI.A.2. The most severe
ones are found in the case of the QMC method. There,
only imaginary time/frequency data are obtained di-
rectly, and one needs to perform an analytic continua-
tion from numerical data. In the exact diagonalization
method, r(v) is obtained directly, but in the form of an
approximation by a set of delta functions (since one is
using a finite number of orbitals in the effective bath).
Analytic approximation schemes are always best

FIG. 15. Finite-temperature self-energy as a function of Mat-
subara frequency, computed by exact diagonalization
(ns=4,5,6) and QMC Dt=1,1/2,1/4 for the half-filled Hubbard
model, with parameters as in Fig. 14.
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adapted to computing such quantities, but it is crucial to
be able to compare the results to the ones obtained nu-
merically. We present such a comparison here in the case
of the half-filled Hubbard model.
The standard algorithm for the analytic continuation

of QMC data is the maximum entropy method [Guber-
natis et al., 1991; see also Jarrell and Gubernatis (1996)
for a recent review]. One is trying to retrieve by inverse
Laplace transform the spectral function r(v) from the
imaginary-time Green’s function G(t), such that

G~t!5E
2`

`

dv
e2tv

11e2bv r~v!. (151)

The problem is ill-posed and altogether hopeless if the
data for G(t) are not of extremely good quality, and if
the errors and the correlations between errors are not
carefully taken into account (Gubernatis et al., 1991).
The interplay between statistical errors and systematic
(Dt-dependent) errors has also been much discussed in
the literature. In addition, the ‘‘guess’’ of the correct
density of states r(v) using Bayesian logic usually brings
in an a priori choice of a ‘‘possible’’ r(v), which gener-
ally requires an independent approximation method and
justification. In the LISA context, all these difficulties
are present, and also the additional one associated with
the self-consistency condition (G 0 itself is only known up
to numerical errors). We will see that a consistent deter-
mination of the spectral density is nevertheless possible
at sufficiently high temperature. However, in spite of the
tremendous effort which has been spent on maximum
entropy methods, it is still very difficult, if not impos-
sible, to predict—solely from Monte Carlo calcu-
lations—reliable densities of states at low temperature.
The difficulty arises from two different sources: (i)

analytic continuation to the real-axis of the exact
G(ivn) is a numerically ‘‘ill-posed’’ problem, which re-
quires a regularization (see, e.g., the discussion in Press
et al., 1991), and (ii) the numerical data for G(ivn) have
systematic and/or statistical errors. The first difficulty is
alleviated as the temperature decreases because more
information becomes available. Unfortunately, the er-
rors in the numerical data (for a given computation ef-
ficiency) increase as the temperature decreases.
It is very instructive to deal first with an example in

which the interplay between statistical and systematic
errors can be disentangled, and for which an exact de-
termination of r(v) can be achieved, up to discretization
errors only. This can be achieved by performing the
summation over Ising auxiliary spins using the full Gray-
code enumeration mentioned in the QMC section
above. In that case we are able to calculate the dis-
cretized Green’s function GDt(t) for up to L=18 slices
exactly, and produce a self-consistent solution to ma-
chine precision (the reader can reproduce these calcula-
tions with the QMC programs provided). Because of the
complete absence of statistical errors we can in this spe-
cial case perform a Padé transformation (Vidberg and
Serene, 1977) in order to compute r(v), thus avoiding
the difficulties of the maximum entropy method. In Fig.
16, we show the results of such a calculation for the

half-filled Hubbard model with b=10 and L=16 (i.e., Dt
=10/16) as a function of U=1,2,3,4,5 (in the units of
D/&). Without using any prior knowledge, the results
display correctly the buildup of the upper Hubbard band
associated with high-energy charge excitations at a scale
;6U/2 (cf. Sec. VII). The narrowing of the quasiparti-
cle peak around v=0 is also apparent. At larger U , a gap
opens, indicative of the Mott transition.
It is very interesting to notice that the result of such a

simple calculation agrees very well with the results of a
full-fledged maximum entropy calculation [along the
lines of Gubernatis et al. (1991)], as displayed in Fig. 17
at the same values of the physical parameters. Just to
indicate the enormous investment needed for the maxi-
mum entropy calculation, we indicate that the data were
obtained with 100 samples of GDt(t), which were ob-
tained by performing each time 105 sweeps of the Monte
Carlo algorithm (with L=64). It would be quite incon-
ceivable to redo this calculation at much smaller tem-
perature. In the same figure, we also show the results of
the iterated perturbative theory approximation (at finite
temperature), which will be discussed in Sec. VI.B.2. It
agrees very well with both the maximum entropy and
the complete enumeration results. Similar agreement
(between maximum entropy and iterated perturbation
theory) was obtained for the Hubbard model on a hy-
percubic lattice (Georges and Krauth, 1993; Jarrell,
1992), again at the rather high temperature accessible to
maximum entropy.
Finally, we consider (Caffarel and Krauth, 1994) the

spectral densities obtained by the exact diagonalization

FIG. 16. Finite-temperature spectral densities for the half-
filled Hubbard model with a semicircular density of states of
half-width D , obtained by the QMC method with L=16 time
slices at bD/&=10 and U&/D=1,2,3,4,5 (top to bottom). An
exact enumeration of the 216 Ising spin configurations has been
used, so that these results correspond to the exact analytic con-
tinuation of the discretized G(t) (for the specific value of Dt
=10/16).
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method, which consists of a large number of discrete d
functions, directly obtained at T=0. The one-particle
spectral densities r(v)=−ImG(v1ie)/p as obtained
from the Lanczos calculation (ns=10) are displayed to-
gether with the iterated perturbation theory approxima-
tion solutions (cf. Sec. VI.B.2) in Fig. 18 for different
values of U . In the Fermi-liquid regime the spectrum of
the finite-size Anderson model consists of a large num-
ber of peaks, while in the insulating phase we systemati-
cally observe a simpler structure made of only a few
peaks. As U is increased we see that r(v) develops three
well-separated structures: a central quasiparticle feature
and two broad high-energy satellite features correspond-
ing to the formation of the upper Hubbard band. At
large U , a gap is observed in good agreement with the
approximate iterated perturbation theory solution. In
the insets of Fig. 18 we also present the integrated single
particle density of states corresponding to Lanczos and
iterated perturbation theory solutions. The agreement
between both curves is seen to be very good, provided
we average over a frequency interval of v;0.5. This in-
dicates that the calculated spectral density contains
coarse-grained information about the exact solution, as
it should be. Due to the discrete nature of the Anderson
model used, the fine details of the spectrum are poorly
reproduced, but the agreement of the coarse-grained re-
sults with those obtained by the other methods is re-
markable.

5. Numerical calculation of susceptibilities
and vertex functions

In this short section, we explain how susceptibilities
and vertex functions can be computed numerically

within the various methods described above. The theo-
retical formalism relevant to this section is that of Sec.
IV. There, it was shown that q-dependent response func-
tions for the lattice model can be related, in the LISA
framework, to local response functions of the impurity
model through the formula [Eq. (69)]

x̃q
215x̃ loc

211x̃q
0212x̃ loc

021, (152)

in which x̃ loc is a local response function depending on
three frequencies. In the case of the Sz-Sz response
function, it reads

FIG. 17. For the same temperature bD/&=10 as in Fig. 16,
and U53D/&, this figure compares spectral densities ob-
tained by the iterated perturbation theory approximation (dot-
ted line), by the QMC method with L=64 supplemented by a
maximum entropy analytic continuation (full line), and by the
Padē interpolation of the exact enumeration data (Fig. 16)
with L=16 (dots).

FIG. 18. T=0 spectral density for the half-filled Hubbard
model at U&/D=2,3,4.8 (top to bottom), as calculated by the
exact diagonalization method (Lanczos at ns=10). Also shown
are the corresponding results from the iterated perturbation
theory approximation (on a different, arbitrary, scale). For a
comparison between the two results, the inset contains the in-
tegrated density of states *−`

v r(v8)dv8 in each case.
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x̃ loc~ in ,in8;iv!5
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4 E
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b

dt1E
0

b

dt2E
0
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dt3E
0

b

dt4e
in~t12t2!

3ein8~t42t3!eiv~t42t2!

3(
ss8

~21 !s~21 !s8^Tcs
1~t1!cs~t2!

3cs8
1

~t3!cs8~t4!&Seff. (153)

A local correlator such as
^Tcs

1(t1)cs(t2)cs8
1 (t3)cs8(t4)&Seff can be calculated nu-

merically within both the QMC and exact diagonaliza-
tion algorithms.
In the QMC method, Wick’s theorem applies once the

interaction term has been decoupled through the auxil-
iary Ising variables s1•••sL , so that:

^Tcs
1~t1!cs~t2!cs8

1
~t3!cs8~t4!&Seff

5gs1•••sL
s ~t2 ,t1!gs1•••sL

s8 ~t4 ,t3!

2dss8gs1•••sL
s ~t2 ,t3!gs1•••sL

s ~t4 ,t1!. (154)

The overlines denote an average over the Ising spin con-
figurations, with the measure given above. As in the case
of the calculation of Green’s functions from the QMC,
the physical four-point correlation function has symme-
tries that the Ising-spin dependent quantities lack. This
fact can again be used to reduce the importance of sta-
tistical noise.
In the exact diagonalization algorithm, a spectral rep-

resentation can be derived for such a correlator, by in-
serting a complete set of eigenstates. Since the full for-
mula is rather lengthy, we simply quote it for the local
spin correlator xloc(t)=^Sz(0)Sz(t)& [i.e., xloc(iv)
5(nn8x̃ loc(in ,in8;iv)]:

x loc~ iv!5
1
Z (

i ,j

u^iuSzuj&u2

iv1Ei2Ej
~e2bEj2e2bEi!. (155)

In this expression, Z is the partition function Z
[ ( ie

2bEi. At finite temperature in the exact diagonal-
ization algorithm, such an expression can be evaluated
explicitly. At T=0, the Lanczos procedure for the
Green’s function can be adapted to the calculation of
xloc , by starting the (second) Lanczos iteration with the
vector Szug.s.& instead of d

+ug.s.& (cf. Appendix C).
In Fig. 19, we show a comparison of the QMC and

exact diagonalization results for the local correlator
xloc(t) of the half-filled Hubbard model at U/D=3/&.
Again we notice the almost complete absence of
finite-ns effects, this time in a response function (at
lower temperature, however, these effects are more pro-
nounced for the susceptibility than for the Green’s func-
tions).
A word of caution is in order however. In the metallic

phase at T=0, the ground state of an impurity model
with a finite number of orbitals is a singlet, and there is a
finite gap to excited states, so that Eq. (155) should yield
a vanishing result at T=0 as long as ns is finite. The

correct method for obtaining the asymptotic ns→` re-
sult is to work at a small but finite temperature
T.T* (ns), where T* (ns) is roughly of the order of the
finite-size gap of the Anderson chain. As ns becomes
large, T* (ns) does vanish, but the limits T→0 and
ns→` should not be interchanged.
Let us finally consider the calculation of the static,

uniform susceptibility x=(qx(q,v=0)=]m/]huh50. This
quantity is chosen for illustrative purposes: similar con-
siderations would apply, e.g., to the staggered suscepti-
bility. There are essentially two ways to compute such a
quantity numerically:
(i) Compute the local response function

x̃ loc(in ,in8;iv) as described above, and perform the ma-
trix inversion required in (152). The x̃0 can be obtained
from the knowledge of the self-energy. A second matrix
inversion yields x̃q50(n ,n8,v 5 0), and finally x by sum-
ming this quantity over n,n8. This procedure has been
used, e.g., in the work of Jarrell (1992).
(ii) Solve the LISA equations in the presence of a

small uniform external field h , and compute the suscep-
tibility as a finite difference x.Dm/Dh . The presence of
the field enters the self-consistency condition (Sec. V),
resulting in a spin-dependent Weiss function G 0s in the
impurity effective action.
The second method is probably the simplest if one is

interested only in the zero-frequency static susceptibility.
The same method can be used for the static suscepti-

bility at other values of q, such as the staggered suscep-
tibility obtained by including a small staggered field.
Note that a similar procedure can be used to obtain the
local static susceptibility xloc=(qx(q), instead of the ex-
plicit evaluations described above. To do this, one has
first to compute the self-consistent solution G(h50),
G 0(h=0) at zero external field. In a second step, one

FIG. 19. Local spin correlation function xloc(t)
=^[n↑(0)2n↓(0)][n↑(t)2n↓(t)]& obtained by the QMC and
exact diagonalization methods for the half-filled Hubbard
model with bD/&=16 and U53D/&.
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then calculates the Green’s function G(h) while keeping
the Weiss field G 0(h=0) (this means that the calculation
is done for a spin-dependent chemical potential m→m
−hs). The local susceptibility is then given by

x loc5 lim
h50

@G↑~t50,h !uG 0~h50 !2G~t50,h50 !#/h ,

(156)

which corresponds to putting a magnetic field solely
onto the impurity site.
The finite-field method for calculating both local and

uniform susceptibilities is perfectly practical, especially
in the exact diagonalization framework, where the com-
plete absence of statistical noise allows calculations at
arbitrarily small h (such as h;1.0310−5, i.e., fully in the
linear regime). Equation (155) describes a linear-
response formula which is valid for any Hamiltonian. It
is numerically equivalent to the calculation at very small
magnetic field. This is of course only true if no further
approximations are introduced, as in the exact diagonal-
ization framework [where the sum over states in Eq.
(155) is actually computed]. In the Monte Carlo proce-
dure, an exact linear response formula to an external
field (at finite Dt) can be derived by expanding the
Dyson equation in a field h with respect to h at h=0. The
method using four-point functions agrees with the finite-
field procedure only in the limit of Dt→0.
In phases with broken symmetry (where there is a

finite effective field), it is again evident that the two pro-
cedures result in the same determination of the critical
temperatures whenever we are able to write a self-
consistency condition for the broken-symmetry phase.
An illustration of this point is the calculation of the Néel
temperature of the Hubbard model for the hypercubic
lattice obtained by Jarrell (1992) by following the first
method, and reproduced by Georges and Krauth (1993)
following the second one, and on the Bethe lattice cal-
culated by Rozenberg, Kotliar, and Zhang (1994) using
the first method and by Ulmke, Janis, and Vollhardt
(1994) using both methods.

B. Analytic methods

This article is not the place for an exhaustive review
of the rather large variety of analytical methods de-
signed to handle quantum impurity models. These meth-
ods can rather generally be divided into two broad
classes. On one side, we find several analytical tools for
the study of low-energy universal properties of these
models. These are important in the LISA context since
they allow for a classification of the various low-energy
behaviors that are a priori possible, on a qualitative
level. In Sec. VI.B.1 we simply give a list of such meth-
ods, with appropriate references. A second class of ana-
lytical methods is designed for a full quantitative solu-
tion of impurity models, including the calculation of
dynamical quantities such as the impurity Green’s func-
tion. This is precisely what is needed for a full quantita-
tive solution of the LISA equations. Unfortunately,
these methods are less numerous and are most of the
time approximate methods (which may become exact in

some extreme limit of the model). We briefly describe in
the following three of these methods that have proven
useful in the LISA context, namely, weak-coupling per-
turbation theory (leading to the iterated perturbation
theory approximation in the LISA context), the non-
crossing approximation, and the (high-temperature)
equation of motion method. The description of these
methods will be short, and the reader is directed to the
original references for a detailed exposition. Two useful
general sources on quantum impurity models are the re-
view article by Tsvelick and Wiegmann (1983), and the
recent book by Hewson (1993).

1. Exact methods at low energy

When faced with the LISA equations for a specific
problem, the first thing to attempt is a characterization
of the possible low-energy behaviors. In order to achieve
this, one starts by assuming a specific low-energy form
for the Weiss function G 0(ivn) [i.e., for the effective
conduction bath density of states D(v)]. Then, one uses
some of the various analytical tools listed below in order
to access the low-energy behavior of the impurity
Green’s function G(ivn) [i.e., of the spectral density
r(v)]. This is subsequently inserted into the self-
consistency condition in order to decide whether the ini-
tial assumption made for G 0 and D is indeed compatible
with the coupled LISA equations. One may also proceed
in the reverse order, namely postulate a low-energy be-
havior of G(ivn), insert it into the self-consistency con-
dition in order to find the corresponding behavior of G 0
and D, and then analyze the impurity problem at low-
energy in order to decide on the validity of the initial
ansatz for G . For a concrete illustration of this proce-
dure, the reader is directed to the qualitative analysis of
the LISA equations for the half-filled Hubbard model in
Sec. VII.C, and for the doped case in Sec. VII.H.1. Of
course, this analysis only results in a classification of the
low-energy behavior that is a priori possible, and does
not allow for a quantitative determination of the regions
of parameter space of the original lattice model that lead
to a specific, allowed low-energy behavior. In order to
achieve this, these low-energy methods must be com-
bined with some information on the high-energy physics.
This information must be obtained either from the nu-
merical methods described above, or from some quanti-
tative analytic approximation technique, like the ones
described below in Secs. VI.B.2 and VI.B.3.
The method to be employed for the analysis of the

low-energy problem depends crucially on the low-
energy behavior of the effective conduction bath density
of states D(v) parametrizing the Weiss function G 0 . Dif-
ferent fixed points (in the renormalization group sense)
will generally control the low-energy behavior of the im-
purity model for different low-frequency behaviors of D.
An important distinction is whether the effective bath
has states at low-energy [i.e., D(v) is nonzero in some
finite range around v=0], or whether D(v) displays a
gap.
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In the latter case, the low-energy analysis is generally
rather easy to perform. Since there are no low-energy
states in the effective bath, the expansion in the hybrid-
ization coupling the impurity to the bath (i.e., in D itself)
is free of singularities and can be used in order to under-
stand the low-energy physics. However, when the effec-
tive hybridization becomes comparable to the gap, this
expansion may break down, leading to a different low-
energy behavior.
The gapless case requires more sophisticated tech-

niques, since in that case the naive expansion in powers
of the hybridization generally has vanishing energy de-
nominators, leading to singularities. (Other expansions
may be regular though, and quite useful, such as the
weak-coupling expansion in powers of the interaction U
in the Anderson model case, cf. Sec. VI.B.2). For the
convenience of the reader, we provide here a list of tech-
niques that have proven useful in analyzing the low-
energy behavior of quantum impurity models with a
gapless conduction bath. No details or description of
these techniques is given here. Instead, for each of them,
the reader is directed to a short nonexhaustive list of
convenient references.
(i) Renormalization-group methods. The purpose of

these methods is to obtain the effective low-energy
theory by integrating out the high-energy parts of D(v)
in a recursive manner. This method can be used, for ex-
ample, as an analytical tool to handle the singular ex-
pansion in the hybridization. Standard references are
the papers by Anderson, Yuval, and Hamann (1970);
Anderson (1970); Haldane (1978a). The renormalization
group can also be extended beyond the weak coupling
regime using recursive numerical diagonalizations (Wil-
son, 1975; Krishnamurthy, Wilkins, and Wilson, 1980).
Extension of the numerical renormalization group to the
calculation of Green’s functions and dynamical quanti-
ties has been investigated by Frota and Oliveira (1986),
Sakai, Shimizu, and Kasuya (1989), and Costi and Hew-
son (1990). (See the book by Hewson, 1993, for addi-
tional references). Numerical renormalization-group
methods have been recently applied in the LISA context
by Sakai and Kuramoto (1994) and Shimizu and Sakai
(1995); see, however, the remarks below in Sec. VI.C.
(ii) Mapping onto Coulomb gas models. The expan-

sion in the hybridization (or in the spin-flip term for the
Kondo model) leads to a mapping of quantum impurity
models onto one-dimensional Coulomb gas models
(Anderson, Yuval, and Hamann, 1970; Haldane, 1978b).
For a general discussion of the Anderson impurity
model using this mapping, and an application in the
LISA context, see Si and Kotliar, 1993 (cf. Sec. VIII.D).
(iii) Bosonisation methods. When D(v) is constant at

low frequency, the effective conduction bath can be pa-
rametrized as a one-dimensional model. This maps the
quantum impurity model at low energies onto a (1+1)-
dimensional field theory model. Bosonisation methods
can be used in order to study this field theory model.
The Coulomb gas mapping mentioned above can also be
derived in this way (for an early study of the Kondo
model along these lines, see Schotte and Schotte, 1969).

For recent applications of bosonisation methods to
quantum impurity models, see, e.g., Emery and Kivelson
(1992); Sire, Varma, and Krishnamurthy (1993); Clarke,
Giamarchi, and Shraiman (1993); Sengupta and Georges
(1994); Georges and Sengupta (1995).
(iv) Special solvable points. The Coulomb gas repre-

sentation and the bosonization method can also be used
to derive explicit solutions at special values of the cou-
pling constants. These solvable points may have the uni-
versal low-energy physics of the infrared fixed point con-
trolling the model. Notorious examples are the Toulouse
point of the single-channel Kondo model (Toulouse,
1970) and the Emery-Kivelson point in the two-channel
case (Emery and Kivelson, 1992; see also Clarke, Gi-
amarchi, and Shraiman, 1993; Sengupta and Georges,
1995). For a recent application in the LISA context to
the mixed valence problem, see Kotliar and Si (1995).
(v) Large degeneracy and slave boson methods. Solv-

able limits of quantum impurity models can be found
when the spin degeneracy is extended from SU(2) to
SU(N) and the large-N limit is taken. These solutions
can be used as approximation techniques for the N=2
case, and will be described in more detail in Sec. VI.B.3
below. For reviews, see, e.g., Newns and Read (1987),
Coleman (1987), Bickers (1987), and Kotliar (1993a,
1994).
(vi) Conformal field theory methods. Recently, Affleck

and Ludwig combined the mapping onto a (1+1)-
dimensional field theory with the techniques of confor-
mal field theory in the presence of a boundary in order
to devise a new powerful approach for the study of low-
energy properties of quantum impurity models. See the
original articles by Affleck and Ludwig (1991).
(vii) Bethe-ansatz solutions. Exact solutions of quan-

tum impurity models can be found in the limit of a flat
conduction bath density of states with infinite bandwidth
[D(v)=const for −`<v<+`]. For a review, see Tsvelick
and Wiegmann, 1983; Andrei, Furuya, and Lowenstein,
1983. Because of this restriction, these solutions are of
little direct use in the LISA context, but they do yield
the generic low-energy physics corresponding to a regu-
lar gapless D(v). Furthermore, as observed by Georges
and Kotliar (1992) and Georges, Kotliar, and Si (1992),
the LISA equations for lattice models with a Lorentzian
noninteracting density of states D(e) (corresponding to
long-range hopping) map onto the integrable case.
All of these techniques have been mostly developed

in the case where the effective bath density of states is
constant and free of singularities at low frequency (0
<D(0)<`). It is conceivable that the LISA equations for
some problems lead to consider densities of states D(v)
having some low-energy singularity (e.g., vanishing or
diverging as a power law). Some of the above techniques
(such as renormalization-group methods) can be
adapted to such cases (see, e.g., Withoff and Fradkin,
1990).
In the next three sections, we turn to analytic approxi-

mation methods that lead to explicit expressions for the
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impurity orbital Green’s function at all energies, and can
be used for an approximate quantitative solution of the
LISA equations.

2. The iterated perturbation theory approximation

The first approximation method that we describe has
turned out to be very useful in investigating the half-
filled Hubbard model and the physics of the Mott tran-
sition (Sec. VII). This method relies on early weak-
coupling studies of the half-filled single-impurity
Anderson model (Yosida and Yamada, 1970, 1975; Ya-
mada, 1975; Salomaa, 1981; Zlatić, Horvatić, and
Sokcević, 1985). In these works, it was shown that the
second-order perturbation theory in U is a very good
approximation up to values of U/D(0).6. In particular,
it succeeds in capturing not only the quasiparticle
(Abrikosov-Suhl) resonance, but also the upper and
lower incoherent bands. Motivated by this observation,
Georges and Kotliar (1992) first studied the d=` Hub-
bard model by solving the effective impurity model us-
ing the second-order weak-coupling approximation to S
(for a given Weiss field G 0). Explicitly, one makes use of
the approximate form for the self-energy:

S~ ivn!.
U

2
1U2E

0

b

dt eivntĜ 0~t!3 (157)

in which the shift Ĝ 0
−1(ivn)[G 0

−1−U/2 has been made to
enforce particle-hole symmetry. A self-consistent solu-
tion (G ,G 0) is then found by going through the usual
iteration. This is the iterated perturbation theory (IPT)
approximation. The method is easily implemented by
using fast Fourier transforms on the Matsubara axis. At
zero temperature, it is most conveniently implemented
by working with real-frequency Green’s functions. Pro-
grams for both the zero-temperature and the finite-
temperature iterated perturbation theory approximation
are provided with this article (cf. Appendix D).
It was later realized (Zhang, Rozenberg, and Kotliar,

1993) that this method is actually not limited to moder-
ate couplings (at half-filling), but it also correctly repro-
duces the exact strong-coupling limit. This is easily
shown by considering the atomic limit D/U→0,
for which Ĝ 0

−1'ivn , and the exact Green’s func-
tion and self-energy read G(ivn)'

1
2 [1/(ivn1U/2)

11/(ivn2U/2)], S(ivn)'U/21U2Ĝ 0(ivn)/4. Hence,
Eq. (157) correctly reproduces this limit. Thus, the iter-
ated perturbation theory approximation provides an ‘‘in-
terpolation’’ scheme between the weak-coupling and
strong-coupling limits that are both captured exactly.
The fact that a weak coupling expansion happens to
work in the strong coupling case is a ‘‘fortunate’’ coinci-
dence. It no longer holds in the particle-hole asymmetric
case. At half filling, the iterated perturbation theory ap-
proximation displays a Mott transition of the paramag-
netic solution, as will be reviewed in detail in Sec. VII.
The iterated perturbation theory approximation gives
results in very good agreement with the QMC and exact
diagonalization results (except very close to the Mott
transition point), as reviewed in Sec. VI.A.4 and de-

tailed in the studies of Zhang, Rozenberg, and Kotliar,
1993; Georges and Krauth, 1993; Rozenberg, Kotliar,
and Zhang, 1994. The rationale behind this success is
that the Anderson impurity model is analytic in U irre-
spectively of the nature of the bath, so that it can be
treated perturbatively. The nonanalyticities (such as the
opening of a gap) stem from the lattice aspects of the
problem and are brought in by the self-consistency con-
dition. The value of the iterated perturbation theory ap-
proximation relies largely on its simplicity: it is much
easier to implement than the full numerical solution of
the model, and allows a fast scan of parameter space.
The iterated perturbation theory approximation has
been successfully extended to various other models in
the LISA framework, such as the Holstein model (Fre-
ericks and Jarrell, 1994a, 1994b; cf. Sec. VIII.E).
Various other methods based on weak-coupling ap-

proximations have been used in the literature for d=`
lattice models, namely (i) the direct weak-coupling per-
turbation theory to O(U2) in which the free local
Green’s function GU505D̃(ivn) is used in (157) in
place of Ĝ 0 (Schweitzer and Czycholl, 1991a); and (ii)
the ‘‘self-consistent’’ weak-coupling approaches, which
look for a solution with the interacting G replacing Ĝ 0 in
Eq. (152) (Müller-Hartmann, 1989b; Schweitzer and
Czycholl, 1991b), and has also been generalized to in-
clude bubble and ladder summations by Menge and
Müller-Hartmann (1991). [See Freericks (1994) for a
comparison of various methods.]
These approaches should not be confused with the

iterated perturbation theory approximation. All three
methods of course coincide for small values of U . How-
ever, only the iterated perturbation theory provides an
interpolation scheme between weak and strong coupling
at half-filling and therefore correctly captures the forma-
tion of the incoherent band and the physics of the Mott-
Hubbard transition. Specifically, it is found (Georges
and Kotliar, 1992) that already for intermediate values
of U , the metallic spectral density displays incoherent
features around energies 6U/2, corresponding to the
upper and lower Hubbard bands. As will be shown in
Sec. VI.A.4, these features are indeed present in the
spectral density obtained numerically (with which the
iterated perturbation theory approximation is in good
agreement). In contrast, they are absent from the self-
consistent weak-coupling approximations. Note that, for
intermediate coupling, these features are indeed pre-
dicted by the direct weak-coupling expansion. This re-
mark has been known for a long time in the context of
the single impurity Anderson model (for recent work,
see, e.g., White, 1992).
It would be quite interesting and of great practical use

to develop a reliable extension of the iterated perturba-
tion theory approximation away from half-filling. How-
ever, this is not so easy to achieve because naive exten-
sions of the original iterated perturbation theory method
do not automatically fulfill the Luttinger theorem away
from half-filling. Specifically, if one computes the total
density at T=0 from n/25* 2`

0 dvr(v), the iterated per-
turbation theory approximation for S does not satisfy in
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general the Luttinger condition, which reads in the
present case m−S(i01)=m0(n), where m0 is the noninter-
acting chemical potential corresponding to the density n .
Only at half-filling is this preserved by the iterated per-
turbation theory approximation.
Very recently, Kajueter and Kotliar (1995) proposed

an extension of the iterated perturbation theory for ar-
bitrary filling, using an interpolation scheme that be-
comes exact in various limits: (a) the atomic limit, (b) in
an expansion in powers of U up to second order in U (c)
at very high frequencies, and (d) at zero frequency. Fur-
thermore it fulfills the Luttinger theorem and is in excel-
lent agreement with exact diagonalization results.

3. Slave boson methods and the noncrossing approximation

Slave boson methods for quantum impurity models
can be viewed as a way of handling the singular pertur-
bation in the hybridization. When the spin degeneracy is
extended from SU(2) to SU(N) and the limit U=` is
taken, these methods can be viewed as a systematic re-
organization of this perturbation theory as a 1/N expan-
sion. In the following, we review two slave-boson ap-
proximations which differ from each other in that the
auxiliary boson is condensed or not. The former is
adapted to the low-energy description of a Fermi liquid
state but does not capture the high-energy incoherent
features to dominant order, while the latter (known as
the noncrossing approximation) provides a description
of these high-energy features but does not capture cor-
rectly the low-energy Fermi liquid behavior. The aim of
this section is to convey only the general spirit of those
methods, and mention their application in the LISA
context. The reader is directed to the articles of Bickers
(1987), Coleman (1987), Newns and Read (1987), and
Kotliar (1993a, 1994) for further details. Also, the equa-
tions are explicitly quoted only for the U=` single-
impurity Anderson model. Extension to the case of fi-
nite U is discussed in the papers of Kotliar and
Ruckenstein (1986) (for approximations in which the
bosons are condensed) and Pruschke and Grewe (1989)
(finite-U noncrossing approximation).
In the following, we deal with the single-impurity

Anderson model effective action (105), with the Weiss
function written in the form

G 0
21~ ivn!5ivn2ed2D̃~ ivn!, (158)

where D̃ is the Hilbert transform of the effective conduc-
tion electron bath density of states:

D̃~ ivn!5E
2`

1`

dv
D~v!

ivn2v
. (159)

We introduce a slave boson representation of the impu-
rity orbital. When the latter is empty, we represent it as
b+u0&, and when it is occupied by an electron of spin s,
we represent it as f s

+u0&, so that the original impurity
creation operator reads

ds
15fs

1b . (160)

The spin degeneracy is extended from SU(2) to SU(N)
(s=1, . . . ,N), and we concentrate on the U=` limit with a
constraint of no double occupancy (for N=2) general-
ized to

b1b1(
s

fs
1fs5

N

2
. (161)

With this representation, the effective action of the im-
purity model can be written in the form:

Seff5E
0

b

dtH(
s

fs
1@]t1ed#fs

1il~t!S (
s

fs
1fs1b1b2

N

2 D J
1

2
N E

0

b

dtE
0

b

dt8(
s

fs
1~t!b~t!

3D̃~t2t8!b1~t8!fs~t8! (162)

In this expression, l(t) is a Lagrange multiplier field as-
sociated with the constraint (161), over which it has to
be integrated.

a. Slave boson mean-field theory

The first approximation that we consider consists in
taking the N→` limit of this model. With the above
scaling, the model can be solved in this limit by a saddle-
point method, such that the Lagrange multiplier be-
comes static at the saddle point, and the boson field has
negligible fluctuations around a nonzero vacuum expec-
tation value (boson condensate):

^b&[AN/2r0 , ^il&5l0 . (163)

The pseudofermion Green’s function reads, at the saddle
point,

Gf~ ivn![^fs
1~ ivn!fs~ ivn!&

5
1

ivn2ed2l02r0
2D̃~ ivn!

, (164)

and the values of r0 ,l0 are determined by the following
saddle-point equations obtained by minimizing the free
energy associated with (162);

r0
2

2
1
1
b

SnGf~ ivn!eivn0
1

5
1
2
, (165)

l01
2
b

SnGf~ ivn!D̃~ ivn!eivn0
1

50. (166)

For a discussion of the solution of these equations, we
refer the reader to the articles by Newns and Read
(1987) and Kotliar (1993a, 1994). An extension of the
slave-boson mean-field theory to finite U has been given
by Kotliar and Ruckenstein (1986). In this case, the
saddle-point approximation is no longer controlled by a
large-N limit.
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Let us discuss the form of the physical impurity orbital
spectral function. The corresponding Green’s function
reads, from (160) and (164),

Gd~ ivn!5^b&2Gf~ ivn!5
Nr0

2/2

ivn2ed2l02r0
2D̃~ ivn!

.

(167)

Since D̃(v1i01).2ipD(0) for v.0, it is clear from
this expression that rd(v) basically consists of a (quasi-
particle) resonance centered on the effective d level
ed+l0 . The width of this resonance is of order pr 0

2D(0),
which must be interpreted as the low-energy coherence
scale (Kondo temperature). Below this scale, a Fermi-
liquid description of the low-energy properties is ob-
tained.
The overall spectral weight carried by rd(v) is given

(for N=2) by just r 0
2 . The missing spectral weight corre-

sponds to the high-energy incoherent features, which are
absent at the saddle-point level. These features are rein-
troduced when fluctuations around the saddle point are
taken into account (Bang et al., 1992; Castellani et al.,
1992; Raimondi and Castellani, 1993; Kotliar, 1993a,
1994).
When applied to the LISA equations for e.g., the U=`

Hubbard model or the U=` periodic Anderson model,
the slave boson mean-field theory simply amounts to
solve directly these lattice models in the simultaneous
d=` and N=` limits. For finite U , one can apply the
four-boson mean-field approximation of Kotliar and
Ruckenstein (1986) to the effective impurity model.
When combined with the LISA self-consistency condi-
tion, this leads to the same equations as the Gutzwiller
(1965) approximation applied directly to the lattice
model. We note in passing that, in the d→` limit, the
Gutzwiller approximation was demonstrated by Metzner
and Vollhardt (1989) to yield the exact average value of
various physical quantities in the Gutwiller wave func-
tion (i.e., ^GWFuOuGWF& can be computed exactly from
the Gutzwiller approximation in d=`). However, the
Gutzwiller wave function is still not the exact ground-
state wave function of the Hubbard model, even for
d=`.
One of the strongest motivations for the LISA ap-

proach, which is to treat the low-energy and incoherent
spectral features on an equal basis, is thus lost when a
slave boson mean-field approximation is made on the
LISA equations. It would be quite interesting however
to perform a full calculation of the impurity spectral
function to order 1/N and to use this calculation in the
LISA framework. The variational 1/N result of Gunnar-
son and Schönhammer (1983a, 1983b) could also be
used in the LISA context (Lelievre, Misguich, and
Georges, 1995).

b. The noncrossing approximation

In order to capture the high-energy features of the
spectral function at dominant order, the slave-boson ef-
fective action can be handled in a different manner. The
idea is to perform a particular resummation of the per-

turbative expansion in powers of the hybridization D̃
(which was scaled by 1/N in the effective action (162)
above. This resummation can actually be viewed as a
controlled procedure if the slave boson is supplemented
with an additional ‘‘color index’’ ba , a=1, . . . ,M and a
simultaneous N→`,M→` limit is taken withM/N fixed
(Newns and Read, 1987; Cox and Ruckenstein, 1993).
The resummation takes into account all self-energy dia-
grams for both the pseudofermion and the slave boson,
which contain no crossing of the internal propagators,
hence the name noncrossing approximation. These dia-
grams are depicted in Fig. 20. For references to the
rather vast literature on the noncrossing approximation
method, the reader is directed to the review article by
Bickers (1987).
Higher-order terms in this expansion have been re-

cently considered by Anders (1995), and have been
shown to substantially improve some of the noncrossing
approximation pathologies. Application of these meth-
ods to the LISA would certainly be of interest.
The equations corresponding to the resummation of

the diagrams in Fig. 20 are coupled equations for the
pseudofermion and slave boson Green’s functions and
self-energies. The latter are defined as

Gf~ ivn!s[
1

ivn2ed2S f~ ivn!
,

(168)
Gb~ ivm![

1
ivm2Sb~ ivm!

.

The U=` noncrossing approximation equations read

S f~t2t8!5
2
N

D̃~t2t8!Gb~t2t8!,

(169)
Sb~t2t8!52D̃~t82t!Gf~t2t8!,

and, using (160), the physical impurity Green’s function
is obtained as a convolution of the pseudofermion and
slave boson propagators:

Gd~t!5Gf~t!Gb~2t!. (170)

FIG. 20. Diagrams contributing to the pseudofermion and
slave boson self-energies in the noncrossing approximation re-
summation. Plain lines stand for the full fermion propagator,
dashed lines for the full boson propagator and dotted lines for
the hybridization function.
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These equations have been extended to the finite-U case
by Pruschke and Grewe (1989).
A low-energy analysis of the noncrossing approxima-

tion equations can be performed analytically at zero
temperature (Müller-Hartmann, 1984). A low-energy
scale is generated as before, which can be interpreted as
the Kondo temperature. Below this scale however, the
NCA equations fail to reproduce Fermi-liquid proper-
ties. For example, the spectral function develops a low-
frequency power-law singularity rd(v);const+v1/(N11)

+ ••• . This is not surprising in retrospect since the non-
crossing approximation equations become justified for a
large number of conduction electron channels and actu-
ally yield the exact non-Fermi liquid behavior character-
istic of multichannel models (Cox and Ruckenstein,
1993). Above this low-energy scale however, the non-
crossing approximation produces a reasonable descrip-
tion of the spectral features even in the one-channel
case, at least when the system is dominated by spin fluc-
tuations, i.e., not too far from the particle-hole symmet-
ric case.
The noncrossing approximation has been extensively

applied in the LISA context as an approximate way of
solving the effective impurity model, and as a default
model supplementing the maximum entropy analytic
continuation of QMC data. For applications to the
Anderson lattice, see the early works of Kuramoto
(1985) and Kim, Kuramoto, and Kasoya (1990). For ap-
plications to the Hubbard model, see the work of Jarrell
and Pruschke (1993a, 1993b) and Pruschke, Cox, and
Jarrell (1993a, 1993b). The plot in Fig. 21, reproduced
from the work of these authors, allows one to assess the
degree of validity of the noncrossing approximation for
the Hubbard model on the hypercubic lattice with U54t
(t ij5t/Ad) and a density n.0.94. It displays the quantity
z(T)−1=1−ImS(iv0)/v0 , where v0=pT is the first Mat-
subara frequency corresponding to the temperature T ,

and S is the self-energy. z(T=0) coincides with the quasi-
particle residue Z . In Fig. 21 the QMC and noncrossing
approximation results for this quantity are compared to
each other. It is seen that the noncrossing approximation
is reliable down to T/Tcoh.1/5, where Tcoh is the low-
energy coherence scale (estimated by the authors to be
Tcoh.t/8 in this case). Below Tcoh/5, the noncrossing ap-
proximation suffers from the low-energy singularities
mentioned above. It should also be noted that the non-
crossing approximation results for the spectral density of
the Mott insulating phase display unphysical peaks at
the gap edge.

4. Equations of motion decoupling schemes

Another method to obtain approximations of the
high-frequency parts of the impurity spectral function is
to use decoupling schemes for the hierarchy of exact
relations between Green’s functions resulting from the
equations of motion. These decoupling schemes can in
general be justified at sufficiently high temperature. At
low temperature, the resulting approximations suffer
from singularities reflecting the singularities in the per-
turbative expansions in the hybridization. These singu-
larities can be more or less severe depending on the
crudeness of the approximations made in the decoupling
scheme. Such approximation schemes have been used
for the single impurity Anderson model by various au-
thors (see, e.g., Appelbaum and Penn, 1969; Theumann,
1969; Lacroix, 1981). In the LISA context, they have
been investigated recently by Gros (1994).
Let us briefly describe the simplest nontrivial approxi-

mation obtained in this way. Decoupling the equations
of motion at second order yields the following approxi-
mation for the impurity Green’s function (Theumann,
1969):

G~ ivn!5
12n/2

G 0
21~ ivn!1

UP1~ ivn!

G 0
21~ ivn!2U2P3~ ivn!

1
n/2

G 0
21~ ivn!2U2

UP2~ ivn!

G 0
21~ ivn!2P3~ ivn!

.

(171)

In which the ‘‘self-energies’’ Pi read

P i~ ivn!5E
2`

1`

dv D~v!S 1
ivn2v

2
1

U12ed2ivn2v D
3Fi~v! (172)

with F1(v)5f(v), F2(v)512f(v), F3(v)=1, where
f(v) is the Fermi factor. The total density has to
be determined self-consistently from n/2
=−(1/p)*dv ImG(v1i01). In the T=0 limit, the P’s
have logarithmic singularities signalling the Kondo ef-
fect, which is not correctly treated at this level of ap-
proximation. Lacroix (1981) has shown how to extend

FIG. 21. Inverse of the temperature-dependent quasiparticle
weight as defined in the text for the Hubbard model on the

hypercubic lattice (t ij5
1
2Ad) with U=4, m=1 (n.0.94). The

circles are the QMC results and the squares the noncrossing
approximation. (From Pruschke, Cox, and Jarrell, 1993b.)
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this scheme so that a finite Kondo resonance is obtained
(which however does not have the correct Fermi-liquid
Lorentzian shape).
In the LISA context, the above equations have to be

supplemented with the self-consistency condition (and
ed set to −m), resulting in an integral equation for the
effective bath density of states D(v). This integral equa-
tion simplifies considerably at half-filling (particle-hole
symmetric case n=1, ed52U/2). Indeed, one then has
P1=P2=P3/2=D̃(ivn).
Specializing to the case of the half-filled Hubbard

model on the Bethe lattice with t ij5t/Az , for which the
self-consistency condition reads D̃(ivn)5t2G(ivn), a
closed algebraic equation for G is obtained:

3t4G324t2vG21S v22
U2

4
13t2DG2v50. (173)

This approximation was first obtained by Hubbard
(1964) and is known as the Hubbard III approximation.
It displays a Mott transition with the opening of a gap at
Uc52)t5)D (with D the half-width of the semicir-
cular density of states). At strong coupling, when the
gap is finite, or at high temperatures, the approximation
is reasonable, as we explain in more detail in Sec. VII.
Below Uc , however, the approximation fails to comply
with Fermi-liquid theory because the Kondo effect is not
properly described. Gros (1994) has studied the exten-
sion of this approximation to higher order in the decou-
pling scheme.

C. The projective self-consistent technique

As will be discussed in Secs. VII and VIII, many
strongly correlated electron systems exhibit a wide range
of energy scales. A clear example is the Hubbard model
for intermediate and large values of the interaction
(U>2.5D) and for zero and small doping d. This causes
unsurmountable problems to the fully numerical meth-
ods described above, which are unable to resolve the
interesting low-energy features at the heart of the strong
correlation problem. The difficulty can be traced to the
finite number of time-slices in the quantum Monte Carlo
method or the finite number of orbitals ns in the exact
diagonalization technique.
Let us take as a concrete example the Hubbard model

at half-filling, which will be studied in detail in Sec. VII.
The spectrum can be separated into three distinct fea-
tures (cf. Fig. 22). The high energy features are given by
the broad upper and lower Hubbard bands which are
centered at energies −m and U−m. At half-filling m=U/2,
such that they are centered symmetrically about the
Fermi level at 6U/2. These are well separated from the
narrow Kondo resonance at the Fermi level, the weight
of which, w , goes to zero at the metal-insulator transi-
tion. When w becomes small the LISA system of equa-
tions contains two vastly different energy scales, given
by the chemical potential m or U and the width of the
Kondo resonance, wD , rendering an accurate direct nu-
merical treatment impossible.

While the need to resolve features that are one hun-
dredth of the bandwidth may seem unnatural from the
point of view of numerical analysis it is in fact the com-
mon situation that one faces in condensed matter theory.
For the copper oxides, to give an example, the LDA
calculations, used to derive the one-band Hubbard
model, give a hopping integral of the order of 0.5 eV or
a full bandwidth of 2.0 eV. This means that the param-
eter D in the LISA equations is of the order of 10 000 K.
On the other hand, measurements on these systems are
performed in a temperature range from 1 to 600 K, that
is from 10−4 to 6310−2 of the natural energy scale. Band
structure calculations of transition metal oxides give
bands which are about 4 eV wide, i.e., D is about 20 000
K. Metal-insulator transitions occur below temperatures
of the order of 400 K, so the interesting physics takes
place at a scale which is 50 times smaller than the bare
energy scales of the problem. More examples are dis-
cussed in Sec. VIII.
In this section we will describe the projective self-

consistent method developed by Moeller et al. (1995)
which exploits the natural separation of scales present in
the strong correlation problem by eliminating the high-
energy degrees of freedom, thereby reducing the full
problem to an effective low-energy problem containing
only one scale, which can be tackled numerically. From
the resulting effective problem one can obtain low-
frequency (temperature) results, as well as information
about the critical behavior of the models considered.
The self-consistent projective method has been success-
fully used in the study of the Mott transition problem,
but we stress that the main ideas are widely applicable
because the method only relies on the separation of
scales.
Before discussing the formalism in detail, it is useful

to make an analogy with the Landau-Ginzburg theory.

FIG. 22. Schematic plot of the conduction bath spectral func-
tion and impurity orbital configurations, illustrating the sepa-
ration of energy scales at half-filling, close to the Mott transi-
tion.
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Faced with a complicated problem, say a magnetic phase
transition in a metallic alloy, such as Fe, a time-honored
strategy is to divide the problem into two parts. To dis-
cuss the problem at low energies one writes down an
effective Landau theory which contains the low-energy
degrees of freedom (coarse-grained slowly varying mag-
netization), which one treats with the methods of statis-
tical mechanics. All the details of the high-energy phys-
ics, i.e., the band structure of the alloy, the relevant
atomic configurations, and their interactions, are buried
in a few coefficients, the parameters of the Landau-
Ginzburg Hamiltonian. A complete first-principles solu-
tion for a given material requires a microscopic calcula-
tion of these coefficients, which is sometimes done using
LDA methods.
It is worthwhile to stress several points of this meth-

odology: (1) much can be learned from the existence of
a Landau expansion without having to calculate the
Landau coefficients, (2) the techniques used in the solu-
tion of high-energy part and the low-energy part are
completely different and (3) a direct numerical solution
of the Schrödinger equation for an iron alloy in order to
understand the critical behavior near the ferromagnetic
phase transition is computationally intractable. These
points are relevant to the application of the LISA to
complex problems.
The projective self-consistent method applies this phi-

losophy to the solution of the LISA equations. An early
discussion of these ideas in the context of a two-band
model with repulsive interactions can be found in the
work of Kotliar and Si (1993; see also Si and Kotliar,
1993) and illustrates the main points. In that work, the
model with repulsive interactions is mapped onto an im-
purity model where the charge-charge interactions be-
tween the different bands is repulsive. The high-energy
part of the spectral function of the impurity and of the
bath has a rich structure, and is treated by using a ca-
nonical transformation in order to obtain a low-energy
effective problem, a new impurity model with a feature-
less bath and attractive charge-charge interactions. At
this point, a renormalization group can be used to ana-
lyze the low-energy behavior leading to various possible
phases (including non-Fermi liquid ones), as described
in Sec. VIII.D.
In this section, we shall take the Hubbard model as an

example in order to demonstrate how the self-consistent
projective technique enables us to analyze the physical
properties near the Mott transition. The emphasis is on
the methodology since many of the results on this physi-
cal problem are reviewed in detail in Sec. VII.
As one can see immediately from the spectral func-

tions described in Fig. 22, the separation of scales im-
plies that it is possible to decompose the single particle
density of states r(e) of the Hubbard model into high-
and low-frequency parts as r(e)=rlow(e)+rhigh(e). Given
the mapping of the Hubbard model onto a single impu-
rity Anderson model,

HAM5(
ks

ekcks
† cks1(

ks
Vk~fs

† cks1H.c.!1Unf↑nf↓

2m~nf↑1nf↓! (174)

with self-consistency condition (on the Bethe lattice):

(
k

4Vk
2 /D2

ivn2ek
5G@ek ,Vk#~ ivn!, (175)

we separate the variables ek and Vk describing the self-
consistently determined bath of conduction electrons
into sets $ek ,H ,Vk ,H%, corresponding to the high-energy
features, and $ek ,L ,Vk ,L%, containing the low-energy
states, up to a cutoff given by the Kondo temperature or
renormalized Fermi energy of the Hubbard model and
carrying spectral weight

w54/D2 (
kPlow

Vk ,L
2 . (176)

In order to eliminate the high-energy degrees of free-
dom, we first separate the impurity Hamiltonian HAM
into three parts as

HAM5Hat1Hb1HM . (177)

Hat is given as

Hat5Unf↑nf↓2m~nf↑1nf↓!1 (
ske high

Vk ,H~cks
1 fs

1H.c.!1 (
ske high

ek ,Hcks
1 cks , (178)

and can be thought of as an Anderson impurity in a
semiconductor.

Hb5 (
ke low,s

wD ẽkcks
1 cks (179)

describes a narrow band of low energy conduction elec-
trons. Since the energy will turn out to be of order wD ,
we have introduced dimensionless, rescaled variables
ẽk5e k

L/(wD). The hybridization HM with the low-
energy electrons is given by

HM5AwD(
s

~cLs
† fs1H.c.! (180)

with

cLs[ (
ke low

2Ṽkcks (181)

the local low-energy conduction electron operators nor-
malized to have canonical anticommutation relations

$cLs ,cLs
† %51, (182)

$cLs ,cLs%5$cLs
† cLs

† %50. (183)

Again we have rescaled the Vk ,L by introducing the
variables Ṽk5Vk ,L/(AwD), which shows explicitly the
perturbative nature of the hybridization with the low-
energy band.
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As long as we are in the local moment regime of the
impurity model, which is the case in the critical region,
the contribution to the Hamiltonian containing the high-
energy states, Hat , has low-lying spin doublet ground
states us&Hat

with energy E g.s.
at . These are separated by a

gap of order m from the high-energy excited states.
These high-energy states (i.e., the excited states of Hat)
are denoted by ua&. This structure of the eigenstates can
be seen most clearly by considering the impurity orbital
only. The four possible states in that case are the dou-
blet ground state us& 5 fs

† u0& with energy −m, which is
well separated from the doubly occupied and empty
states, f↑

†f↓
†u0& and u0&, at energies U−2m and 0, respec-

tively. Hybridizing the single impurity with lower and
upper Hubbard bands simply renormalizes the states by
‘‘dressing’’ them with particle-hole excitations without
altering their transformation properties, i.e. the ground
state remains a degenerate doublet.
Upon diagonalizing Hat , the full Hamiltonian can

thus be decomposed into a high-energy sector spanned
by the states $ua&Hat

% ^ $ucL&%, a low-energy sector
spanned by the states $us&Hat

% ^ $ucL&% with $ucL&% states
of the c ks

L , and mixing terms. In order to obtain the
effective low-energy Hamiltonian, we perform a canoni-
cal transformation which eliminates the coupling be-
tween high- and low-energy subspaces and thus yields
effective low- and high-energy Hamiltonians. We thus
have to find an operator S mediating the transformation
such that the effective Hamiltonian is block diagonal,
i.e., find S such that

Heff5e2SHAMe
S5HL

eff1HH
eff , (184)

where the subscripts L and H denote operators acting
exclusively on the low- and high-energy sectors, respec-
tively. Notice that if the high-energy band just consisted
of a single state, this procedure would be equivalent to a
Schrieffer-Wolff canonical transformation (Schrieffer
and Wolff, 1966). The information about virtual excita-
tions to high- and low-energy sectors is contained in the
coefficients of the terms in the effective low- and high-
energy Hamiltonians, respectively.
Having decomposed the Hamiltonian into high- and

low-energy parts, we now have to transform operators,
Green’s functions, and self-consistency condition accord-
ingly. The canonical transformation amounts to a basis
transformation, implying that all operators have to be
transformed correspondingly. In particular, for the deter-
mination of the single-particle Green’s function, we ob-
tain projected fermion operators

Fs[Fs
LL1Fs

LH1Fs
HL1Fs

HH[e2Sfse
S. (185)

The superscripts HL and LH denote operators connect-
ing low- and high-energy sectors. The low- and high-
energy contributions to the Green’s function assume the
form (at zero temperature):

G low~ ivn!5K Fs
LL 1

iv2~HL
eff2Eg.s.!

Fs
LL†L

1K Fs
LL† 1

iv1~HL
eff2Eg.s.!

Fs
LLL (186)

and

Ghigh~ ivn!5K Fs
LH 1

iv2~HH
eff2Eg.s.!

Fs
†HLL

1K Fs
LH† 1

iv1~HH
eff2Eg.s.!

Fs
HLL . (187)

The self-consistency condition (175) can then be de-
composed as

05(
k

Vk ,L
2

ivn2ek ,L

2t2 G low@ ivn;VkL,ekL,VkH,GkH# , (188)

05(
k

Vk ,H
2

ivn2ek ,H

2t2 Ghigh@ ivn ;VkL,ekL,VkH,GkH# . (189)

Equations (188) and (189) are strictly equivalent to
the original problem and form the basis of the self-
consistent projective technique.
The crucial observation is that a detailed analysis of

the low-frequency region equation (188) depends only
weakly on the high-energy part of the spectrum, which
enters only through a few numerical coefficients, as we
will see in the case of the Hubbard model. Conversely,
the high-energy part Eq. (189) only depends weakly on
the low-energy part.
There are therefore various levels on which the equa-

tions can be studied. In the model at hand, in which the
physics is well understood, a quantitative analysis of the
equations has been achieved. In less well understood
problems one can start by making crude approximations
for the high-energy parameters and obtain qualitative in-
sights by investigating the corresponding consequences
for the low-energy part. Again it is illuminating to make
the connection to a Landau-Ginzburg approach, in
which qualitative insights about a physical problem can
be gained without knowledge of the numerical details.
The formalism described so far is quite general, and

can in principle be carried out numerically by solving for
the canonical transformation S along the lines of (Kut-
zelnigg, 1982; Kutzelnigg and Koch, 1983). Alternatively
one can use semianalytic schemes to get insight into the
nature of the problem. For example, replacing the insu-
lator by a three-site system turns out to be within 15%
of the more precise results.
Near the transition it turns out that one can use the

weight w as an expansion parameter anticipating that it
will be of order Uc2U in the half-filled case or umc−mu
for large U away from half-filling. The canonical trans-
formation is then implemented in a systematic expan-
sion in the ‘‘small parameter’’ w and in D=U2Uc or
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m−mc . Then one solves for w as a function of D and
shows that this expansion is justified, i.e., that it is van-
ishingly small as D approaches zero. This procedure is
standard in singular perturbation problems.
The generator of the canonical transformation has an

expansion

S5AwS ~1 !1w3/2S ~3 !1••• . (190)

The expansion yields

HL
eff5wHL

eff~1 !1w2HL
eff~3 !1••• , (191)

HH
eff5HH

eff~0 !1wHH
eff~1 !1••• (192)

and

Fs
LL5AwFs

LL~1 !1w3/2Fs
LL~3 !1••• , (193)

Fs
LH5Fs

LH~0 !1wFs
LH~2 !1••• , (194)

Correspondingly the high- and low-energy contribu-
tions to the Green’s function can be expanded order by
order as

Ghigh~ ivn!5Ghigh
~0 ! ~ ivn!1wGhigh

~1 ! ~ ivn!, (195)

G low~ ivn!5wG low
~1 ! ~ ivn!1w2G low

~2 ! ~ ivn!. (196)

Depending on whether we are interested in the prop-
erties at the critical point, at which w→0, or near the
critical point, we have to solve the self-consistency equa-
tions (188) and (189) to order w or to order w2. For the
purpose of determining the low-energy parameters, the
expansion in w of the high-energy Green’s function is
regular.
For the determination of the physical properties at the

critical point coming from the metallic side, for which
w→0+, it is clearly sufficient to treat equations (188) and
(189) to lowest order in w , i.e., we have to solve

05(
k

Vk ,H
2

ivn2ek ,H
2t2Ghigh

~0 ! ~ ivn!, (197)

which to lowest order is independent of w , and

05(
k

wD2Ṽk
2

ivn2ek ,L
2t2wG low

~1 ! ~ ivn!. (198)

We thus see that—as is intuitively obvious—at the criti-
cal point the high-energy contributions are unaffected by
the presence of the vanishing Kondo resonance at low
energies. One can therefore proceed in two steps:
(1) One solves the lowest-order high-energy part de-

scribed by the Hamiltonian HH
eff(0) self-consistently. For

a vanishing quasiparticle weight this simply corresponds
to the solution to the insulating problem. This yields the
lowest-order coefficients entering the low-energy Hamil-
tonian wHL

eff(1) and thus determines the low-energy
properties.
(2) One can then proceed by solving the low-energy

part at the critical point self-consistently using the coef-
ficients obtained from the insulating solution.

Note that to lowest order the low-energy spectral weight
w drops out in Eq. (198), so that this equation is soluble

only at the critical point. This is analogous to the famil-
iar case of a Landau-Ginzburg expansion, where in or-
der to obtain a finite value for the order parameter in a
second-order phase transition, terms in the Landau
functional to fourth order need to be retained. It is also
typical of bifurcation problems where the values of the
control parameter at which a bifurcation takes place ap-
pears as a solvability condition.
To determine the behavior of w as a function of D one

has to solve the equations

05(
k

Vk ,H
2

ivn2ek ,H
2t2Ghigh

~0 ! ~ ivn!2wt2Ghigh
~1 ! ~ ivn!,

(199)

05(
k

wD2Ṽk
2

ivn2ek ,L
2t2wG low

~1 ! ~ ivn!2t2w2G low
~2 ! ~ ivn!

(200)

simultaneously. While this is a possible procedure, it is
desirable to have, at least in principle, a procedure in
which one is left with a single equation for the low-
energy part only. This can be achieved in the following
way.
(1) We first solve the self-consistent insulator, i.e., the

high-energy part to lowest order in w , as done when
determining the properties of the model at the critical
point.
(2) One now has to determine how the high-energy

Vk ,H are modified if the low-energy Vk ,L change. This
can be done in principle by expanding Eq. (189) around
the insulating solution. Let us define

L@Vk ,L ,ek ,L ;Vk ,H ,ek ,H ;D#

[(
k

Vk ,H
2

ivn2ek ,H

2t2Ghigh@ ivn ;Vk ,H ,ek ,H ,Vk ,L ,ek ,L# , (201)

where D is the formally small parameter determining the
proximity to the critical point and is thus given as
D=U2Uc at half-filling and as D=m−mc for finite doping.
In terms of L the high-energy part of the self-
consistency then simply reads

L@Vk ,H ,ek ,H ;Vk ,L ,ek ,L ;D#50. (202)

Close to the transition this can be expanded to lowest
order in w and one obtains

05
]L

]~Vk ,L
~1 ! Vk8,L

~1 !
!
Vk ,L

~1 ! Vk8,L
~1 !

1
]L

]ek ,L
~1 ! ek ,L

~1 !

1
]L

]Vk ,H
~2 ! Vk ,H

~2 ! 1
]L

]ek ,H
~2 ! ek ,H

~2 ! 1
]L

]D
D . (203)

Solving this matrix equation for e k ,H
(2) and V k ,H

(2) by per-
forming a matrix inversion in principle gives explicit ex-
pressions for the V k ,H

(2) and e k ,H
(2) in terms of the low-

frequency parameters Vk ,L and ek ,L .
(3) We can now insert these expressions into the low-

frequency self-consistency condition (188) and thus ob-
tain the correct high-energy coefficients (to order w) as
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functions of the low-frequency parameters. The low-
frequency condition is now consistently given to order
w2 and can be iterated until convergence is achieved.
This gives the consistent solution of the low-energy
problem to order w2.
We now provide the explicit form of the operators en-

tering the effective low-energy problem to the order
which is necessary to derive the results quoted in Sec.
VII. Notice that since the canonical transformation is
formally very similar to the Schrieffer-Wolff transforma-
tion, the expressions are very similar to the results of the
cited paper.
The low-energy Hamiltonian is given by

H low
eff~1 !5D(

ks
ẽknks2

D

4 (
s

J'~1 !X s̄scLs
† cLs̄

2
D

4 (
ss8

Jss8
~1 ! Xs8s8nLs (204)

with

J'~1 !5DS ^s̄ufs

1

H2Eg.s.
at f s̄

† us&Hat

2^s̄uf s̄
† 1

H2Eg.s.
at fsus&HatD (205)

and

Jss8
~1 !

5DS ^s8ufs

1

H2Eg.s.
at fs

† us8&Hat

2^s8ufs
† 1

H2Eg.s.
at fsus8&HatD . (206)

We have used the standard Hubbard operators defined
as Xss8=us&^s8u acting on the low-energy impurity dou-
blet.
Due to the fact that the system is rotationally invari-

ant, we observe that J↑↑5J↓↓ and J↑↓5J↓↑ . Defining the
quantities

Jpot
~1 ![J↑↑

~1 !1J↑↓
~1 ! (207)

and

Jspin
~1 ! [J↑↑

~1 !2J↑↓
~1 ! (208)

and again using rotational invariance we see that, fur-
thermore J spin

(1) =J'(1) such that the Hamiltonian can be
written as a Kondo Hamiltonian. In contrast to the more
common definition of J , we have defined J such that it is
negative, i.e., Jspin<0, and the low-energy effective
Hamiltonian reads

H low
eff~1 !5D(

ks
ẽknks2

D

2
Jspin

~1 ! SW •sWL

2
DJpot

~1 !

8
~nL↑1nL↓! (209)

with SW 51/2Sss8Xss8sW ss8 the spin-
1
2 operator acting on

the us&at states and sWL51/2Sabc La
1 sW abcLb the local spin

operator of the low-energy conduction electrons. Notice
that the identity X↑↑1X↓↓=1 has been used to simplify
the result.
The explicit expressions for the F s

LL operators de-
scribing the low-energy excitations to lowest order are

F↑
LL~1 !52

1
2
(~J↑↑

~1 !X↑↑1J↑↓
~1 !X↓↓!c↑1J'~1 !X↓↑c↓),

(210)

or, in terms of J spin
(1) and J pot

(1) , as

Fs
LL~1 !52

1
4
(Jpot

~1 !1Jspin
~1 ! ~Xss2X s̄s̄!)cs

2
1
2
Jspin

~1 ! X s̄sc s̄ . (211)

Using these results we now write explicitly Eq. (198)
(with F[FLL(1)):

(
k

D2Ṽk
2

ivn2ek ,L
5t2G low

~1 ! ~ ivn!

52t2E
0

b

dt eivnt^T(F~t!F†~0 !)&Heff
.

(212)

The condition for a vanishing resonance, i.e., for the
critical point, is most easily obtained by noticing that at
high frequencies Eq. (212) simplifies to 1 5 $Fs

(1),Fs
(1)†%

which is easily evaluated to give

152
1
2 F Jspin~1 !2S ^SW •sWL&2

3
8 D 2

Jpot
~1 !2

8 G . (213)

Here ^ & denotes the expectation value of an operator in
the ground state of (209). For a given value of U , this
equation can be satisfied for only two values of the
chemical potential, m c

6(U), the position of the reso-
nance at infinitesimal particle and hole doping, respec-
tively. In the half-filled case m=U/2, Jpot=0, and Eq. (213)
determines the value of Uc2. The instability of the insu-
lator can be analyzed by adding an infinitesimal pertur-
bation to the insulating state (Fisher, Kotliar, and
Moeller, 1995). All the previous analysis carries through
for the insulator, except that now ^SW •sWL&=0, since an
infinitesimal Kondo coupling cannot induce a finite cor-
relation. The criteria for the destruction of the insulator
becomes [dropping from thereon the superscript (1)]:

15
1
2 S 38 Jspin

2 1
1
8
Jpot
2 D . (214)

Notice that at half-filling, Jpot is zero because of particle-
hole symmetry, and the equations for Uc1 (instability of
the insulator) and Uc2 (instability of the metal) become,
respectively,

15
3
16

Jspin
2 , (215)

15
1
2
Jspin
2 S 382^SW •SW L& D . (216)
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Comparing these two equations, and noting that
^SW •sWL&<0 and that Jspin(U) decreases as U increases,
proves analytically that Uc1,Uc2 (Fisher, Kotliar, and
Moeller, 1995). This is in complete agreement with the
numerical work described in Sec. VII which tackles the
full problem numerically with exact diagonalization
methods (Rozenberg, Moeller, and Kotliar, 1994).
The projective method described in this section is a

particular implementation of the idea of renormaliza-
tion. It was taylored specifically to solve the LISA equa-
tions. It is worth stressing the reasons why the renormal-
ization group invented by Wilson to solve the single
impurity Kondo model does not work for the impurity
models arising in the context of the LISA applications.
The essential insight is that because of the self-
consistency conditions the energy scales of the impurity
are also the energy scales of the bath. The impurity
models are thus in an intermediate coupling regime. The
logarithmic discretization of Wilson’s mesh and the Wil-
son recursion procedure was intended to deal with a
mismatch in energy scales, typical of a weak-coupling
situation in which the Kondo coupling was much smaller
than the conduction electron bandwidth. Notice that,
even in the Kondo model, the calculation of Green’s
functions is not possible to very high precision for all
energies (cf. Hewson, 1993). In the LISA context, we are
not interested in the low-energy eigenvalue spectrum
(which we can calculate using the renormalization
group), but in the whole single-particle excitation spec-
trum (Green’s function), which is fed back into the low-
energy sector via the self-consistency condition. It is thus

not surprising that a direct numerical renormalization
group approach in the LISA context is faced with rather
serious difficulties. For early attempts to implement the
Wilson scheme to solve the LISA equations see Sakai
and Kuramoto (1994) and Shimizu and Sakai (1995).

VII. THE HUBBARD MODEL AND THE MOTT TRANSITION

In this section, we review the application of the LISA
method to the physics of the Hubbard model. We shall
be concerned with the phase diagram, thermodynamics,
one-particle spectra, and two-particle response func-
tions. The control parameters are the temperature T ,
and the interaction strength U/t . In order to reveal the
full variety of possible behavior, we shall also consider
models with different degrees of magnetic frustration.
This introduces a third parameter, which can be for ex-
ample the ratio of nearest-neighbor to next-nearest
neighbor hopping amplitudes t1/t2 . As a function of
these parameters, the Hubbard model at half-filling has,
within the LISA, four possible phases: a paramagnetic
metallic phase, a paramagnetic insulating phase, an insu-
lating antiferromagnetic phase, and (in the presence of
magnetic frustration) an antiferromagnetic metallic
phase. The effect of doping away from half-filling will
also be considered towards the end of this section (Sec.
VII.H).

A. Early approaches to the Mott transition

We shall put a special emphasis in this section on the
transition between the paramagnetic metal and the para-

FIG. 23. Experimental phase diagram for the
metal-insulator transition in V2O3 as a func-
tion of doping with Cr or Ti and as a function
of pressure (after McWhan et al., 1973). See
also recent results by Carter et al. (1992,
1993) that report a low temperature metallic
phase with antiferromagnetic order in
V22yO3.
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magnetic insulator. This is an example of a Mott transi-
tion, i.e., of a metal-insulator transition driven by the
strength of electron-electron interactions in a homoge-
neous system. It is realized experimentally in three-
dimensional transition metal oxides, such as V2O3, and
can be driven by varying pressure, temperature, and
composition (for general references, see, e.g., Mott,
1990; Tsuda et al., 1991). Figure 23 reproduces the ex-
perimental phase diagram found for V2O3 by varying
these parameters (McWhan et al., 1973). Since the early
ideas of Mott (1949, 1956, 1961), this transition has been
the subject of numerous experimental and theoretical
investigations. From a theoretical point of view, several
ideas have been put foward that we shall briefly review.
They are rather different from one another and corre-
spond to the various possible ways of approaching the
transition in the phase diagram of Fig. 23, coming from
different phases (Fig. 24). The LISA provides for the
first time a unified framework in which the various
phases (and their relative stability) can be studied within
a single model, so that the validity of the previous ap-
proaches can be assessed and put in perspective.
Early work of Hubbard (1964) provided a description

of the transition rather close in spirit to Mott’s original
views. He attempted to give an effective band descrip-
tion of the correlated system (Fig. 25), and proposed
that the original density of states (of half-width D) gets

split for large U into a lower Hubbard band (corre-
sponding to holes, or empty sites) and an upper Hub-
bard band (corresponding to doubly occupied sites). For
large U these bands are separated by a gap of order
U22D . As U is reduced there is a critical value of U
where the two bands merge again and a metal is recov-
ered. Hence, the Hubbard picture of the metal-insulator
transition is associated with the closure of a gap. This
description obviously relies on the large U insulating
limit as a starting point, and as we shall see is actually
qualitatively valid there. It fails however to provide a
description of the metal consistent with Fermi-liquid
properties.
On the other hand, Brinkman and Rice (1970), build-

ing on the work of Gutzwiller (1965), started from the
metallic phase which they described as a strongly renor-
malized Fermi liquid with a reduced low-energy scale
(or effective Fermi energy). This scale is of the order of
ZD , where Z is the quasiparticule residue, related to the
quasiparticle effective mass in this approach by
m* /m51/Z . As the interaction strength increases, this
energy scale vanishes at a critical value of the interaction
UBR , with Z}(UBR−U). In this framework, the metal
insulator transition is driven by the localization of the
Fermi-liquid quasiparticles, m* /m}1/(UBR−U)→`, and
their disappearance in the insulator. This approach is a
consistent low-energy description of the strongly corre-
lated metal, but does not account for the high-energy
excitations forming the Hubbard bands, which should be
present already in the metallic state. Furthermore, it
gives an oversimplified picture of the insulator, which is
caricatured as a collection of independent local moment
with no residual antiferromagnetic exchange and an in-
finite susceptibility at T=0. The Brinkman-Rice ap-
proach can be justified formally using slave bosons
methods (Kotliar and Ruckenstein, 1986). In that case,
the Hubbard bands and incoherent features, absent at
the saddle point level, are reintroduced by the fluctua-
tions around the slave-boson condensate, and the disap-
pearance of the resonance coincides with the closing of
the gap (Castellani et al. 1992; Raimondi and Castellani,
1993; see also Kotliar, 1993a).
Finally, early arguments by Slater (1951) focus on the

possibility of long-range antiferromagnetic order at low
enough temperature. At weak coupling, this possibility
is confirmed (on bipartite lattices) by a simple Hartree-
Fock approximation. In this picture, the driving force
behind the metal-insulator transition is the doubling of
the unit cell which makes the band structure of the sys-

FIG. 24. Classic theories for the description of the various
phases.

FIG. 25. Schematic evolution of the density
of states with U in the Hubbard picture.
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tem that of a band insulator. For strong coupling, Ander-
son’s superexchange mechanism yields an antiferromag-
netic exchange J}t2/U , and suggests again an
antiferromagnetic ground state. The high degeneracy of
the paramagnetic Mott insulating state indeed suggests
that some kind of long-range order should take place at
low temperature. This is indeed observed experimen-
tally, for instance in the case of V2O3 (McWhan et al.,
1973).

B. Models and self-consistent equations

Throughout this section, we shall deal with the single-
band Hubbard model at or close to half-filling. Since the
chemical potential at half-filling is m=U/2, it is conve-
nient in this section to define the Hamiltonian as

H52 (
^ij& ,s

t ij~cis
1 cjs1cjs

1 cis!1U(
i

~ni↑2
1
2 !~ni↓2

1
2 !

(217)

and to make use of a shifted chemical potential Dm[m
−U/2. Various forms of the hopping term t ij and various
lattices will be considered. For simplicity, all the cases
that we shall consider in this section correspond to a
semicircular density of states:

D~e!5
2

pD
A12~e/D !2. (218)

Other density of states have also been investigated in
the literature. In order to compare results obtained with
different densities of states in a qualitative manner, it is
useful to normalize U to an effective half-bandwidth
(typical kinetic energy):

W52S E
2`

1`

e2D~e!de D 1/2. (219)

For the semicircular density of states (218), this defini-
tion is chosen so that W5D . The half-filled Hubbard
model with a Gaussian density of states (corresponding
to a d=` hypercubic lattice) has been studied by Jarrell
(1992), Georges and Krauth (1992, 1993), and Pruschke,
Cox, and Jarrell (1993a, 1993b). The diamond lattice has
been studied by Santoro et al. (1993). The overall struc-
ture of the spectral function far from the Mott transition
turns out to be rather independent of the precise form of
the density of states. For density of states that have (un-
physical) tails up to infinite energies, such as the Gauss-
ian one, the precise nature of the Mott transition is how-
ever modified as compared to a bounded density of
states. In particular the insulator is not expected to dis-
play a sharp gap. A detailed analysis of the critical prop-
erties of the transition in those cases has not yet been
performed.
In this section, the impurity model effective action will

be written as

Seff52E
0

b

dtE
0

b

dt8(
s

cs
1~t!G 0s

21~t2t8!cs~t8!

1UE
0

b

dt@n↑~t!2 1
2 #@n↓~t!2 1

2 # . (220)

As defined here, the Weiss function has been shifted by
G 0

−1→G 0
−1−U/2 in comparison to the previous sections.

The simplest realization of the density of states (218)
is the Bethe lattice with connectivity z→`. In order to
mimic a varying degree of magnetic frustration, we shall
allow for a nearest neighbor hopping t1/Az and a next-
nearest neighbor hopping t2/z (Fig. 26). In the absence
of symmetry breaking, the self-consistency condition
reads (dropping spin indices)

G 0
215ivn1Dm2~ t1

21t2
2!G~ ivn!, (221)

and the half-width of the noninteracting density of states
reads

D52At121t2
2. (222)

In the antiferromagnetic Néel phase, where the A and B
sublattices magnetize in opposite directions, the self-
consistency equations read

G 0As
21 5ivn1Dm2t1

2GBs2t2
2GAs ,

G 0Bs
21 5ivn1Dm2t1

2GAs2t2
2GBs (223)

with the additional relations GAs5GB2s (and similarly
for the G 0’s). Note that, in the paramagnetic phase, ev-
erything depends only on the magnitude of t 5 At121t2

2,
but that the tendency to form a magnetically ordered
phase depends crucially on the ratio t1/t2 (measuring the
degree of magnetic frustration).
The same semicircular density of states is also realized

in models defined on a fully connected lattice of N sites
with some randomness on the hopping t ij . A first ex-
ample is the fully frustrated model (Georges and
Krauth, 1993; Rozenberg, Kotliar, and Zhang, 1994) de-
fined by

HFF52t (
i ,j51,N

e ijc is
†cjs1U(

i
~ni↑2

1
2 !~ni↓2

1
2 !.

(224)

FIG. 26. Schematic representation of the Bethe lattice with
nearest-neighbor hopping t1/Az and next-nearest neighbor
hopping t2/z .
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Summation over repeated spin indices is assumed. Here
eij are quenched independently distributed Gaussian
random variables with zero mean and a variance
^e ij

2 &51/N . This model has the same density of states as
the Bethe lattice with nearest neighbor hopping t , and
thus has identical one-particle properties in the high-
temperature disordered phase. However, it is not ex-
pected to display Néel order at any finite temperature.
Finally, we can also vary the degree of frustration for
such models by studying a two sublattice frustrated
model (TSF), defined by (Rozenberg, Kotliar, and
Zhang, 1994)

HTSF52t2 (
i ,jPA or B

e ijc is
†cjs2t1 (

iPAjPB
e ijc is

†cjs

1U (
iPAøB

~ni↑2
1
2 !~ni↓2

1
2 !. (225)

The self-consistency equations for this model are the
same [Eqs. (223)] as for the Bethe lattice with two types
of hopping described above. The unfrustrated case is re-
covered for t2=0 and the fully frustrated case corre-
sponds to t15t2. Figure 27 displays a schematic repre-
sentation of the TSF model. Notice that the
Hamiltonians (224) and (225) contain randomness but
that the single-particle properties are self-averaging in
the N→` limit. The single-particle Green’s functions are
the same for any typical realization of the random vari-
ables eij . This is due to the scaling chosen for eij . For the
same reason, no spin-glass order is expected.
The available techniques for the study of the coupled

dynamical mean-field equations have been reviewed in
Sec. VI. The first applications of the QMC method (Jar-
rell, 1992; Rozenberg, Zhang, and Kotliar, 1992;
Georges and Krauth, 1992) were carried out at tempera-
tures much higher than the metal-insulator transition
critical temperature (see below), but did display a clear
crossover from metallic to quasi-insulating behavior as a
function of U . The existence of a Mott transition in the
half-filled case was demonstrated on the basis of analytic
arguments (Rozenberg, Zhang, and Kotliar, 1992;
Georges and Krauth, 1992). Later, the Mott transition
was investigated in great detail with a variety of meth-
ods: QMC was used in conjunction with the iterated per-
turbation theory approximation introduced by Georges
and Kotliar (1992; see Sec. VI.B.2 and Georges and
Krauth, 1993; Zhang, Rozenberg, and Kotliar, 1993; Ro-
zenberg, Kotliar, and Zhang, 1994), or in conjunction
with maximum entropy and the noncrossing approxima-
tion (Jarrell and Pruschke, 1993a, 1993b; Pruschke, Cox,
and Jarrell, 1993a, 1993b). Exact diagonalization meth-
ods (Caffarel and Krauth, 1994; Rozenberg, Moeller,
and Kotliar, 1994), and the projective method of Sec.
VI.C (Moeller et al., 1995) played a key role in recent
work. Approximate continuous fraction resummations
of the Green’s function (Hong and Kee, 1995a, 1995b;
Kee and Hong, 1995), equation of motion decoupling
schemes (Gros, 1994), and diagonalizations of lattices
involving successive shells of neighbors (Gros et al.,
1994) have also been used. An important point here is
that no single technique can be pointed out as the most
suitable one, but the insights obtained on the Mott tran-
sition problem rely on a combined use of different tech-
niques in order to elucidate the different aspects of the
physics. In this section, we shall put the emphasis on the
physics rather than on the techniques. The reader is di-
rected to Sec. VI for a detailed discussion of the capa-
bilities and range of applicability of the various methods.

C. Existence of a Mott transition at half-filling

We first present a simple qualitative analysis of the
zero-temperature behavior of the dynamical mean-field
Eqs. (220) and (221) in the paramagnetic phase at half-
filling (Dm=m−U/2=0). This analysis establishes the exist-
ence of a T=0 metal-insulator transition as U is in-
creased.

1. Metallic phase

In the limit of small U, the self-energy of the Ander-
son impurity model is a smooth function of frequency
that can be computed perturbatively in the interaction.
At half-filling, particle-hole symmetry implies
S(i01)5U/2. The self-consistency condition then im-
plies that as long as one is in the Fermi-liquid phase the
value of G(i01)52/(iD) is independent of the interac-
tion strength, and similarly G 0

−1(i01)5iD/2. Since the
latter is the low-frequency limit of the hybridization
function of the Anderson impurity model (220) and
(221) we have a standard Anderson model describing an
impurity embedded in a bath of conduction electrons

FIG. 27. Schematic construction of the two-sublattice fully
frustrated model (TSFF). The fully connected, fully frustrated
sublattices A (white sites) and B (black sites) at the top of the
figure are combined into a single lattice through the interlat-
tice hopping elements t1 .
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with a nonsingular density of states at the Fermi level
D(v=0)=D/2p. As the interaction U is increased, we ex-
pect the Kondo effect to take place, leading to a singlet
nondegenerate ground state of the impurity model. The
low-frequency behavior of S(v) is that of a local Fermi
liquid:

ReS~v1i01!5U/21~121/Z !v1O~v3!, (226)

ImS~v1i01!52Bv21O~v4!. (227)

The quasiparticle residue Z defines the renormalized
Fermi energy of the problem:

eF*[ZD (228)

This is also the Kondo temperature of the impurity
model. Since the self-energy is momentum independent,
Z directly yields the effective mass of quasiparticles
(Müller-Hartmann, 1989c):

m*

m
5
1
Z

512
]

]v
ReS~v1i01!uv50. (229)

All these quantities can be computed quantitatively us-
ing the techniques described in Sec. VI. A plot of the
self-energy obtained within the iterated perturbation
theory approximation is given in Fig. 28 for two values
of U representative of the metallic regime. The quasi-
particle residue Z (obtained by exact diagonalization) is
plotted in Fig. 29 as a function of U [and compared to
the Gutzwiller approximation (Brinkman and Rice,
1970)]. Z is close to 1 for small U , and goes to zero at
U5Uc2(T50).3D , signalling the disappearance of
quasiparticles, and hence of the metallic solution. The
precise nature of this transition at Uc2 will be further
reviewed in Sec. VII.E.

A plot of the local spectral function

r~v![2
1
p (

k
ImG~k,v1i01! (230)

is shown in Fig. 30 for various values of U . The results
displayed have been obtained with the iterated pertur-
bation theory, and it was shown in Sec. VI that this is a
quite accurate approximation in the metal, for all values
of U (except very close to Uc2). For small U , the spec-
tral function is featureless and similar to the bare lattice
density of states. For larger values of U , a narrow qua-
siparticle peak is formed at the Fermi level of width eF*
and weight Z . This is the Abrikosov-Suhl resonance in
the impurity model language. Notice the pinning of r(0)
at its noninteracting value:

r~v50 !5D~0 !, (231)

as required by the Luttinger theorem for a momentum-
independent self-energy (Müller-Hartmann, 1989c). Two
additional features at frequencies 6U/2 (corresponding
to energies v+m=0,U) are associated with the upper and
lower Hubbard band (empty and doubly occupied sites).
Finally, we mention a very simple argument showing

that the LISA equations cannot sustain a metallic solu-
tion up to arbitrary large U at half-filling (Georges and
Krauth, 1992; Rozenberg, Zhang, and Kotliar, 1992).
Imagine solving the system of Eqs. (220) and (221) by
iteration, with a conduction electron half-bandwidth Dn
at step n . For large U , solving the Kondo problem pro-
duces a bandwidth Dn115e2U/tDn . Therefore, Dn iter-
ates to zero for large U . In fact, the metallic solution

FIG. 28. Real and imaginary parts of the real-frequency self-
energy S(v+i0+), as obtained from the iterated perturbation
theory approximation, for two metallic values of U/D=1 and 2
(dotted and full lines).

FIG. 29. The quasiparticle weight Z as a function of the inter-
action U . The solid bold line corresponds to exact diagonaliza-
tion results with eight sites. The dotted line is obtained from
iterated perturbation theory. For comparison we also plot the
results using the Gutzwiller variational method (full line). The
error bars near Uc reflect the uncertainties inherent to the
various methods. The diamond represents the exact location of
Uc obtained from the projective method.
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disappears continuously (at T=0) at a critical value
Uc2/D.2.92, as explained in more detail in Sec. VII.E.

2. Insulating phase

When U/t is large, we begin with a different ansatz
based on the observation that in the ‘‘atomic limit’’ t=0
(U/t=`), the spectral function has a gap equal to U . In
this limit the exact expression of the Green’s function
reads

G~ ivn!at5
1/2

ivn1U/2
1

1/2
ivn2U/2

. (232)

Since ImG(v1i01) also plays the role of the density of
states of the effective conduction electron bath entering
the impurity model, we have to deal with an impurity
embedded in an insulator [D(v=0)=0]. It is clear that an
expansion in powers of the hybridization t does not lead
to singularities at low frequency in this case. This is very
different from the usual expansion in the hybridization
V with a given (flat) density of states that is usually con-
sidered for an Anderson impurity in a metal. Here, t
also enters the conduction bath density of states (via the
self-consistency condition) and the gap survives an ex-
pansion in t/U . An explicit realization of this idea is to
make the following approximation for the local Green’s
function (Rozenberg, Zhang, and Kotliar, 1992):

G~ ivn!.
1/2

G 0
21~ ivn!2U/2

1
1/2

G 0
21~ ivn!1U/2

, (233)

which can be motivated as the superposition of two mag-
netic Hartree-Fock solutions or as a resummation of an
expansion in D/U . This implies that G(iv);iv for small

v, and the substitution into the self-consistency condi-
tion implies that G 0

−1;iv , which is another way of say-
ing that the effective bath in the Anderson model pic-
ture has a gap. We know from the theory of an
Anderson impurity embedded in an insulating medium
that the Kondo effect does not take place. The impurity
model ground state is a doubly degenerate local mo-
ment. Thus, the superposition of two magnetic Hartree-
Fock solutions is qualitatively a self-consistent ansatz. If
this ansatz is placed into Eq. (221), we are led to a
closed (approximate) equation for G(ivn):

D4G328D2vG214~4v21D22U2!G216v50.
(234)

This approximation corresponds to the first-order ap-
proximation in the equation of motion decoupling
schemes reviewed in Sec. VI.B.4. It is similar in spirit to
the Hubbard III approximation Eq. (173) (Hubbard,
1964), which would correspond to pushing this scheme
one step further. These approximations are valid for
very large U but become quantitatively worse as U is
reduced. They would predict a closure of the gap at
Uc5D for (234) (Uc5)D for Hubbard III). The fail-
ure of these approximations, when continued into the
metallic phase, is due to their inability to capture the
Kondo effect which builds up the Fermi-liquid quasipar-
ticles. They are qualitatively valid in the Mott insulating
phase however.
The spectral density of insulating solutions vanish

within a gap 2Dg/2,v,1Dg/2. Inserting the spectral
representation of the local Green’s function into the self-
consistency relation, Eq. (221) implies that S(v+i0+)
must be purely real inside the gap, except for a
d-function piece in ImS at v=0, with

ImS~v1i01!52pr2d~v! for vP@2Dg/2,Dg/2#
(235)

and that ReS has the following low-frequency behavior:

ReS~v1i01!2U/25
r2
v

1O~v!. (236)

In these expressions, r2 is given by

1
r2

5E
2`

1`

de
r~e!

e2
. (237)

r2 can be considered as an order parameter for the insu-
lating phase [the integral in Eq. (237) diverges in the
metallic phase]. A plot of the spectral function and self-
energy in the insulating phase, obtained within the iter-
ated perturbation theory approximation, is also dis-
played in Figs. 30 and 31. The accuracy of these results is
more difficult to assess than for the metal, since exact
diagonalization methods are less efficient in this phase.
A plot of the gap Dg vs U estimated by the iterated
perturbation theory and exact diagonalization is given in
Fig. 32. Within both methods, the insulating solution is
found to disappear for U,Uc1(T50), with Uc1

ED

. 2.15D (while the iterated perturbation theory method
yields Uc1

IPT . 2.6D). As discussed below in more detail
(Sec. VII.F), the precise mechanism for the disappear-

FIG. 30. Local spectral density pDr(v) at T=0, for several
values of U , obtained by the iterated perturbation theory ap-
proximation. The first four curves (from top to bottom, U/D
=1,2,2.5,3) correspond to an increasingly correlated metal,
while the bottom one (U/D=4) is an insulator.
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ance of the insulating solution at Uc1, the behavior of
the gap at this point, and the value of Uc1 have not yet
been fully settled.
In summary, the existence of two classes of solutions

of the paramagnetic LISA equations at zero tempera-
ture can be established analytically. Metallic solutions
are characterized by a nonzero density of states r(0)
=D(0) [=2/(pD) for the Bethe lattice], while insulating
solutions have r(0)=0, for both the impurity and the ef-
fective conduction bath at zero frequency. The density of
states at zero energy is an order parameter for this prob-

lem, and can be shown to be self-consistently nonzero
for small U/D and zero for large U/D .

D. Phase diagram and thermodynamics

1. Paramagnetic phases

The qualitative distinction between a metal and an
insulator is precise at zero temperature. At finite but
small temperatures a sharp distinction between a metal-
lic and an insulating solution can still be made in the
present problem, since a region of the (U ,T) parameter
space defined by Uc1(T),U,Uc2(T) is found where
two paramagnetic solutions are allowed within the
LISA, as shown on Fig. 33 (Georges and Krauth, 1993;
Rozenberg, Kotliar, and Zhang, 1994). This is evidenced
by the plot of the double occupancy ^n↑n↓& given in Fig.
34. One of these solutions is continuously connected to
the T=0 metallic solution, and its density of states dis-
plays a peaklike feature at the Fermi energy. The other
solution can be connected to the T=0 insulating solution,
and the Green’s function extrapolates to zero at zero
frequency. As the temperature is further increased, this
region of coexistent solutions disappears and we are left
with a rapid crossover from a metallic-like solution to an
insulating-like one. This is possible because at finite tem-
perature there is no qualitative distinction between a
metallic and an insulating state. The two lines Uc1(T)
and Uc2(T) defining the coexistence region merge at a
second-order critical point (Fig. 33). The actual metal-
insulator transition at finite temperature is first order,
and takes place at the coupling Uc(T) where the free
energy of the two solutions cross. Note that this is the
case even though no lattice deformations have been in-
cluded in the model. For early discussions of the occur-
rence of a first-order metal-insulator transition at finite
temperature in the Hubbard model, see the works of
Cyrot (1972); Castellani, DiCastro, Feinberg, and Ran-
ninger (1979); Spalek, Datta, and Honig, 1987); Spalek

FIG. 31. Real and imaginary parts of the self-energy S(v+i0+),
as obtained from the iterated perturbation theory approxima-
tion, for a value of U/D=4 in the insulating phase. The inset
contains the same quantities on a larger scale that shows the
1/v singularity in ReS.

FIG. 32. Paramagnetic gap (solid line) as a function of the
interaction U obtained from exact diagonalization. For com-
parison, the corresponding results from iterated perturbation
theory (dotted line) and the value of Uc1

H III 5 )D within the
Hubbard III approximation (diamond) are also shown.

FIG. 33. Phase diagram of the fully frustrated model at half-
filling. It is possible to move continuously from one phase to
the other since at high temperature the transition becomes a
crossover. Within the region delimited by the dashed lines, the
metallic and insulating solutions coexist. The full line is the
approximate location of the actual first-order transition line.
Both ends of this line [at the full square and at Uc2(T)=0] are
second-order points.
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(1990) and references therein. It is interesting in this
respect to note that the compound Y12xCaxTiO3 has
been recently reported by Iga et al. (1995) to display a
first-order metal-insulator transition without a structural
change. At zero temperature Uc5Uc2(T50) (Rozen-
berg, Moeller, and Kotliar, 1994; Moeller et al., 1995),
but the line Uc(T) remains very close to Uc1(T) down
to very small temperatures, because of the higher en-
tropy (N ln 2) of the insulating solution.
In addition to these paramagnetic solutions, the mean

field Eqs. (220) and (223) also have nontrivial solutions
with antiferromagnetic long-range order. The range of
parameters where the antiferromagnetic solution exists
depends on the details of the lattice structure and in
particular on the degree of magnetic frustration t1/t2 , as
described in detail below.
As in any mean-field theory, the complete determina-

tion of a phase diagram in the LISA method involves
the following steps: (i) first, the possible competing
phases have to be determined, and their region of coex-
istence located, (ii) then, the free-energy of each com-
peting solution is calculated within the coexistence re-
gion. The solution with lowest free-energy gives the
stable phase, and the procedure also yields the actual
critical boundary. Notice that (i) the nature of the vari-
ous competing phases must be guessed a priori on the
basis of physical intuition in order to get the correct
phase diagram, and that (ii) the determination of the
free-energy may be ambiguous when approximate tech-
niques are used to solve the LISA equations, if these
approximations are not ‘‘conservative’’ in the sense of
Baym and Kadanoff. For these reasons only a few com-
plete phase diagrams have appeared in the literature.

In the case of the half-filled Hubbard model on the
fully frustrated lattice, magnetically ordered phases need
not be considered since they are suppressed by the mag-
netic frustration. In this case, the only two competing
phases are the paramagnetic metal and the paramag-
netic insulator. These phases coexist in a region of the
(U ,T) parameter space, as described above. The loca-
tion of this coexistence region (Georges and Krauth,
1993) and the location of the actual critical line obtained
by comparing free energies (Rozenberg, Kotliar, and
Zhang, 1994) has only been studied in detail within the
iterated perturbation theory approximation. The result-
ing phase diagram is displayed on Fig. 33. The first-order
metal insulator critical line ends at a finite-temperature
critical point (in a manner analogous to a liquid-gas
transition). Furthermore, the zero-temperature end
point of this line can be shown analytically (see Sec.
VII.E below) to correspond to a second-order transition
associated with the disappearance of the metallic solu-
tion (Moeller et al., 1995): Uc(T50)5Uc2(T50). Note
that the iterated perturbation theory approximation
yields Uc1(T50)IPT/D.2.6 and Uc2(T50)IPT/D.3.3,
while the more precise determinations from zero-
temperature exact diagonalization studies and the pro-
jective technique yield Uc1(T50)/D=2.1560.25 and
Uc2(T50)/D=2.9260.05. [The iterated perturbation
theory values for the critical U’s found by Georges and
Krauth (1993) for the d=` hypercubic lattice are close
but slightly smaller to the ones above, when normalized
by the effective half-widthW .] Detailed comparisons be-
tween the iterated perturbation theory approximation
and the QMC method at finite temperature have shown
excellent agreement for T/D of the order of 1/50 or
higher. In this region, the iterated perturbation theory
phase diagram is quite reliable. The detailed shape of
the very-low-temperature coexistence region as ob-
tained from exact diagonalization studies does reveal
some differences with the iterated perturbation theory
approximation however. In this respect, and in connec-
tion with the remark (ii) made above, let us mention
that the free energy within the iterated perturbation
theory approximation must be evaluated from a func-
tional that gives the mean-field equations by differentia-
tion, rather than from the one-particle Green’s function.
This is crucial in order to obey the exact property of a
second-order transition at T=0.
Two physical remarks must be made on the phase-

diagram of Fig. 33. First, the slope of the first-order
phase boundary is such that the insulator is reached
upon heating. This reflects the fact that the paramag-
netic insulator has higher entropy than the metal. It is a
generic feature of the phase diagram of many strongly
correlated systems, such as the first-order metal-
insulator transition line of V2O3 (Fig. 23), and the solidi-
fication line of 3He below the Pomeranchuk tempera-
ture. The same qualitative reason is responsible for the
behavior of the fraction of doubly occupied sites as a
function of temperature, shown in Fig. 35. One observes
that in the metallic regime, ^n↑n↓& starts by decreasing
upon heating (thus indicating an increasing degree of

FIG. 34. Double occupancy ^D&5^n↑n↓& as a function of the
interaction U/D . The data corresponds to QMC simulations at
bD=32 (dots), eight sites exact diagonalization (bold line) and
iterated perturbation theory at T=0 (dotted line). For compari-
son, the results of the Gutzwiller approximation is also plotted
(thin line).

66 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



localization). Secondly, the first-order line ends at a criti-
cal point where a crossover region starts. In this region
the metal is sustained by activation across the Mott-
Hubbard gap. As a result the slope of the crossover re-
gion between the metal and the insulator is T'U22D ,
opposite to that of the transition line.

2. Thermodynamics

Now we turn to the behavior of thermodynamic quan-
tities as a function of temperature, in both the metallic
and insulating phase. The LISA is a powerful technique
for the study of thermodynamics. This represents a sig-
nificant improvement over earlier methods like the
Gutzwiller variational approach or the slave boson
method, which did not have satisfactory extensions to
finite temperatures (because of the neglect of incoherent
excitations).
In the paramagnetic case, the energy is computed

from the Green function using Eq. (47) and the entropy
is given by

S~T !5E
0

T Cv~T8!

T8
dT81S~0 !

5N ln42E
T

1` Cv~T8!

T8
dT8, (238)

where Cv is evaluated by numerical differentiation of
the energy. S(0) is zero for the metallic side and N ln2
for the insulating side, reflecting the double degeneracy
of the impurity model ground state in this phase. The
physical critical line where the first-order phase transi-
tion takes place is determined by equating the free en-
ergies of the two states,

FM2FI5EM2EI2~SM2SI!T . (239)

Figure 36 shows the specific heat Cv as a function of
temperature for two values of the interaction U , in the
metallic and insulating phases, respectively. The charac-
teristic low-energy scale in the metallic phase is set by
the renormalized Fermi energy eF* 5 ZD . Below this
scale (in practice, below ; eF* /5), the specific heat has the
characteristic Fermi-liquid behavior Cv5gT , with the
slope g proportional to m* /m;(Uc22U)−1. At higher
temperatures we see a thermal activation of the incoher-
ent features corresponding mainly to density fluctua-
tions. In the insulating phase, we observe only this last
effect, which takes place at an energy scale U22D . The
main features of the thermodynamics in the strongly cor-
related metallic state can be understood from the exist-
ence of these two energy scales: eF* , the renormalized
Fermi energy, is the scale for low-energy (local) spin
fluctuations, and U is the energy scale for charge (den-
sity) fluctuations. In the correlated metal, these two
scales are well separated and give rise to two peaks in
the specific-heat, while they coalesce for small U (Fig.
37).
The entropy as a function of temperature, obtained by

integrating Cv/T , is displayed in Fig. 38. The quasiparti-
cle peak in Cv corresponds to a spin entropy of ln2,
which is reached at a scale of order eF* , while the inte-
gral over the second peak at around U-2D contains the
ln2 entropy of the charge degrees of freedom. Figure 39
shows the evolution of the spectral function of the metal
as a function of temperature. Note that the quasiparticle
peak is suppressed above a temperature of order eF* . At
higher temperatures, the curvature at low frequencies

FIG. 35. Double occupancy as a function of temperature.
These QMC data were obtained for the hypercubic lattice
(Gaussian density of states with t ij5t/2Ad). Note the presence
of a minimum at T5Tm for metallic values of U . The inset
displays Tm as a function of U .

FIG. 36. The specific heat Cv as a function of temperature.
The solid line is for U/D=2 and the dashed line corresponds to
U/D=4. The separation between the spin-fluctuation scale eF*
at low energies and the charge-fluctuations scale at high energy
(;U22D) is apparent in the metallic case (U/D=2). Note
also the linear behavior at low temperature in the metal, in
contrast to the activated behavior in the insulator.
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changes sign, and r(v) has a ‘‘pseudogap’’ shape.
In Figs. 36 and 38, we also display the specific heat

and entropy of the Mott insulating phase. They feature
the expected activated behavior ;exp(−Dg/T) at low
temperature. Note that, as mentioned above, the insula-
tor has a residual ground-state entropy S(0)5N ln2.
This is also the result found in the Gutzwiller approxi-
mation, where the insulator is caricatured as a collection

of independent magnetic moments. This result may
seem surprising in the present context since the LISA
does not neglect charge fluctuations and residual mag-
netic exchange. The explanation is that there are actu-
ally two different exchange scales in the d=` limit: one is
the exchange coupling between two fixed spins
Jij;t ij

2 /U;O(1/d) while the other is the exchange en-
ergy between a spin and its shell of d antiparallel neigh-
bors. Since the latter is d times the former, it remains
O(1) and sets the scale for the Néel temperature. The
first scale controls the splitting between the (;2N) states
with total Sz=0, and does vanish as d→`. Hence, the
d→` limit does lead to a degenerate ground state when-
ever the Mott insulating phase is not unstable to long-
range antiferromagnetic order (i.e., for highly frustrated
lattices). These considerations will also be crucial in or-
der to understand the behavior of local and uniform spin
susceptibilities.
The comparison of the kinetic energy

K5^(kekc k
1ck&/N and the potential energy per site

V5U^n↑n↓& of the two solutions is shown in Fig. 40. We
find that the difference in the internal energy of the two
states within the iterated perturbation theory is much
smaller than the corresponding difference in the kinetic

FIG. 37. Low-temperature part of the specific heat Cv as a
function of temperature for several (metallic) values of U/D ,
showing the gradual increase of the slope g and gradual de-
crease of eF* .

FIG. 38. Entropy per site as a function of temperature for two
different values of interaction U/D=2,4. Note that the spin-
fluctuation entropy ln2 is reached at a scale ; eF* in the metal.

FIG. 39. Local spectral density pDr(v) for various tempera-
tures T/D=0.03 (full), 0.05 (dashed), 0.08 (short-dashed) and
0.10 (dotted), as obtained by iterated perturbation theory (U/
D=2.5). Note the disappearance of the quasiparticle peak at a
scale ; eF* , and the corresponding transfer of spectral weight
over large energy scales.

FIG. 40. The kinetic, potential and internal energy as a func-
tion of U for T/D=0.02 from iterative perturbation theory. The
hysteresis effect is clearly observed.
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and potential energy taken separately. The gain in ki-
netic energy by delocalization is almost perfectly can-
celed by the loss in potential energy due to the Coulomb
repulsion on doubly occupied sites. The small energy
difference between the two states is a generic feature of
the problem, and has been verified in exact diagonaliza-
tion calculations. In fact the near degeneracy of the me-
tallic and the insulating state near Uc2 follows from the
bifurcation of two stationary points of the free-energy
functional at Uc2. This issue will be revisited later in this
section.

3. Antiferromagnetic phases

Let us now consider the solution of the model with
magnetic order. In the absence of magnetic frustration,
on a bipartite lattice, one expects to find an antiferro-
magnetically ordered state at low temperature. For
small U , this is expected from Hartree-Fock and varia-
tional calculations (Penn, 1966; Langer, Plischke, and
Mattis, 1969; Yokoyama and Shiba, 1987; for next-to-
leading corrections to Hartree-Fock, see also Georges
and Yedidia, 1991 and van Dongen, 1991b). For large
values of the interaction, the magnetic moments become
fully developed and the model maps onto the Heisen-
berg model. It will consequently also display an antifer-
romagnetic state with a Néel temperature that is in-
versely proportional to U . The low-temperature solution
of the model, on a bipartite lattice, is therefore expected
to be that of an antiferromagnetic insulating state for all
U , due to the effective doubling of the lattice parameter.
This scenario is fully realized in the limit of large di-

mensions as is demonstrated by the solution of the self-
consistent equations (223) with t2=0 that defines the
model on a Bethe lattice without magnetic frustration.
Analytic arguments for an antiferromagnetic ground
state for arbitrary U on the d=` hypercubic lattice have
also been given by Kopietz (1994). In Fig. 41 (top plot)
we show the local spectral densities for each spin species
in the antiferromagnetic phase at U/D=1.5, as obtained
by exact diagonalization. A gap is present in the spec-
trum, and the solution is insulating. The difference be-
tween the total densities of the up and down spin on
each sublattice is clearly apparent.
The Néel temperature as a function of U has been

calculated with the QMC method (Jarrell, 1992; Georges
and Krauth, 1993; Rozenberg, Kotliar and Zhang, 1994).
In Fig. 42, we show the results for the unfrustrated
Bethe lattice (t2=0). Comparison with Fig. 33 shows that,
in this case, the Néel temperature is always well above
any metal-insulator transition temperature. Hence, the
phase diagram just consists in a high-temperature para-
magnetic phase and a low-temperature insulating anti-
ferromagnet. On such unfrustrated lattices, it is clear
that Slater’s point of view is correct for understanding
the metal to insulator transition. The onset of antiferro-
magnetism makes the metal insulator transition within
the paramagnetic phase completely irrelevant on bipar-
tite lattices.

Also shown on Fig. 42 is a comparison between the
QMC determination of the Néel temperature and the
Hartree-Fock and iterated perturbative theory approxi-
mations. As it turns out, TN is considerably reduced by
local quantum fluctuations as compared to the Hartree-
Fock approximation. Unfortunately, the iterated pertur-
bative approximation is also rather poor and underesti-
mates TN for large U .
We finally turn to the interesting case of a model hav-

ing some intermediate degree of frustration. Rozenberg,

FIG. 41. The local spectral density for spin-s and −s electrons
(full and dotted line), obtained from eight sites (exact diago-
nalization) with U/D=1.5. (s=↑ on the A sublattice, s=↓ on
the B sublattice.) The top plot corresponds to the bipartite
Bethe lattice and to an insulating AF, while the lower plot
corresponds to the TSF model with t 1

25
1
4 t
2 and t 2

25
3
4 t
2, and to

a metallic AF. The exact diagonalization results in a set of
d-function peaks to which a small broadening has been ap-
plied.

FIG. 42. QMC determination of the Néel temperature (and
phase diagram) of the half-filled bipartite Bethe lattice as a
function of U/D (bold line). For comparison, the Hartree-
Fock (thin line) and iterated perturbation theory approxima-
tions (dotted line) are also displayed.

69A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



Kotliar, and Zhang (1994) studied the TSF model, with
t 1
251/4t2 and t 2

253/4t2, but the general features are ex-
pected to be representative of more realistic frustrated
lattices. A schematic representation of the phase dia-
gram of the two sublattice frustrated model is shown in
Fig. 43. The partial frustration reduces the Néel tem-
perature. For large U , the Néel temperature is given by
2(t 2

22t 1
2)/U while, for small U , Rozenberg, Kotliar, and

Zhang were able to obtain upper bounds on the Néel
temperature, showing that its maximum lies below the
critical temperature for the Mott transition. This estab-
lishes the relevance of the finite-temperature metal to
the paramagnetic insulator transition in this case.
As shown in Fig. 41 (lower plot) and Fig. 43, the par-

tial frustration is also able to drive the system into an
antiferromagnetic (AF) metallic state at small values of U
(in contrast to an antiferromagnetic insulator in the ab-
sence of frustration). The Néel temperature on the me-
tallic side is smaller than the one on the insulating side.
The addition of frustration has also dramatic conse-
quences for the density of states in the ordered phase.
The order of the different magnetic transitions for small
and intermediate U is still an open problem in this case.
Let us finally mention that the quantum transition be-

tween a strongly correlated paramagnetic metal and a
metal with spin-density wave (AF) order has been stud-
ied in a rather general framework by Sachdev and
Georges (1995), using the LISA method. These authors
demonstrated that at low energies T ,v ! eF* , the order
parameter fluctuations are characterized by zn=1
(where n is the exponent associated with the correlation

length and z is the dynamical exponent), while there is
an intermediate energy range eF* , T ,v , AUeF* in which
a universal regime with zn=1/2 is found.
It is very interesting to note that most of the main

features of the experimental phase diagram of V2O3
(McWhan et al., 1973; Kuwamoto, Honig, and Appel,
1980; Carter et al., 1992) are very close to the phase dia-
gram of the TSF model in Fig. 43. In particular, if we
associate decreasing pressure with increasing interaction
U , we find the correct sign of the slope of the first-order
line that separates the paramagnetic metallic and the
paramagnetic insulating state. In both the theoretical
and experimental case, this line ends in a second-order
critical point where a crossover region starts and which
is tilted in the opposite way. The topology of the phase
diagram is also captured in detail, including the small
antiferromagnetic metallic region recently found by
Carter et al. (1992) for V22yO3.
The experimentally observed phase diagrams of tran-

sition metal oxides display incommensurate metallic
magnetism. This can in principle be studied by extending
the mean field theory to account for incommensurate
phases, as described in Sec. IV, and has been investi-
gated by Freericks (1993a, 1993b, 1993c) for the Falicov-
Kimball model (Sec. VIII.B) and Freericks and Jarrell
(1995a, 1995b) for the Hubbard model (Sec. VII.H).
These orderings depend on the detailed shape of the
Fermi surface, and it would be interesting to perform a
calculation taking into account a realistic band structure
for some transition metal oxide. This seems feasible
within the LISA (cf. Sec. VIII.C), but has not been in-
vestigated yet.

E. The zero-temperature metal-insulator transition

As discussed above, a metallic solution is found at
zero temperature for U,Uc2(0), while an insulating so-
lution exists for U.Uc1(0). A fairly detailed under-
standing of the critical behavior at Uc2(0) has been
achieved, which we review in this section. This under-
standing is based to a large extent on the projective self-
consistent method described in Sec. VI.C, to which the
reader is referred for technical details. The evidence that
Uc1(0),Uc2(0) also relies on this method. The detailed
mechanism for the disappearance of the insulator at
Uc1(0) is understood in less detail, and will be discussed
in Sec. VII.F.
Let us first mention that the existence of a continuous

T=0 transition at which the metallic solution of the
LISA equations disappears can be established by vari-
ous methods. The general idea common to all methods
is to characterize the Green’s function in the metal by a
single parameter Z (the quasiparticle residue, or weight
of the Kondo resonance), and to project the full LISA
dynamical mean-field equations onto that single ‘‘rel-
evant direction.’’ This yields an equation for Z which is
reminiscent of the slave-boson mean field equations
near the Brinkman-Rice transition and which takes the
form

FIG. 43. Approximate phase diagram for the model with
nearest-neighbor and next-to-nearest-neighbor hopping
(t2 /t1) 5 A1/3. The first-order PM metal-insulator transition
ends at the critical point TMIT (square). The dotted line and
the shaded region describe two crossovers as discussed in the
text. The full circles indicate values of the parameters chosen
to model the optical spectra of V2O3 in Sec. VII.I.3. A , insu-
lator (y=0); B , insulator (y=0.013); C , metal (y=0, 170 K); D ,
metal (y=0, 300 K). For comparison with the experimental re-
sults, note that increasing U/D is associated with decreasing
pressure. Left inset: rdc(T) for U/D=2.1,2.3,2.5 (bottom to
top). The maxima of rdc(T) is defined by the dotted line. Right
inset: rdc(U) for T50.06D (full) and T50.15D (dotted).
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~12U/Uc2!Z2aZ250. (240)

This equation can be derived, together with the value of
the positive coefficient a , by using the iterated perturba-
tion theory approximation (Zhang, Rozenberg, and Kot-
liar, 1993), and has yet to be calculated with the more
accurate projective self-consistent method of Sec. VI.C.
This method yields a very accurate determination of
Uc2(0) [from Eq. (211) in Sec. VI.C]:

Uc2~T50 !/D52.9260.05. (241)

The Gutzwiller-Brinkman-Rice approximation would
yield the somewhat larger value UBR=3.37D , virtually
identical to the value obtained in the iterated perturba-
tion theory approximation (Uc2

IPT . 3.37D).
We now mention an argument of Moeller et al. (1995),

showing that the actual zero-temperature metal-insulator
transition takes place at Uc2(0), and is second order, so
that the first-order transition line Uc(T) ends at Uc2(0)
for T=0. [In the following, we shall for this reason use
Uc in place of Uc2(0)]. The argument uses the fact that
the derivative of the ground-state energy is the density
of doubly occupied sites:

dE

dU
5^n↑n↓&. (242)

The fraction of doubly occupied sites can be computed
numerically at T=0 using exact diagonalization, as
shown above in Fig. 34. As expected, ^n↑n↓& is larger for
the metallic solution than for the insulating solution. In-
tegrating Eq. (242) from U up to Uc2 (where the two
solutions merge), one thus finds that E ins>Emetal when-
ever the two solutions coexist, which proves that the
T=0 transition takes place at Uc2(0)[Uc . Using the
projective technique of Sec. VI.C, Moeller et al. (1995)
have proved furthermore that E ins−Emetal}(U2Uc)

2

and hence that the transition is second order. It is inter-
esting to note that the total energy difference between
the two states is much smaller than the difference in
kinetic and potential energy taken separately. The gain
in kinetic energy by delocalization is almost perfectly
cancelled by the loss in potential energy due to the Cou-
lomb repulsion on doubly occupied sites. (Fig. 40).
It is instructive to compare the calculation of ^n↑n↓& in

Fig. 34 to the results of the Gutzwiller approximation
(Brinkman and Rice, 1970). In contrast to this approxi-
mation, the actual double occupancy does not vanish at
the transition, and cannot be used as an order param-
eter. This is to be expected, since virtual hopping in the
insulator produces a very small but nonzero double oc-
cupancy. There is however a singular contribution to
^n↑n↓& that vanishes at Uc , and is correctly captured by
the BR approximation. The numerical results close to
Uc can be parametrized as

^n↑n↓&'0.01510.235
Uc2U

Uc
. (243)

Also note that the magnetic moment is obtained from
the double occupation through ^m z

2&5122^n↑n↓&, and
is thus not quite saturated at the transition.

The destruction of the metallic state at Uc is driven by
the collapse of the renormalized Fermi-energy scale (or
Kondo temperature) eF* 5 ZD . Because of the self-
consistency equation (221), this is also the bandwidth of
the effective conduction bath entering the impurity
model. The critical behavior of this quantity at Uc has
been investigated using the approximate iterated pertur-
bation theory method (Rozenberg, Kotliar, and Zhang,
1994), and more recently by Moeller et al. (1995) using
the more accurate self-consistent projective method. It
has been established that the quasiparticle residue (and
hence eF* ) vanishes linearly at Uc , with a prefactor ob-
tained from the numerical results as

Z5CZS 12
U

Uc
D1••• , CZ50.960.15. (244)

So, the effective mass m* /m51/Z and linear coefficient
of the specific heat g=4pk B

2 /(3Z) diverge at the transi-
tion. For comparison, the BR approximation yields the
much larger slope Z'2(12U/UBR). Also note that, as
compared to an Anderson impurity model with a fixed
conduction band, the self-consistency has the effect of
changing the dependence of the quasiparticle energy
scale (or Kondo scale) from an exponential behavior
[;exp−(U/D)] to linear in (Uc2U).
Close to Uc , there is a clear separation of energy

scales and the local spectral density can be written as a
sum of low-energy and high-energy parts: r(v)
=r l(v)1rh(v). The high-energy part resembles the so-
lution of an atomic problem, with two Hubbard bands
centered around 6U/2, while the low-energy part obeys
a scaling form:

r l~v!5
1
D

fS v

eF*
D . (245)

The scaling function f , which resolves the low-energy
peak in the spectral function, has been calculated by
Moeller et al. (1995) using the projective methods of
Sec. VI.C. The scaling form (245) implies that the qua-
siparticle lifetime has a stronger singularity than the
quasiparticle residue, and behaves as

ImS~v1i01!.20.4DS v

eF*
D 21••• , (246)

where the prefactor has been determined by a fit to the
scaling function.

F. On the T50 instability of the insulating solution

We have just seen that, in the region of the phase
diagram around Uc2, many of the Brinkman-Rice pre-
dictions for the destruction of the metal are qualitatively
valid (when suitably interpreted). In this section, we
consider the mechanism for the destruction of the insu-
lating solution, which occurs at Uc1, and we address the
question of whether the T=0 values of Uc1 and Uc2 are
actually different (in contrast to the Brinkman-Rice sce-
nario where Uc15Uc2). The original Hubbard scenario
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predicts a continuous closure of the gap at Uc1, and a
divergence of the dielectric constant.
In order to gain insights on the destruction of the in-

sulating state, a simple parametrization of the Green’s
function can be used in this phase:

G 0~t!5a(u~t!2 1
2 )1G 0

inc~t! (247)

with u(t) being the step function. The first term repre-
sents an insulating solution in the atomic limit (t=0).
G 0

inc is the ‘‘incoherent part’’ of the insulating solution,
which decays exponentially to zero as t→` at zero tem-
perature. Physically, this decomposition is motivated by
viewing the self-consistent equations as describing a
Kondo spin in an insulator. The spin operator SW has a
low energy part which is responsible for a Curie type of
local spin susceptibility and a high frequency part. We

write SW 5AaSW low+SW high , a is a quantity similar to the
‘‘quasiparticle weight,’’ describing the weight of a pure
free spin in an interacting system made of the impurity
and the insulating host. In frequency space, G 0

inc is only
responsible for the details of the shape of the Hubbard
bands which are high frequency features. The step func-
tion part gives rise to a divergency in G 0(ivn);1/ivn
and is solely responsible for the existence of a gap. In
the atomic limit a approaches unity, while on the con-
trary, the vanishing of a signals the complete screening
(or Kondo quenching) of the spin and the destruction of
the insulating phase.
Using the parametrized form of G 0 , we can relate a to

the density of states r(e) of the local Green function. At
half-filling, because of the particle-hole symmetry,

G52ivnE
0

` r~e!de

~ ivn!22e2
. (248)

Therefore, using (221) and comparing linear terms in iv ,

a215112t2E
0

` r~e!de

e2
[112t2r2 . (249)

Note that in the metallic phase, a−1 would diverge.
Further progress can be made within the iterated per-

turbation theory approximation (Rozenberg, Kotliar,
and Zhang, 1994). Inserting the parametrized G 0 into
the expression of the self-energy at second order [Eq.
(157)], and identifying the most singular terms in the
self-consistency condition, one obtains a closed equation
for a:

a5S 11
D2

U2a3D 21

. (250)

There are two solutions a* for U.Uc1, with Uc1
IPT

5 3)/2D ' 2.6D (in good agreement with the value ob-
tained from solving numerically the iterated perturba-
tion theory equations). The one with a smaller a* is
always unstable and unphysical since it is not connected
continuously to a=1 as U tends to infinity. At the tran-
sition Uc1, the unstable fixed point merges with the
stable one, and the fixed point solution disappears. Note

that a is finite at Uc1 within the iterated perturbative
theory approximation, but the gap may well close con-
tinuously.
Studies of the full numerical solution of the model

within exact diagonalization indicate a closure of the gap
at a critical value of U5Uc1 appreciably below
Uc1

IPT.2.6D. The numerical data indicate that
Dgap;(U2Uc1) and that a−1 may diverge at Uc1 (Ro-
zenberg, Kotliar, and Kajueter, 1995). However, the de-
tailed critical behavior near Uc1 requires much more
precise numerics and analytic techniques, and is still an
open problem. These results can be compared to the
corresponding ones from the Hubbard III approxima-
tion. In that case the critical value for the destruction
of the insulating state is Uc1

HIII 5 )D , and DHIII ; (U
2 Uc1

HIII)3/2. Diagonalizations of truncated lattices involv-
ing successive shells of neighbors of the z=` Bethe lat-
tice have been investigated by Gros et al. (1994), with
results quite comparable to the Hubbard III approxima-
tion and to a more elaborated equation of motion de-
coupling scheme (Gros, 1994; cf. Sec. VI.B.4). These
methods may ultimately shed some light on the behavior
near Uc1. We emphasize however that they are unable
to access the metallic phase in a reliable way, and thus
that they should not be used to draw conclusions on the
transition taking place at Uc2 (which is missed by these
methods).
Neither the iterated perturbation theory approxima-

tion nor the Hubbard III approximation are reliable
near Uc1, and it would be interesting to have a detailed
determination of the exact critical behavior and com-
pare it to these approximations.
As a final remark, let us mention that even though the

paramagnetic insulating phase is strictly unstable at zero
temperature, it is relevant to very frustrated magnetic
insulators. Since the energy difference between the
metal and the paramagnetic insulator is very small in the
full coexistence region, departures from full frustration
will stabilize a magnetic solution that will resemble the
paramagnetic insulating solution.

G. Response functions close
to the Mott-Hubbard transition

We present in this section a combination of theoretical
arguments and numerical results, in order to discuss the
behavior of the response functions in the vicinity of the
Mott transition (Rozenberg, Kotliar, and Zhang, 1994).

1. Magnetic susceptibilities

The local spin-spin correlation function has a very dif-
ferent behavior in the metallic and insulating phase. In
the metal, we have the Fermi-liquid behavior (at T=0):

^Sz~0 !Sz~t!&;
1
t2

~t@1/eF* !, (251)

while in the insulator, it develops long-term memory sig-
nalling the formation of a local moment:

^Sz~0 !Sz~t!&;m0
22O~e2Dgt! ~t→`!. (252)
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As shown in Sec. IV, the local spin susceptibility of
the lattice model coincides (Sec. IV) with the local
susceptibility of the impurity model (in units where
gmB52): xloc=(qx(q) =*0

bdt^Sz(0)Sz(t)&. It diverges at
the transition and follows the Curie law in the insulating
phase:

x loc5
Cx

eF*
, Cx54.760.3 ~U→Uc

2!, (253)

x loc;
1
T

~U.Uc!. (254)

Figure 44 illustrates this behavior. Using Eq. (244) and
eF* [ ZD , the divergence of xloc can also be written:
xloc/xloc

0 =(3.160.2)(1−U/Uc)
−1, with xloc

0 =16/(3pD) the
noninteracting local susceptibility. Also, the nuclear
magnetic resonance (NMR) relaxation rate is predicted
to diverge as

1
T1T

5 lim
v→0

x loc9 ~v1i01!

v
.12.5

1

~eF* !2
. (255)

The uniform (q=0) susceptibility has a very different
behavior. Its relation with the impurity model response
functions has been discussed in Sec. IV. It can be calcu-
lated by applying an external magnetic field on the im-
purity and solving the self-consistency equations for the
bath and the Green’s functions in the presence of the
field. The uniform susceptibilities differ from the local
ones because of the polarization of the Weiss function
due to the external perturbation. We will illustrate how
this effect, which is at the heart of the Fermi-liquid
theory, affects the q=0 response functions near Uc . In
the presence of a field, the self-consistency equation
reads (on the z=` Bethe lattice)

G 0s
215ivn1sh2t2Gs . (256)

Further qualitative insight can be gained by using an
approximate analytic parametrization of the Green’s
function near Uc . It has been demonstrated that at
U;Uc the upper and lower Hubbard bands are already
well developed, so that we can separate high energies
from low energies. The high frequency part of the
Green’s function is polarized by the field and can be
described as a superposition of Hartree-Fock solutions.
As a first approximation, one can assume that the low-
frequency part is unaffected by the field and consists in a
resonance centered at zero frequency, of width eF* and
height D(0).1/D . This leads to the following approxi-
mate parametrization of the local spin-dependent
Green’s function:

Gs5
^n2s&

ivn2U/2
1

^ns&
ivn1U/2

1
1
D

eF*

ivn1ieF* sgn~vn!
(257)

Inserting (257) in (256), we have, for small frequencies,

G 0s
215G 0

21uh501hs22
t2m

U
s , (258)

where ^ns&5(11ms)/2, and m is the magnetization.
Equation (258) describes an Anderson model in the
presence of an effective external field heff=h22(t2/U)m
acting on the impurity. The magnetization is obtained as
m=xlocheff with xloc given by (253). Solving for m we find

x[Fdmdh G
h50

5
1

x loc
2112

t2

U

5
1

eF* /Cx81J
, (259)

where we have defined the magnetic exchange energy:

J52
t2

U
5
D2

2U
. (260)

In practice, however, the uniform susceptibility obtained
numerically appears to be well described by the form
(259), but with a value of the constant somewhat differ-
ent from that entering the local susceptibility: Cx8 . 2.2
. Cx/2 (Laloux, 1995). This is because the change in the
quasiparticle peak was neglected in the above argument.
The physical interpretation of Eqs. (259) and (260) is

transparent: the exchange arises from high-energy vir-
tual processes which are largely unaffected by the Mott
transition. As a result, the susceptibility varies continu-
ously at T=0, as U passes through Uc . The result in Eq.
(259) should be contrasted to the behavior of xloc in Eq.
(254).
These findings are consistent with the QMC results

displayed in Fig. 45 for x as a function of U . For smaller
U , an initial fast increase in x is observed as eF* rapidly
decreases. However, unlike the Brinkman-Rice ap-
proach, x remains finite at the transition due to the ex-
istence of a nonzero superexchange constant in the uni-
form response. The numerical result can be
parametrized according to the analytic expression ob-
tained above. We find x−1.0.4(12U/Uc)1J for the me-

FIG. 44. Local spin susceptibility xloc as a function of U&/D
for bD/&=100 obtained by exact diagonalization. Note that
xloc is of order 1/T in the insulator. The hysteresis correspond-
ing to the first-order metal-insulator transition is apparent at
this temperature between Uc153.3D/& and Uc253.8D/&.
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tallic phase, and x−1.J in the insulator phase. In com-
parison, the Gutzwiller-Brinkman-Rice approximation
gives for the spin susceptibility (see, e.g., Vollhardt,
1984)

xBR5mB
2D~0 !2S 12

U2

Uc
2D 21S 12

D~0 !U

2
11U/2Uc

11U/Uc
D 21

,

(261)

where D(0) denotes the free density of states at the
Fermi level. Within this approximation, the magnetic
susceptibility is predicted to diverge as xBR

−1

'0.74(1−U/Uc). This is an artefact of the approxima-
tion, which fails to take the exchange into account in the
magnetic response. Consequently, we find that the Wil-
son ratio

RW[
x/x0

g/g0
5

1

11F0
a (262)

vanishes at Uc within the LISA, instead of approaching
a constant (close to 4) as in the Brinkman-Rice approxi-
mation (Vollhardt, 1984). The Wilson ratio as a function
of interaction U is displayed in Fig. 46. One can, how-
ever, define a local Wilson ratio which remains finite at
the transition, obtained from Eqs. (244) and (253) as

RW
loc[

x loc /x loc
0

g/g0
~.2.860.2 for U.Uc2!. (263)

2. Charge response and compressibility

The charge-charge response (compressibility) can be
analyzed along similar lines. A chemical potential shift
away from half-filling dm=m−U/2 is applied. This does
not cause a change (to order dn) in the distribution of
integrated spectral weight between the upper and lower
Hubbard bands, as can be readily checked close to the
atomic limit. The resonance width does not change to
order dm because of particle hole symmetry. Denoting
by de the shift of the resonance location, we can param-
etrize approximately the low-energy part of the spectral
function as a Lorentzian peak of unmodified width eF*
and height D(0) centered around de, so that the low-
energy part of the Green’s function is approximated by

G~ ivn!.
2
D

eF*

ivn1de1ieF* sgn~vn!
~vn,eF* !. (264)

The change of the particle number, dn , is obtained from
the change in the integrated spectral function as dn.de/
(pD). In order to obtain the corresponding shift in the
chemical potential dm, we make use of the Luttinger
theorem to obtain dn 5 de/eF* 2 Ddm/U2. The last term
in this equation comes from the response of the Hub-
bard bands to a chemical potential, which is identical to
that of an insulator. Combining these two equations, we
see that the compressibility dn/dm is proportional to eF*
and thus vanishes as Uc2U as the Mott transition is
approached by varying U at half-filling. The numerical
results using ED yield

k5
dn

dm
.0.93

eF*

D2 . (265)

This is in qualitative agreement with the Brinkman-Rice
approximation, which yields

kBR5
4
Uc

12U/Uc

11U/Uc
. (266)

Close to the critical point, this reads kBR/k0
.0.47(1−U/Uc), in mediocre quantitative agreement
with the result (265) k/k0.0.66(1−U/Uc), with
k0=4/(pD) the noninteracting compressibility. On the
other hand, we have seen above that the double occu-
pancy does not vanish as the transition is crossed. This is
consistent with the local charge susceptibility being fi-
nite.

3. Response to a finite magnetic field and metamagnetism

The effect of a finite uniform magnetic field on the
half-filled Hubbard model close to the Mott transition
has been investigated by Laloux, Georges, and Krauth
(1994). The results of these authors for the magnetiza-
tion as a function of applied field, for various values of
U , is displayed in Fig. 47. In the weakly correlated metal
at small U , the magnetic field reduces the effect of the

FIG. 45. Inverse of the uniform magnetic susceptibility (solid
dots) as a function of the interaction U/D . Obtained from
QMC at b=16/D .

FIG. 46. Wilson ratio as a function of the interaction U/D .
From QMC at b=16/D .
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interaction because of the Pauli principle, and a smooth
crossover is found between the unpolarized metal and
the fully polarized band insulator, with a mass enhance-
ment m* /m decreasing smoothly to unity. Close enough
to the Mott transition, however, and at very low tem-
perature, the magnetic field is found to induce a first-
order metamagnetic transition between the strongly cor-
related metal at low field and the high-field Mott
insulator, forcing a jump in the magnetization curve.
This is in qualitative agreement with the predictions of
the Gutzwiller approximation (Vollhardt, 1984), except
for the important difference that the magnetization
jump is always significantly smaller than unity, and van-
ishes at Uc (in contrast to being maximal there as in the
Gutzwiller approximation). This is because the exchange
is not neglected in the LISA method, and the T=0 uni-
form susceptibility is continuous at Uc . Also, the critical
field for the transition is significantly larger than in the
Gutzwiller approximation.
Metamagnetism in the antiferromagnetic phase has

been recently studied by Held, Ulmke, and Vollhardt
(1995).

H. The Hubbard model away from half-filling:
Doping the Mott insulator

The properties of the Hubbard model away from half-
filling are of great interest. In one dimension the Hub-
bard model at half-filling is a solvable model of a Mott
insulator and away from half-filling the low-energy prop-
erties are those of a Luttinger liquid. In finite dimen-
sions, this problem is currently the subject of a lively

debate. It is therefore quite instructive to review what
has been learned from the opposite limit: that of infinite
dimensions.

1. Qualitative arguments

From the mapping onto an Anderson impurity model
subject to a self-consistency condition it is possible to
make some exact statements. Georges and Kotliar
(1992) showed that when the system is metallic and
there is no broken symmetry, it is necessarily a Fermi
liquid. The argument is based on the observation that
the paramagnetic mean-field equations only allow
G(ivn);ivn or G(ivn);i sgn(vn) as consistent solu-
tions in the low-frequency limit. The first possibility de-
scribes an insulator (since it corresponds to a density of
states with a gap at the Fermi energy), and the second
case describes a metal with G(i01)Þ0. In the latter, the
self-consistency condition relating the local Green’s
function to the bath of the Anderson impurity model
implies that the density of states ImG 0

−1(v+i0+) of the
bath of conduction electrons [i.e., the hybridization
function D(v) of the impurity model] is regular and fi-
nite at v=0. Then the low-energy theory of the Ander-
son impurity model (Haldane, 1978a; Krishnamurthy,
Wilkins, and Wilson, 1980) can be used to show that
Fermi-liquid properties (Langreth, 1966) hold at low
temperature and low frequency. In particular,
ImS(v);v2 as v→0. This is true irrespectively of the
value of the interaction U or chemical potential (as long
as these values are such that the assumption of a metal-
lic state is realized).
Fermi liquid sum rules for the single-impurity model

(Langreth, 1966) imply that the Luttinger theorem is sat-
isfied by the d=` Hubbard model, with a Fermi surface
unchanged by the interactions. Let us briefly repeat the
proof here (Müller-Hartmann, 1989b). Denoting by
G(k,z) the lattice Green’s function (for a complex fre-
quency z), we have the obvious identity

G~k,z !5
]

]z
ln@z1m2ek2S~z !#1G~k,z !

]S

]z
. (267)

Summing this equation over k, and using the impurity-
model sum-rule for the local Green’s function (Luttinger
and Ward, 1960; Langreth, 1966),

E
2i`

1i` dz

2pi
G~z !

]S

]z
50, (268)

one obtains the total density n in the form

n

2
[E

2i`

1i` dz

2pi
G~z !5E

2`

1`

deD~e!u(m2S~ i01!2e).

(269)

From this we conclude that

m2S~ i01!5m0~n ! (270)

with m0(n) the noninteracting chemical potential corre-
sponding to a density n . Hence the location of the poles
of G(k,v) are unchanged by the interaction. Because the

FIG. 47. Magnetization mz as a function of an external mag-
netic field, for different values of the interaction U (in units of
D/&) domain of coexisting metallic and insulating solutions in
the (U ,h) plane, at bD/A2 5 100 (from Laloux, Georges, and
Krauth, 1994).
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self-energy is momentum independent, not only the vol-
ume but also the shape of the Fermi surface is un-
changed.
For small doping, the Fermi liquid regime applies be-

low a certain coherence temperature Tcoh reminiscent of
the Kondo temperature of the single impurity Anderson
model, below which a narrow quasiparticle resonance
appears at Fermi energy in the single-particle spectrum.
The width ZeF of this peak is proportional to doping.
QMC studies (Prushke, Jarrell, and Freericks, 1995) and
ED studies (Kajueter and Kotliar, 1995) suggest that
Tcoh is smaller than ZeF. A more detailed investigation
of this issue is certainly needed. At temperatures much
larger than Tcoh we have free spins at each site and
therefore the local spin response has Curie-like behav-
ior, while at very low temperatures the moment is
quenched by the effective conduction electrons and the
spin susceptibility is finite. This picture of the low-
energy physics is similar to the one resulting from the
slave boson approach to the Hubbard or the t-J model
when the exchange interactions are not introduced ex-
plicitly via bond variables (Kotliar and Liu, 1988; Grilli
and Kotliar, 1990).

2. Single-particle properties

An important question in the light of the revival of
the photoemission spectroscopy technique is the posi-
tion of the quasiparticle resonance relative to the rather
broad Hubbard bands. One possibility is that, upon dop-
ing the paramagnetic Mott insulator, the resonance ap-
pears at the top of the lower Hubbard band (for hole
doping n512d,1). In this picture the jump in the
chemical potential m(d=0+)−m(d=0−) equals the Mott-
Hubbard gap Dg, in agreement with the slave boson cal-
culations using the Kotliar-Ruckenstein (1986) tech-
nique (Bang et al., 1992; Castellani et al., 1992; Frezard
and Wölfle, 1992). Another possibility is that this jump is
strictly less than the gap, m(d=0+)−m(d=0−)<Dg, and that
doping induces ‘‘midgap’’ states inside the Mott-
Hubbard gap. Note that this is not in contradiction with
the exact statement that m(N11)2m(N21)5Dg,
where N is the number of electrons (equal to the num-
ber of lattice sites at half-filling): this statement does not
apply to a finite concentration of added holes or elec-
trons.
The first quantitative calculations for this problem

were performed by means of the QMC method supple-
mented by the maximum entropy algorithm and the
noncrossing approximation (Jarrell and Pruschke, 1993a,
1993b; Pruschke, Cox, and Jarrell, 1993a, 1993b). We re-
produce in Fig. 48(a) the spectral function of the lightly
doped Mott insulator obtained in these works. It is hard
to decide which of the two possibilities above is correct,
on the basis of these results. Indeed, finite-temperature
effects are quite significant, and these results have been
obtained for an unbounded Gaussian bare density of
states. The results are not in contradiction however with
a resonance appearing at the top of the lower Hubbard
band.

Using the projective self-consistent technique, how-
ever, it was shown (Fisher, Kotliar, and Moeller, 1995)
that, for any value of U larger than Uc , doping does
induce states inside the Mott-Hubbard gap. Therefore
the jump in chemical potential for infinitesimal doping is
strictly less than the single-particle gap of the insulator,
and the second possibility described above holds. This
applies to the fully frustrated situation, with no magnetic
order, and a bounded semicircular bare density of states.
Moreover, the shift of the quasiparticle band relative to
the Hubbard band edge is a fraction of the bare kinetic
energy, and remains finite even in the limit where U is
infinite. These results were obtained by solving numeri-
cally Eq. (213) which does not contain a small energy
scale. We reproduce the results of this analysis in Fig. 49,

FIG. 48. (a) Temperature dependence of the local spectral
density for U=4 and n=97 obtained from analytically continued
QMC data on a hypercubic lattice with t ij=1/2Ad (from Prus-
chke, Cox, and Jarrell, 1993b). (b) T=0 local spectral density
for the Hubbard model on the Bethe lattice at U/D=4 for
increasing (hole-) doping d=0.09, 0.21, 0.32, 0.71 obtained from
the generalized iterated perturbative theory approximation
(Kajueter and Kotliar, 1995).
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which gives the position of the top of the lower Hubbard
band and of the quasiparticle resonance for infinitesimal
doping, as a function of U .
These conclusions are also supported by a recent ex-

tension of the iterated perturbative theory approxima-
tion away from half-filling (Kajueter and Kotliar, 1995).
Spectral functions obtained in this approximation are
also reproduced in Fig. 48(b) for various dopings. For
the smaller ones, the quasiparticle resonance is clearly
seen to appear inside the Mott gap.
The fact that the resonance appears near the middle

of the Mott gap when U'Uc can be understood from a
continuity argument. The essential point is that as long
as the system is away from half-filling, the self-energy is
a continuous function of frequency, chemical potential,
and U . Since at U5Uc when the doping goes to zero m
approaches U/2 for U slightly bigger than Uc , m has to
approach values slightly above (below) U/2 for electron
(hole) doping to obey the Luttinger condition in Eq.
(269) as n approaches 1 from above or below. The insu-
lating gap, in contrast, is already preformed and finite at
Uc . We note that the prediction that new states appear
inside the insulating gap upon doping is also consistent
with recent approximate continuous-fraction resumma-
tions of the single-particle Green’s function (Kee and
Hong, 1995). It should finally be mentioned that midgap
states have also been predicted to occur on the basis of
phase separation (Emery and Kivelson, 1995), but the
physical mechanism responsible for these states in our
case seems rather different.

3. Thermodynamics

The Mott transition as a function of doping is driven
by the collapse of the small energy scale Tcoh , which
vanishes as one approaches half-filling. Thermodynamic
properties as a function of doping have been investi-
gated by Jarrell and Pruschke (1993a, 1993b) and Prus-
chke, Cox, and Jarrell (1993a, 1993b) for a Gaussian
density of states, and by Rozenberg, Kotliar, and Zhang
(1994), who concentrated on a semicircular density of
states with U/D53.Uc/D in order to make a connec-
tion with the experiments of Tokura et al. (1993) on Sr-
doped LaTiO3, a compound which lies on the brink of
the Mott transition.
A simple estimate of the doping dependence of the

effective mass m* /m (with m the band effective mass)
can be obtained from the quasiparticle residue Z
(=m/m* within LISA), which is plotted as a function of
doping in the inset of Fig. 50. The results of Rozenberg
et al. for this quantity (which also yields the slope of the
specific heat g) and for the uniform susceptibility as a
function of doping is depicted in Fig. 50. In the same
figure, the experimental results of Tokura et al. have
been reproduced for comparison.
Figure 51 shows the particle occupation d=1−n as a

function of the chemical potential Dm obtained from
QMC at b=16. We note that the slope of the curve, i.e.,
the compressibility, goes to zero at Dm=0 as Uc is ap-
proached from below. For larger values of U , we have a

FIG. 49. Phase diagram of the fully frustrated Hubbard model
as a function of U/D and Dm[m−U/2. The shaded region is the
region of coexistence between a metallic and an insulating so-
lution of the LISA equations. The boundary of this coexistence
region with the metallic phase directly yields the position of
the top of the lower Hubbard band as a function of U . The
curve corresponding to the boundary with the insulating region
gives the position of the quasiparticle resonance as a function
of U , for infinitesimal doping.

FIG. 50. Slope of the specific heat Cv;gT (white dots) and
spin susceptibility (black dots) as a function of doping for
U/D=3 and bD=32. The experimental results for the specific
heat of La12xSrxTiO3 (Tokura et al., 1993) are plotted for
comparison (grey dots). The plots are in units of g0 (for g) and
x0 (for x). The inset shows the renormalized mass m* /m5Z21

as a function of doping.
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vanishing compressibility characteristic of an insulating
state. It displays a gap approximately equal to U22D
which compares very well with the results for the size of
the gap from the exact diagonalization method (Fig. 32).
Notice that for U.Uc the d vs Dm curves approach half-
filling (d=0) with a finite slope. This is in contrast with
the QMC simulations in the two-dimensional case re-
ported by Furukawa and Imada (1993) and Imada
(1994).
A very striking feature of the regime T>Tcoh is the

strong temperature dependence of physical quantities.
In this respect it is important to emphasize that while all
the calculations are performed at a fixed chemical po-
tential, one obtains results at a given density by carefully
adjusting the chemical potential that is needed to keep
the density constant and performing the calculations at a
temperature-dependent chemical potential.
The discussion presented in Sec. VII.G on the differ-

ence between the local and the q=0 susceptibility is very
general and applies also away from half-filling. The ar-
guments presented in that section imply that x loc

21 . T
1 Tcoh, where Tcoh vanishes as the doping goes to zero,
while the q=0 susceptibility behaves as x21 . (T 1 Tcoh
1 J) where C is a coefficient of order unity and J re-
mains finite as the doping goes to zero. The plots of
these quantities from QMC calculations are consistent
with this picture and are displayed in Fig. 52 (Jarrell and
Pruschke, 1993b).

4. Transport properties and response functions

Using the QMC method and the maximum entropy
technique for analytic continuation, Pruschke, Cox, and
Jarrell (1993a, 1993b) and Jarrell and Pruschke (1993a,
1993b) have computed various transport quantities and
response functions as a function of temperature. Their

results for the NMR relaxation rate and for the resistiv-
ity are displayed in Figs. 53 and 54. Above the coher-
ence temperature Tcoh they found that there are regions
where the resistivity is linear and the NMR relaxation
rate is constant. Similar observations were made by Qin
and Czycholl (1994) using self-consistent perturbation
theory. However, given the values of Tcoh for the range
of doping of interest, the temperatures where this be-
havior is observed are too high to be relevant for the
physics of the normal state of high-Tc compounds.
The optical conductivity in the doped case has also

been addressed by these authors and by Jarrell, Freer-
icks, and Pruschke (1995). It is possible to give a simple
intuitive picture of the various contributions to the opti-

FIG. 51. Particle number d=^n&−1
2 as a function of the chemi-

cal potential Dm=m−U/2. Data obtained from QMC at bD=16,
for different values of the interaction U .

FIG. 52. QMC results for the local susceptibility (main plot)
and the uniform susceptibility (inset) for the Hubbard model
away from half-filling on a hypercubic lattice with U=4 and
t ij51/(2Ad) (from Jarrell and Pruschke, 1993b). The plot
demonstrates the scaling of xloc (but not of x) vs T/Tcoh .

FIG. 53. The NMR relaxation rate 1/T1 vs temperature from
QMC calculations for the Hubbard model away from half-
filling, for the same parameters as in Fig. 52 (after Jarrell and
Pruschke, 1993b). The inset gives the determination of Tcoh as
a function of doping found by these authors. A behavior
1/T1;const is reported in a range of temperature for T.Tcoh ,
while the low-temperature behavior is expected to obey the
Korringa law 1/T1T;const.
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cal response, by noticing that it results, in the LISA
method, from the convolution of two single-particle
spectral functions. As already shown in Figs. 48(a) and
48(b), the spectral function in the lightly (hole-) doped
regime is characterized by a sharp quasiparticle peak at
the Fermi level which is close to the top of the lower
Hubbard band (a word of caution is in order for very
small doping and intermediate U , where midgap states
do appear). The lower Hubbard band extends down to
'−2D . A second feature, the upper Hubbard band, is
present in the positive side of the spectrum at a fre-
quency v'U . The optical response that results from the
convolution of such spectral functions will accordingly
present three different contributions:
(i) The first contribution is a narrow low-frequency

peak that is due to transitions within the quasiparticle
resonance. In the T=0 limit this peaks becomes a d func-
tion and is the Drude part of the optical response.
(ii) A second contribution results from transitions

from the lower Hubbard band to the unoccupied part of
the quasiparticle peak. It gives rise to the so-called ‘‘mid
infrared band’’ in s(v), which extends from the origin
up to frequencies of order D .
(iii) The third contribution appears at much higher

frequencies of order U , which corresponds mainly to ex-
citations between the Hubbard bands.
In agreement with the qualitative picture that we just

described, we display in Fig. 55 the optical response for
small doping (n=0.97) obtained by Jarrell, Freericks,
and Pruschke (1995) with the QMC method. It is inter-
esting to track how the spectral weights associated with
the three different contributions in the optical spectra
evolve as one moves away from the half-filled case. The
weights resulting from the QMC simulations of Jarrell,
Freericks, and Pruschke (1995) are presented in Fig. 56,
where the increase in the weight of the Drude peak and
the concommitant decrease of the weight associated
with incoherent contributions is apparent, as the system
evolves to a less correlated state when the doping in-
creases.

5. Phase diagram

The determination of the phase diagram of the Hub-
bard model away from half-filling is a very difficult prob-

FIG. 54. The dc conductivity rdc
from QMC calculations away
from half-filling, for the same
parameters as in Fig. 52 (after
Jarrell and Pruschke, 1993b).
The low-temperature part has a
T2 dependence, while a linear
behavior is reported in a range
of temperature for T.Tcoh .

FIG. 55. Temperature (a) and doping (b) dependence of the
optical conductivity s(v) from QMC calculations with U=4 on
the hypercubic lattice with t ij51/(2Ad) (from Jarrell, Freer-
icks, and Pruschke, 1995). The curves in (b) correspond to
d=0.068, 0.0928, 0.1358, 0.1878, 0.2455, 0.3, 0.4, and 0.45 (top to
bottom curve at high v). The inset shows the evolution of the
Drude weight as a function of doping.
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lem because one has to consider the possibility of com-
mensurate and incommensurate magnetic and charge
order, and because a certain range of densities may not
be allowed in the model. This last possibility, corre-
sponding to phase-separation, was pointed out by Viss-
cher (1974), and investigated intensively by Emery and
Kivelson (1993a, 1993b).
In infinite dimensions, the details of the phase dia-

gram in the U2n plane at low temperature depend cru-
cially on the particular lattice chosen, via the degree of
magnetic frustration, and this issue is only beginning to
be explored.
In the fully frustrated situation, there is no magnetic

long-range order and the phase diagram at zero tem-
perature displays a paramagnetic insulating phase and a
Fermi-liquid metallic phase, with a region of coexistence
of the two phases. The resulting phase diagram is dis-
played in Fig. 49, as obtained by Kajueter, Kotliar, and
Moeller (1995) by the exact diagonalization method. It is
in good agreement with the results of the more precise
projective method (Fisher, Kotliar, and Moeller, 1995).
Freericks and Jarrell (1995a) investigated the mag-

netic phase diagram of the d=` Hubbard model on the
hypercubic lattice as a function of doping, temperature,
and interaction strength. They used the QMC method,
and compared the results with various approximation
schemes. Their main finding is that, when doped away
from half-filling, the magnetic long-range order of the
insulating antiferromagnetic phase remains commensu-
rate up to a limiting value of the doping (that depends
on U), after which the order becomes incommensurate.
The parameter X(q) characterizing the ordering wave
vector (Sec. VII.G) varies continuously with doping. At
a higher, critical doping, the long-range order disappears
and a paramagnetic metal is found. Figures 57 and 58
display the phase diagram found by these authors, and
the inset shows their QMC determination of the order-

ing temperature as a function of doping. Notice, how-
ever, that a comparison of the free energies of the mag-
netically ordered phases and the paramagnetic phase has
not been carried out. In the range of parameters studied,
these authors argued for the absence of ferromagnetic
order or phase separation. In contrast, at weak coupling,
van Dongen (1995) found that the doped Hubbard
model does possess phase separation between homoge-
neous low-density regions and antiferromagnetic high-
density regions, but that incommensurate order is sup-
pressed.
Furthermore, for large U, a T50 analysis using the

projective self-consistent method (Kajueter, Kotliar, and
Moeller, 1995) suggests that phase separation occurs be-
tween a commensurate magnetic insulator and a Fermi

FIG. 56. Total spectral weight (solid dots) as a function of
electron density for the same parameters as in Fig. 55 (from
Jarrell, Freericks, and Pruschke, 1995). These authors consid-
ered a decomposition of the total weight into a Drude part
(open triangles), a mid-infrared part (open squares) and a
charge-transfer part (solid triangles).

FIG. 57. Phase diagram of the Hubbard model on the d=`
hypercubic lattice (t ij51/2Ad) as a function of electron con-
centration re and U (from Freericks and Jarrell, 1995a). The
open dots indicate an incommensurate antiferromagnetic or-
dered state and the solid dots a commensurate state. The lines
correspond to various approximations discussed by these au-
thors.

FIG. 58. Critical temperatures corresponding to Fig. 57 as a
function of electron concentration (from Freericks and Jarrell,
1995a). (a) Weak coupling regime (U=1,1.5,2,3). (b) Strong-
coupling regime (U=3,4,5,7). Solid dots indicate the transition
to a commensurate antiferromagnetic ordered state, and open
dots denote the incommensurate state.
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Liquid phase. Ferromagnetism and incommensurate or-
der was ignored in this analysis however. We also note
that a ferromagnetic phase has recently been found by
Ulmke (1995) in a d=` generalization of the face-
centered cubic lattice.

I. Comparison with experiments

The LISA method has already been applied success-
fully to the description of various three-dimensional
strongly correlated materials displaying a Mott transi-
tion. The qualitative agreement is very good, and in
some cases the quantitative agreement is surprising. We
will discuss below a few instances in which the dynami-
cal mean field results can be directly compared to ex-
periments. It should be kept in mind that, at the present
stage, this comparison has been made within the one-
band Hubbard model and that LISA calculations treat-
ing each material in a more realistic manner (including,
e.g., orbital degeneracy and disorder) could and should
be performed (see Sec. VIII.C).

1. Phase diagrams

The phase diagram of V2O3 (Fig. 23) is qualitatively
very similar to the phase diagram presented above in
Fig. 43. In the inset of Fig. 43, results for the dc conduc-
tivity are also displayed. As we discussed before in Sec.
VII.D.3, the introduction of frustration in the model
plays the key role of lowering the Néel temperature TN
below the critical point TMIT where the first-order tran-
sition line ends. Thus, the phase diagram of the single-
band Hubbard model, with an intermediate degree of
frustration, presents the same topology as the one deter-
mined experimentally for V2O3. This system has been
the subject of extensive studies in the 1970s, and has
been revisited again most recently by Carter et al. (1992,
1993). Note that the magnetic ordering of V2O3 (Castel-
lani, Natoli, and Ranninger, 1978) has indeed a high de-
gree of frustration. The origin of the first-order para-
magnetic metal-insulator transition is in the existence of
a region where two solutions are allowed (cf. Sec.
VII.D.1). This coexistence regime between a metal and
a paramagnetic insulator has been observed experimen-
tally (McWhan et al., 1973). The slope of the transition
line is such that the insulator can be reached upon heat-
ing the metal. Note that the temperature scale for the
critical end point of the line TMIT is correctly predicted
by the theory to be much smaller than the electronic
bandwidth: Tc.0.05D . Setting D.0.4 eV, which is con-
sistent with optical conductivity results and is also close
to LDA band structure calculations (Mattheiss, 1994),
yields Tc of the order of 250 K, within less than a factor
of 2 from the experimental result.
The study of the dc conductivity (displayed in the in-

sets) allows us to characterize two crossover regions that
start at TMIT . The dotted line indicates a crossover sepa-
rating a good metal at low T and a semiconductor at
higher T . Between these states rdc has an anomalous,
rapid increase with T . This crossover retains much of the
flavor of the first-order line, as it can be traced to the

rapid disappearance of the coherent central quasiparti-
cle peak in the density of states. A similar behavior of
rdc was experimentally found by McWhan et al. (1973).
The other crossover, indicated by the shaded area, de-
notes the evolution from the semiconductor to the insu-
lator regime. The rapid change of the dc conductivity
across this regime can be observed in the inset (semilog
scale). In this case, the density of states merely consists
in the lower and upper Hubbard bands split by a small
gap D. The crossover then corresponds to the crossing of
the two energy scales T and D. These crossovers were
observed in V2O3 by Kuwamoto, Honig, and Appel
(1980).
At very low temperature, the insulating phase is found

to be unstable to antiferromagnetic order. Interestingly,
the partially frustrated model also displays a small re-
gion of metallic antiferromagnetism similar to the recent
experimental observation of Carter et al. (1992) in the
Vanadium deficient compound V22yO3.
Hence the single-band Hubbard model by itself, and

its solution within the LISA, can account for all four
phases and the various phase transitions observed in this
system. In particular, contrary to a rather widespread
belief, lattice deformation is not necessarily the driving
force behind the first-order metal-insulator transition at
finite temperature. Of course, a more realistic model of
V2O3 should take into account lattice deformations. Ex-
tensions of the LISA in this direction have recently been
considered by Majumdar and Krishnamurthy (1994).
Although we argue that the simple model considered

here indeed captures many puzzling behaviors observed
in the experimental systems, we expect that the detailed
nature of the antiferromagnetic metallic phase (such as
incommensurate orderings, etc.) will be very sensitive to
the particular band structure of the system. We note that
V2O3 has three t2g orbitals per vanadium filled with two
electrons. Two electrons (one per V) participate in a
strong cation-cation bond, leaving the remaining two in
a twofold degenerate eg band (Castellani, Natoli, and
Ranninger, 1978). The application of the LISA approach
to a model that takes into account some features of the
realistic band structure of V2O3 seems a very promising
direction, and is now within the reach of available tech-
niques.
Some of the features of the V2O3 phase diagram ap-

pear in other strongly correlated systems that undergo a
metal insulator transition as a function of applied pres-
sure or chemical substitution. A notable example is the
Y12xCaxTiO3 compound that was very recently found to
exhibit a metal-to-paramagnetic insulator transition in
the range 0.35<x<0.4 (Iga et al., 1995). As for V2O3, this
line is first order with evidence of phase coexistence.
Also, the study of the dc conductivity shows the behav-
ior associated with the crossovers that we discussed
above. It is interesting to point out that, in contrast to
V2O3, the metal insulator transition in this compound is
not accompanied by a discontinuity of the lattice param-
eters. This represents a strong empirical evidence of a
transition driven by purely electronic correlation effects.
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The phase diagram of 3He is also qualitatively similar
if we identify the solid phase with the paramagnetic in-
sulator phase and the liquid phase with the metal.
Therefore the pressure-induced first-order metal-to-
insulator transition upon heating or upon decreasing
pressure is a very general feature of correlated fermion
systems, which can be accounted for by a simple elec-
tronic model and need not be driven by the fermion-
lattice interaction.

2. Photoemission spectra

Regarding spectroscopic properties, there are two im-
portant predictions of the LISA that differ qualitatively
from earlier work on the metal insulator transition. It
was shown by Georges and Kotliar (1992) that Hubbard
bands are already well formed within the correlated me-
tallic state. It would be very interesting to investigate
numerically whether this also applies in three dimen-
sions. Secondly, at zero temperature in fully frustrated
systems, the metal-insulator transition takes place when
the Mott Hubbard gap is well formed (Zhang, Rozen-
berg, and Kotliar, 1993). This prediction is very different
from the results obtained in other approximation
schemes such as slave boson calculations.
With this theoretical background in mind, we now

turn to the comparison of one-particle spectral functions
to photoemission experiments on transition metal oxides
(for a general reference on experimental results, see
Hüfner, 1994). In a recent paper Fujimori et al. (1992)
examined the spectral function of several transition
metal compounds with a (slightly distorted) cubic perov-
skite structure containing all one d-electron per transi-
tion metal ions. In these systems the value of Ueff/D
changes because the lattice distortion changes the over-
lap between neighboring d orbitals. The compounds
studied were ReO3, VO2, SrVO3, LaTiO3, and YTiO3,
corresponding to increasing values of Ueff/D , with the
last compound being insulating and the other ones me-
tallic. The photoemission spectra are reproduced in Fig.
59. The progressive separation of a quasiparticle feature
close to the Fermi level, and a (lower) Hubbard band at
high energy is clearly visible. The weight in the low-
energy part of the spectrum vanishes by the time the
lower Hubbard band is well formed. All this is in good
qualitative agreement with the above results and the
plots of the spectral function in Fig. 30. It is clear from
the spectra that LaTiO3 is very close to the Mott transi-
tion point Uc2. It is difficult however to investigate pre-
cisely the mechanism of spectral weight transfer as U is
increased, since the data correspond to different materi-
als.
Very recently, Inoue et al. (1995) studied the

Ca12xSrxVO3 system (in which a Sr2+ ion is replaced
by Ca2+ of the same valence), for concentrations ranging
from a strongly correlated metal for x=1 to weaker cor-
relations for x=0. In this case the substitution parameter
x controls the strength of the interaction U/D by modi-
fying the V—O—V bond angle from ;160° to 180°.
Their results are displayed in Fig. 60, where the back-

ground has been subtracted and the intensity normal-
ized. The gradual transfer of spectral weight from the
quasiparticle feature to the lower Hubbard band as U is
increased is clearly seen. Moreover, due to the excellent
quality of the data, we can attempt a qualitative fit
within the LISA method. Using the iterated perturba-
tion theory approximation with a semicircular free den-
sity of states, we obtain the local spectral density at
negative frequencies, for values of U close to Uc2. In
order to compare our results to the experiment we con-
volute the theoretical spectra with a Gaussian of width

FIG. 59. Photoemission spectra for various oxides. The solid
line are the spectra predicted by band-structure calculations
(from Fujimori et al., 1992, and references therein).

FIG. 60. Photoemission spectra of Ca12xSrxVO3 for x=0.9,
0.8, 0.4, 0.3 (from Inoue et al., 1995). A background substrac-
tion and normalization of the spectra has been performed
(courtesy of I. Inoue).
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0.3 eV that corresponds to the experimental resolution.
We plot the results in Fig. 61. The agreement is quite
good. We point out that since the width of the incoher-
ent part is '2D , and the position of its maximum is
'U/2, the fit is made with essentially no adjustable pa-
rameters since these quantities can be approximately ex-
tracted from the experimental data. One important
point to note is that the property of the pinning of the
density of states at the Fermi energy characteristic of a
momentum-independent self-energy is no longer appar-
ent in Fig. 61. This is just the mere consequence of the
convolution with the experimental response. Although
many aspects of the experimental results are correctly
captured by our simplified model, a detailed description
of the shape of the spectra in this system calls for exten-
sions of the LISA framework to include more realistic
band structure, density of states, and some degree of
momentum-dependence of the self-energy. Indeed, it is
apparent from the data that, upon increasing the
strength of the interactions, the quasiparticle peak not
only becomes narrower in this system, but also becomes
flatter. This is evidence for a significant momentum de-
pendence of the self-energy near the Fermi level (Inoue
et al. 1995), which obviously requires an extension of the
LISA formalism. Note, however, that there is no obvious
contradiction between this observation and the good
overall agreement of the LISA results with the
momentum-integrated spectrum. For more details on the
comparison between the LISA results with photoemis-
sion and optical conductivity experiments on CaVO3,
the reader is directed to the recent work of Rozenberg,
Inoue, et al. (1996).
We finally mention another system, NiS1.5Se0.5, which

undergoes a transition between an antiferromagnetic
metal below T=60 K and a charge-transfer insulator at
temperatures above 60 K. In this system, angle-resolved
photoemission experiments of Matsuura et al. (1994) re-

veal a well-defined quasiparticle peak in the metal, with
very little dispersion, in agreement with the description
above. In the insulator, however, a sharp feature remains
near the gap edge, which is obviously beyond the reach
of the present one-band description but might still be
explained within the LISA treatment of a multiband
model.
We conclude that the LISA treatment of the single-

band Hubbard model can account qualitatively for (i)
the separation of the quasiparticle peak from the Hub-
bard bands in a strongly correlated metal, and (ii) the
gradual transfer of spectral weight between these fea-
tures as U is increased. This point, which is sometimes
challenged (Chen, 1994), was clearly demonstrated in
the first application of the iterated perturbation theory
method by Georges and Kotliar (1992), and has been
widely confirmed since. Notice, however, that, in many
systems, the correlation gap seems to close as the metal-
insulator transition is approached (Torrance, Lacorre,
and Nazzal, 1992). Furthermore, optical measurements
of Tokura et al. in a series of compounds with varying
Mott Hubbard gap have been interpreted as a result of
the collapse of the Mott-Hubbard gap at the metal insu-
lator transition. A more careful investigation of the op-
tical conductivity is necessary before drawing a final
conclusion.
Another difficulty is that the doping dependence of

the coherent and incoherent features observed in photo-
emission spectroscopy (Fujimori et al., 1992; Sarma
et al., 1995) does not agree with the predictions of the
single-band Hubbard model treated within LISA.
Clearly more detailed studies with higher resolutions,
and in particular more extensive use of angular resolved
spectroscopy will be useful in elucidating these and other
issues.

3. Optical conductivity

We now review the application of the LISA to the
optical conductivity of the Hubbard model recently per-
formed by Rozenberg et al. (1995; see also, Pruschke,
Cox, and Jarrell, 1993a, 1993b and Hong and Kee,
1995b), in connection with the recent experiments on
V2O3 of Thomas et al. (1994). We shall argue below that
the single-band Hubbard model with an intermediate
degree of magnetic frustration can qualitatively account
for many features that are experimentally observed in
this compound.
Let us recall the expression derived in Sec. IV for the

frequency-dependent real part of s in the limit of large
dimensions:

s~v!5
1
v

2e2t2a2

\2n E
2`

`

de D~e!E
2`

` dv8

2p
r~e ,v8!

3r~e ,v81v!@nf~v8!2nf~v81v!# , (271)

where r(ek ,v)=−(1/p) ImG(k,v) is the spectral function
of the lattice conduction electrons, e is the electron
charge, a the lattice constant, and n=ad is the volume of

FIG. 61. Photoemission spectra calculated (with the iterative
perturbation theory method) for the half-filled single band
Hubbard model, with U/D=2.4, 2.75, 2.9, 3.2. The theoretical
spectra has been convoluted with a Gaussian of width 0.3 eV
that corresponds to the experimental resolution.
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the unit cell. At T=0, the optical conductivity can be
parametrized by (Kohn, 1964)

s~v!5
vP*

2

4p
d~v!1sreg~v!, (272)

where the coefficient in front of the d function is the
Drude weight and vP* is the renormalized plasma fre-
quency. In the presence of disorder d(v) is replaced by a
Lorentzian of width G. The kinetic energy is related to
the conductivity by the sum rule

E
0

`

s~v!dv52
pe2a2

2d\2n
^K&5

vP
2

8p
(273)

The Drude part can be directly obtained in terms of the
quasiparticle weight Z in the limit of d→`. Using (271),
it can be shown that

vP*
2

4p
5
4pt2e2a2

\2n
ZD~eF!. (274)

In order to apply the Hubbard model to V2O3, we
recall that this compound has three t2g orbitals per V
atom which are filled with two electrons. Two electrons
(one per V) are engaged in a strong cation-cation bond,
leaving the remaining two in a twofold degenerate eg
band. The Hubbard model ignores the degeneracy of the
band which is crucial in understanding the magnetic
structure (Castellani, Natoli, and Ranninger, 1978), but
captures the interplay of the electron-electron interac-
tions and the kinetic energy. With our simplified single-
band model, we shall only focus on the low-frequency
behavior of the optical response in the range v<1 eV.
One should keep in mind that at high frequencies the
experimental spectra show contributions from higher
bands, but these are outside the scope of the present
approach. Experimentally, one can vary the parameters
U and D , by introducing O and V vacancies or by ap-
plying pressure or chemical substitution of the cation.
Similarly to what we did for the photoemission data, we
proceed by extracting model parameters from the ex-
perimental data. We then use them as input for the
model calculation and compare the results to the experi-
mental spectra. These parameters should be considered
as having merely a phenomenological significance.
We first discuss the insulating state of V22yO3. The

experimental optical spectrum of the insulator is repro-
duced in Fig. 62 (bottom; Thomas et al., 1994). It is char-
acterized by an excitation gap at low energies, followed
by an incoherent feature that corresponds to charge ex-
citations of mainly Vanadium character (Thomas et al.,
1994). The procedure to extract the model parameters
U ,D is indicated in the figure, and the resulting values
are given in Table II for the two samples considered.
The sample with no vanadium deficiency (y=0) is fitted
by U/D.4 and corresponds to point A in the phase
diagram of Fig. 43, while the sample with y=0.013 is fit-
ted by U/D.2.1 and corresponds to point B in this
phase diagram. The model results for the optical con-
ductivity, corresponding to these parameters are dis-
played in Fig. 63. The size of the gaps and the overall

shape of the spectrum is found to be in good agreement
with the experimental results. The insets contain the ki-
netic energy ^K& and the optical gap D as a function of
U for various degrees of magnetic frustration. Using for
the lattice constant a'3 Å (the average V-V distance),
we compare the former with the experimental integrated
spectral weight.
We now discuss the recent data in the metallic phase.

The experimental data are for pure samples that become
insulating at Tc.150 K and have been taken at T=170
and 300 K. They are reproduced in Fig. 62 (top). Both
spectra are made up of broad absorption at higher fre-
quencies and some phonon lines in the far infrared.
They appear to be rather featureless; however, upon
considering their difference (in which the phonons are
approximately eliminated) distinct features are ob-
served. As T is lowered, there is an enhancement of the
spectrum at intermediate frequencies of order 0.5 eV;
more notably, a sharp low-frequency feature emerges
that extends from 0 to 0.15 eV.
In Fig. 63 we show the calculated optical spectra for

two different values of T . The interaction is set to
U52.1D , which places the system in the correlated me-
tallic state. Setting D'0.4 eV we find these results to be
qualitatively consistent with the experimental data on
V2O3. The two temperatures T=170 and 300 K then cor-
respond to points C and D in the phase diagram of Fig.
43, respectively. As the temperature is lowered, we ob-

FIG. 62. The experimental s(v) of metallic V2O3 (full lines) at
T=170 K (upper) and T=300 K (lower), from (Thomas et al.,
1994). The inset contains the difference of the two spectra
Ds(v)=s170 K(v)−s300 K(v). Diamonds indicate the measured
dc conductivity sdc . The lines in the lower panel indicate s(v)
of insulating V22yO3 with y=0.013 at 10 K (upper) and y=0 at
70 K (lower).
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serve both the enhancement of the incoherent structures
at intermediate frequencies of the order U/2 to U and
the rapid emergence of a feature at the lower end of the
spectrum. An interesting prediction of the Hubbard
model treated within the LISA framework (Rozenberg
et al., 1995) is the T dependence of the lowest frequency
feature. From the model calculations we expect a trans-
fer of spectral weight to the low-frequency end as T is
decreased. This occurs at a scale Tcoh'0.05D'240 K
which correlates well with the experimental data. Tcoh
has the physical meaning of the temperature below
which the Fermi-liquid description applies (i.e., at which
the quasiparticle resonance is formed, cf. Sec. VII.D.2).
For the total spectral weight we find vP

2 /8p'500 eV/
V cm which is lower than the experimental result. This
could be due to the contribution from tails of bands at
higher energies that are not included in our model, or it
may indicate that the bands near the Fermi level are
degenerate.

A final and important point is that experiments show
that the slope of the linear term in the specific heat g in
the metallic phase is unusually large. For 0.08 Ti substi-
tution g'40 mJ/mol K2, while for a pressure of 25 Kbar
in the pure compound g'30 mJ/mol K2 and with V de-
ficiency in a range of y=0.013 to 0.033 the value is g'47
mJ/mol K2 (McWhan et al., 1971; McWhan et al., 1973;
Carter et al., 1993). In our model g is simply related to
the weight in the Drude peak in the optical conductivity
and to the quasiparticle residue Z , g53/(ZD)
mJ eV/mol K2. The chosen model parameters results in
g'25 mJ/mol K2 which is close to the experimental find-
ings. Thus, it turns out that the LISA gives a simple
interpretation to the experimentally observed tempera-
ture dependence of the optical conductivity spectrum
and the anomalously large values of the slope of the
specific heat g, as a consequence of the appearance of a
single small energy scale, the renormalized Fermi energy
eF*[ZD .

4. Doped titanates

We finally compare the LISA to experiments on the
behavior of a Mott insulator under doping. A particu-
larly interesting system in this respect is La12xSrxTiO3,
which has been recently studied in a beautiful set of
experiments by Tokura et al. (1993) and Fujimori et al.
(1992). As mentioned above LaTiO3 is poised at the
brink of the Mott transition. By substituting La with Sr
(corresponding to hole doping), one can move away
from the Mott point, thus producing a three-dimensional
analog of the La22xSrxCuO2 system.
Measurement of the resistivity r, Hall coefficient,

magnetic susceptibility x, and specific heat C5gT were
reported. The resistivity is proportional to the square of
the temperature (r=AT2), demonstrating that these sys-
tems are Fermi liquids. Furthermore, the Hall coefficient
is electronlike and is in rough agreement with a (large)
volume of the Fermi surface (proportional to 1−x). All
three quantities x, g, and A are strongly enhanced as the
metal-insulator transition is approached, with the ratios
x/g and A/g2 remaining finite.
Because of the nature of the perovskite lattice struc-

ture of this three-dimensional compound, one should
use a degenerate Hubbard model for its quantitative de-
scription. So far the Mott transition as a function of dop-
ing has mainly been investigated in the context of the
one-band Hubbard model using LISA. Since this is the
simplest model exhibiting this phenomenon, it is useful
to summarize the results of a comparison of the predic-

TABLE II. Parameters extracted from experiments for the model description of V22yO3. Points A ,B ,C refer to the locations
indicated in the phase diagram of Fig. 43.

Parameter
Phase Location D [eV] U [eV] U/D D [eV] v P

2 /(8p) [eV/V cm]

Insulator (y=0) A 0.33 1.3 4 0.64 170620
Insulator (y=0.013) B 0.46 0.98 2.1 0.08 800650
Metal (170 K) C 0.4 0.8 2.1 - 17006300

FIG. 63. The model s(v) for the metallic solution (full lines)
at U52.1D and T50.05D (upper, corresponding to point C in
Fig. 43) and 0.083D (lower, corresponding to point B in Fig.
43). A small G=0.3 and 0.5D was included to mimic a finite
amount of disorder. Dotted lines indicate the insulating solu-
tion results at U54D and T=0 from exact diagonalization
(thin) and iterative perturbation theory (bold). Left inset: ^K&
versus U for the AFM (bold-dotted), partially frustrated (thin-
dotted) and PM insulators (thin) and PM metal (bold). Right
inset: gap D versus U for the AFM (dotted), partially frus-
trated (thin) and PM (bold) insulators. D is twice the energy of
the lowest pole from the exact diagonalization Green function.
The data are for ns→` from clusters of three, five, and seven
sites assuming 1/ns scaling behavior. Black squares show the
insulator experimental results.
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tions of this model against the existing experiments,
keeping in mind the possible shortcomings of a single-
band description.
Rozenberg, Kotliar, and Zhang (1994) have applied a

single-band LISA description to this system by choosing
a value of U close to the transition point
(U5Uc2.3D), in agreement with the proximity of
LaTiO3 to the transition, and calculating physical quan-
tities as a function of doping x . The renormalized Fermi
energy eF* . xD is the energy scale which collapses at the
transition. The results for x and g were displayed in Fig.
50 above and compared to experiments. The agreement
is found to be quite satisfactory (especially for g), with
no adjustable parameter.
The Wilson ratio RW for the same values of param-

eters was also calculated. The results are shown in Fig.
64 and indicate that RW is roughly independent of x , for
not too small doping because the value of the exchange
constant J in Eq. (254) is not very large. For very small
doping however, the Wilson ratio vanishes (since x re-
mains finite and g diverges, as discussed previously).
Also, for large doping RW→1, the noninteracting value,
since the correlation effects become less important.
However, even in the intermediate doping region, the
computed value was substantially lower than the experi-
mentally observed value RW.2 (which turns out to be
rather independent of doping). While this discrepancy
could in principle be due to limitations of the LISA
method, Kajueter, Kotliar, and Moeller (1995) recently
argued that orbital degeneracy may account for the ob-
served experimental value RW.2, at least in the large
doping regime. For very small doping, the effect of the
magnetic exchange on g (which is absent within LISA) is
also an important question.
As discussed before, the LISA framework allows us to

understand the observed scaling of A with g2 and calcu-
late the coefficient of proportionality (Moeller et al.,
1995). The result r(T)5AT2 where

A52
p5/2\a

e2D

]2S~ ivn!

]~ ivn!2

gives rise to a finite ratio

A

g2 58.23103a ~Vm!, (275)

where a is the lattice spacing in units of meter, and Eq.
(275) is found in fair agreement with the measured value
A/g2=8310−6 Vm reported by Tokura et al. (1993).
The evolution of the spectral function as a function of

doping in La12xSrxTiO3 was investigated by Fujimori
et al. (1992). The observed spectra show the presence of
a narrow quasiparticle peak at the Fermi level plus a
broad incoherent band at higher frequencies. The line
shape is approximately independent of x , while the over-
all intensity of these features roughly scales with 1−x . If
one naturally associates the higher frequency feature of
the observed spectra with the lower Hubbard band, the
data seems inconsistent with the results of the one-band
Hubbard-model calculation. It should be noted that the
experimental results are rather surprising, especially in
the region of large doping where correlations are not
expected to be important. In order to explain the ob-
served data, Sarma et al. (1995) recently introduced two
models that involve phase separation on the surface and
a strong random site-potential. Their solution within the
LISA framework shows better agreement with the ob-
served data. This interesting problem certainly deserves
more experimental and theoretical study.
As a general conclusion of this section, we emphasize

that the recent attempts that have been made in compar-
ing the LISA results to experimental findings on transi-
tion metal oxides are encouraging. Several qualitative
features were captured, and in some cases the quantita-
tive agreement is surprising. It is clear however that
these attempts must go beyond the single-orbital de-
scription, and that the effect of disorder is also likely to
be an important issue. Extending the LISA framework
to include more realistic features—such as a realistic
band structure, crystal structure, and atomic orbitals
(Sec. VIII.C)—should be within the reach of current
techniques and would result in an improved ab initio
description of correlated transition-metal oxide systems.
Also, more precise experiments (such as angle-resolved
photoemission) on improved samples will be necessary
to decide whether some of the surprising predictions of
the LISA, such as the existence of mid-gap states very
near half-filling (Fisher, Kotliar, and Moeller, 1995), in-
deed occur in real transition-metal oxides.

VIII. APPLICATION OF THE LISA TO VARIOUS MODELS

In this section, we review recent studies of several
strongly correlated fermion models in the limit of infi-
nite dimensions, in the LISA framework. For each
model, we set up the dynamical mean-field equations
and describe the associated single-impurity model,
briefly describe the main results and indicate possible
directions for future research. Our approach is much less
exhaustive than in Sec. VII, and the reader is directed to
the original articles for more detailed information.

FIG. 64. The Wilson ratio as a function of doping for U=3. In
comparison, the La12xSrxTiO3 has an almost constant RW.2.
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A. Periodic Anderson model and the Kondo lattice

1. The periodic Anderson model

The periodic Anderson model (PAM) consists of a
band of conduction electrons that hybridizes with local-
ized f-electron states at each lattice site. The double oc-
cupation of the f sites is disfavored by a repulsive local
term that corresponds to the screened Coulomb interac-
tion. With a local hybridization, the Hamiltonian is de-
fined by

H5(
ks

ekcks
1 cks1V(

is
~cis

1 f is1f is
1 cis!1e f(

is
f is

1 f is

1U(
i

~nfi↑2
1
2 !~nfi↓2

1
2 !. (276)

This model Hamiltonian is widely considered to be rel-
evant for the description of a large class of strongly cor-
related systems, most notably the heavy fermion com-
pounds and the so-called ‘‘Kondo insulators.’’
Using the fact that in the d→` limit the local interac-

tion gives rise to a local (i.e., k-independent) self-energy,
the various components of the Green’s functions are ob-
tained in the form:

Gc~ ivn ,k!215ivn2ek2
V2

ivn2e f2S f~ ivn!
, (277)

Gf~ ivn ,k!215ivn2e f2S f~ ivn!2
V2

ivn2ek
, (278)

Gcf~ ivn ,k!215
1
V

$@ ivn2ek!~ ivn2e f2S f~ ivn!#2V2%.

(279)

In these expressions, S f(ivn) is the self-energy of the f
electrons, and the chemical potential m has been ab-
sorbed in the definitions of ek and ef . Using the methods
of Secs. II and III, the reduction to a self-consistent
single-site model is easily performed and the effective
action reads

Seff52E
0

b

dtE
0

b

dt8(
s

fs
1~t!G 0

21~t2t8!fs~t8!

1UE
0

b

dt@nf↑~t!2 1
2 #@nf↓~t!2 1

2 # (280)

with the f self-energy obtained from

S f5G 0
212Gf

21, Gf[2^Tff1&Seff. (281)

Not surprisingly, the effective action is that of a single-
impurity Anderson model. The self-consistency condi-
tion requires that the local f Green’s function of the lat-
tice model coincides with the Green’s function of the
impurity problem, namely:

E
2`

` de D~e!

ivn2e f2S f~ ivn!2V2/~ ivn2e!
5Gf~ ivn!,

(282)

where D(e) refers as usual to the noninteracting density
of states of the conduction electrons. It is often useful to
rewrite this self-consistency condition in terms of the
Hilbert transform D̃ of the density of states [cf. Eq. (11)]
as

Gf~ ivn!5
1

ivn2e f2S f
1

V2

ivn2e f2S f

3D̃S ivn2
V2

ivn2e f2S f
D . (283)

Note that the Hilbert transform appearing in the right-
hand side of this equation coincides with the local con-
duction electron Green’s function Gc(ivn).
This description of the Anderson lattice as a self-

consistent single impurity Anderson model was origi-
nally introduced by Kuramoto and Watanabe (1987).
Generalizations of these equations to the description of
the ordered phases of this model can be easily con-
structed following the lines of Sec. V.
In the work of Georges, Kotliar, and Si (1992), these

dynamical mean-field equations were combined with
general theorems on the single-impurity Anderson
model (Langreth, 1966), along similar lines to those re-
viewed in Sec. VII.H for the Hubbard model. This
analysis shows that the metallic phase of the d=` PAM
(in the absence of long-range order and in zero magnetic
field) is a Fermi liquid and has a Fermi surface which
accommodates the total number nc1nf of conduction
and f electrons.
Most quantitative studies of the d=` PAM that have

appeared in the literature have focused on the (insulat-
ing) half-filled case, which is reviewed in the next sec-
tion. A notable exception is the early work of Sch-
weitzer and Czycholl (1989, 1990a, 1991b) who make use
of second-order perturbation theory in the coupling U .
Both the direct weak-coupling expansion (in which the
free fermions Green’s function enters the second-order
self-energy) and the ‘‘self-consistent’’ one (in which the
full interacting propagator is used) were considered.
One-particle spectral densities, and the temperature de-
pendence of the resistivity r(T) and thermopower
Q(T), were calculated using these approximations. The
results for r(T) and Q(T) at various electron densities
are reproduced in Figs. 65 and 66. Schweitzer and Czy-
choll make the interesting observation that r(T) has a
monotonic behavior (characteristic of a normal metal) at
low electron fillings (i.e., when m is far below the effec-
tive f level), while a plateau develops for higher electron
densities, which turns into a resistivity maximum at the
Kondo scale (followed by a regime with a negative slope
]r/]T) as one enters the mixed valence regime (i.e.,
when m is close to the effective f level). A concomitant
change in behavior is observed for Q(T). Both types of
behavior are observed experimentally in heavy fermion
compounds.
A crucial issue in the field of heavy fermions is the

competition between Fermi-liquid coherence (the
Kondo effect) and magnetic (Ruderman-Kittel-Kasuya-
Yosida, or RKKY, and superexchange) interactions. The
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LISA (d=`) approach does have a bearing on this issue,
albeit a partial one (Georges, Kotliar, and Si, 1992; Jar-
rell, 1995). Namely, both the superexchange and the
RKKY couplings are indeed present: the RKKY cou-
pling scales as 1/d between nearest-neighbor sites, 1/d2

between next nearest neighbors, etc. which is precisely
the correct scaling such that a finite contribution to the
magnetic energy is obtained. [For a more detailed analy-
sis of the RKKY coupling in large dimensions, see Jar-
rell (1995).] Therefore, phases with long-range order do
appear. This makes the LISA approach more suitable to
capture these effects than the large-N methods (in which
magnetic effects only appear at order 1/N2, cf. Read,
Newns, and Doniach, 1984). These magnetic scales also
appear in two-particle response functions at a fixed
value of q above the ordering temperature. However,
they do not show up in single-particle properties such as
the self-energy, so that no precursor effect of the mag-
netic transitions exists, e.g., for the effective mass in this
approach. Also, collective excitations (e.g., spin waves)
are absent. The problem was already discussed in Sec.
VII in connection with the Mott transition, and is intrin-
sic to single-site descriptions. Extensions of the LISA
method are required to capture these effects (cf. Sec.
IX).

2. Half-filled case: Kondo insulators

More recently, quantitative studies of the LISA equa-
tions for the periodic Anderson model going beyond
perturbative approximations have appeared in the lit-
erature, focusing particularly on the half-filled case
^nc&1^nf&=2 (ef=0 with the notations above). This case
is relevant for the so-called ‘‘Kondo insulators’’ such as
CeNiSn, Ce3Bi4Pt3, and SmB6 (and perhaps also FeSi).
In the work of Jarrell, Akhlaghpour, and Pruschke
(1993a) and Jarrell (1995), the quantum Monte Carlo
method is used to solve the associated impurity problem
and calculate densities of states and various response
functions. It was also found that the half-filled solution
has an antiferromagnetic instability for some range of
parameters.
The study of solutions with commensurate antiferro-

magnetic long-range order was considered by Sun, Yang,
and Hong (1993) within a slave-boson approximation for
the impurity problem, and in more detail by Rozenberg
(1995) using the exact diagonalization method. The re-
sulting phase diagram is depicted in Fig. 67. The para-
magnetic and antiferromagnetic phases are separated by
a second-order critical line that obeys V2/UD'Jc/D ,
with Jc'0.075D . Thus the large dimensional solution of
the PAM realizes early ideas of Doniach (1977), who
found that at the (static) mean field level Jc/D;O(1),
and argued that dynamical fluctuations should strongly
reduce this ratio. It is also interesting to note that the
phase diagram is in good agreement with the recent re-
sults of Vekič et al. (1995) for the two-dimensional PAM
obtained from quantum Monte Carlo simulations on a
finite lattice, and to those of Möller and Wölfle (1993) in
the three-dimensional case.
A typical result for the spectral density of the half-

filled PAM in the paramagnetic phase is depicted in Fig.

FIG. 65. Temperature dependence of the resistivity for the
periodic Anderson model on the hypercubic lattice with U=1
and V=0.4 (t ij 5 1/A2d), as obtained from ‘‘self-consistent’’
second-order perturbation theory. (1) n tot=0.8, (2) n tot=0.6, (3)
n tot=0.4, (4) n tot=0.2 (from Schweitzer and Czycholl, 1991b).

FIG. 66. Temperature dependence of the thermopower Q(T)
for the same parameters as in Fig. 65 (from Schweitzer and
Czycholl, 1991b).

FIG. 67. Phase diagram of the periodic Anderson model on
the z=` Bethe lattice. The inset shows, in a log-log plot, that
the second-order critical line obeys Uc'V c

2 as U becomes
large. The results are from exact diagonalization with ns=6.
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68. The result was obtained by the iterated perturbation
theory method (Sec. VI.B.2), and compares favorably
with the results of exact diagonalizations or quantum
Monte Carlo [there are small differences, though, as
noted in the work of Jarrell, Akhlaghpour, and Pruschke
(1993a)]. It is useful to note that the iterated perturba-
tion theory method, similarly to what happens in the
case of the Hubbard model, bases its success on the
property of capturing correctly the limit in which either
D→0 or V→0, and also (by construction) the weak-
coupling limit U→0. The spectral density displays a nar-
row insulating gap Dind , with two sharp peaks on each
side. As discussed below, this gap corresponds to an in-
direct gap of the renormalized band structure. Further-
more, satellites at 6U/2 are also found, as expected
from the study of the atomic limit. As already observed
for the Hubbard model in Sec. VI.B.2, these high-energy
satellites are not correctly captured by the ‘‘self-
consistent’’ weak-coupling expansions mentioned above;
a comparison with Figs. 3(a)–3(c) of Schweitzer and
Czycholl (1990a), in which these peaks are absent, illus-
trates the point. We believe that the sharp peaks on the
gap edges are related to the features observed by pho-
toemission on FeSi by Park, Shen, et al. (1994).
These results can be understood by performing a low-

frequency analysis of the dynamical mean-field equa-
tions. Let us make the assumption that the f-electron
spectral density displays a gap Dind . This implies that the
low-frequency behavior of the f-electron Green’s func-
tions is Gf(ivn);ivn . A convenient parametrization of
this linear behavior is

V2Gf~ ivn!52S 11
^e2&
V
*
2 D ivn1O~vn

3 !. (284)

In this expression, V
*
is an effective hybridization renor-

malized by the interaction (for U=0, it is easily checked
that V

*
5V) and ^e2& simply denotes *de D(e)e2. In-

serting this into the self-consistency condition (283), one
finds that the density of states of the effective bath en-
tering the impurity model take the form

D~v![2
1
p
ImG 0

21~v1i01!

5
V
*
2

V
*
2 1^e2&

d~v!1Dg~v!, (285)

in which Dg(v) denotes a nonsingular density of states
also displaying a gap. Hence, the effective bath density
of states has a single localized level at zero energy, in the
middle of the insulating gap. Solving the Anderson im-
purity model with this bath shows that (i) the assump-
tion of a gap is a self-consistent one and (ii) a local
Kondo effect does take place (despite the insulating
character of the lattice problem), involving the f orbital
and this localized level. The low-energy expansion of the
self-energy reads

Re S f~v1i01!52S V2

V
*
2 21 Dv1O~v3! (286)

while ImS f(v1i01) vanishes inside the gap, and is ac-
tually zero within a wider interval of energies (or ‘‘direct
gap’’): −Ddir/2<v<+Ddir/2, as we will show. The ‘‘renor-
malized’’ (quasiparticle) bands Ek are obtained by locat-
ing the poles of the conduction electron Green’s func-
tion Gc(k,v); i.e., the bands are solutions of

@Ek2ek#@Ek2S f~Ek!#2V250. (287)

An approximation of the band structure and of Dind and
Ddir can be obtained by substituting the self-energy in
this equation by its low-frequency linear behavior (286).
This leads to

Ek
6.

1
2

@ek6Aek
214V

*
2 # . (288)

This expression is identical to the one for U=0, with the
replacement V→V

*
. The indirect gap corresponds to

the distance between renormalized band edges. Denot-
ing by D the half-width of the noninteracting density of
states, we obtain

D ind.AD214V
*
2 2D (289)

while the smallest direct gap is for ek=0 and reads

Ddir.2V* . (290)

It is seen that D ind . 2V
*
2 /D ! Ddir whenV*

!D .
The indirect gap appearing in the spectral density also

sets the low-energy scale appearing in the temperature
dependence of the uniform spin and charge susceptibili-
ties. Consistently with the existence of sharp peaks at
the gap-edges in the spectral density, the magnetic sus-
ceptibility raises sharply as a function of temperature for
T>Dind , and reaches a maximum at a scale set by the gap
Dind itself. This behavior is in good qualitative agree-
ment with the experimental findings of Jaccarino et al.
(1967) for FeSi. The QMC result of Jarrell, Akhlagh-
pour, and Pruschke (1993a) for x(T) is displayed in Fig.
69. Jarrell (1995) reports a charge and spin gap compa-
rable to each other: Dc.Ds.2Dind , but recent results of
Rozenberg, Kotliar, and Kajueter (1995) in the deep

FIG. 68. Density of states for the c and f electrons (bottom
and top) in the half-filled periodic Anderson model for U/D
=2.5 and V/D=0.4 at T/D=0.01.
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Kondo regime may indicate deviation from this behav-
ior, and we regard this issue as yet unresolved. Note
that, in the one-dimensional case, Dc@Ds (Nishino and
Ueda, 1993), while the Gutzwiller approximation (Rice
and Ueda, 1986) leads to Dc.Ds . Jarrell (1995) has also
studied the behavior of the thermodynamic properties as
a function of temperature, and whether a scaling behav-
ior applies to each of them, as a function of T/Dind . Re-
cent work by Saso and Itoh (1995) studies the effect of
an applied magnetic field on Kondo insulators using the
LISA.
We now briefly describe the results for the optical

conductivity. This was first investigated by Jarrell (1995)
using QMC, and recently by Rozenberg, Kotliar, and
Kajueter (1995) using exact diagonalization and the iter-
ated perturbation theory approximation to treat the
strong coupling regime. These results can be compared
to the recent experimental results of Bucher et al. (1994)
and Schlesinger et al. (1993) on the optical response of
Ce3Bi4Pt3 and FeSi respectively. A plot of the optical
conductivity s(v) for different values of U at T=0 is
shown in Fig. 70. These results show that the optical gap
is set by the direct gap Ddir of the renormalized band
structure. This is because ImS becomes nonzero at this
scale. Thus the emerging picture is consistent with the
usual interpretation of the hybridization band insulator,
with a renormalized hybridization as described above.
However, interesting effects are found as a function of
temperature. In Fig. 71 we show the optical conductivity
for different temperatures and the parameters U=3 and
V=0.25 fixed. The gap is essentially temperature inde-
pendent. It begins to form at T*'Ddir/5, and is fully de-
pleted only at temperatures of the order of T* /5, that is,
when T becomes comparable to the size of the gap in
the density of states. It is actually interesting to compare
how the process of filling of the optical gap is correlated

with the filling of the gap in the coherent features of the
single-particle spectra and with their subsequent disap-
pearance at high temperature. This comparison makes
more evident the different energy scales associated with
the optical gap and the coherent gap in the density of
states. The single-particle spectra for the c and f elec-
trons is displayed in Fig. 72.
The behavior described above is qualitatively similar

to the experimental observations in the Kondo insulator
systems mentioned above, which are reproduced in Figs.
73 and 74. Note that, while they correspond to different
compounds, the two spectra have many common fea-
tures. A point worth mentioning is that the solution of
the model within the iterated perturbation theory

FIG. 69. Staggered (AF) and uniform (F) spin susceptibilities
of the symmetric PAM with U=2 on the hypercubic lattice
[t ij51/2Ad , for various values of V (from Jarrell, Akhlagh-
pour, and Pruschke (1993a, 1993b)]. The inset of (a) shows the
Néel temperature TN when V=0.4 as a function of a frustrating
hopping t2/t1 . The inset of (b) shows the local spin susceptibil-
ity.

FIG. 70. The optical conductivity spectra of the periodic
Anderson model, obtained by iterated perturbative theory for
values of the interaction U=0.5,1,2,3 (right to left), keeping the
hybridization V=0.25 fixed. The inset shows the gap from the
optical spectra Dc'Ddir and the indirect gap Dind from the local
density of states for V=0.6. The slopes of these curves indicate
that V* 2/D}Dind and V*}Ddir in the strong correlation region.
Similar results have been obtained by Jarrell (1995) using the
QMC method.

FIG. 71. The optical conductivity for the Anderson model at
T=0.001 (bold), 0.005, 0.01, 0.02 (dotted), 0.03 (thin). The in-
teraction U=3 and V=0.25. Inset: The same quantity at
T=0.001 (bold); 0.005, 0.01, 0.02, 0.03 (dotted); with Lorentz-
ian random site disorder of width G=0.005.
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method predicts an interesting nonmonotonic behavior
of the total integrated optical spectral weight as a func-
tion of the temperature. It is observed that the inte-
grated weight initially increases with temperature, up to
temperatures of the order of the size of the optical gap.
A further increase of T leads to a decrease of the inte-
grated weight as the system turns metallic and correla-
tions become unimportant. The fact that in the low-
temperature range the integrated weight increases with
T may be relevant for the resolution of the problem of
the ‘‘missing spectral weight’’ experimentally observed
in the Kondo insulators compounds (Schlesinger et al.,
1993; Bucher et al., 1994).

To end this section, we mention that an alternative
model for FeSi has been proposed and studied in the
d→` limit by Fu and Doniach (1994). The model is that
of a strongly correlated semiconductor consisting of two
bands of dominantly iron character. The proposed
Hamiltonian reads

H5 (
^ij&s

2t~ci1s
† cj1s2ci2s

† cj2s1H.c.!

1(
is

V~ci1s
† ci2s1H.c.!

1(
i
U~nci1↑nci1↓1nci2↑nci2↓!. (291)

The opposite sign of the two hopping terms provides a
direct gap between the valence and conduction band.
The self-consistent perturbation theory was used by Fu
and Doniach to compute various quantities, among
which are the temperature dependence of the suscepti-
bility and the spectral functions. At this moment, we are

FIG. 72. Low-frequency part of the density of
states for the f and c electrons (top and bot-
tom) obtained from iterative perturbation
theory at T=0.001 (full), 0.005 (long-dashed),
0.01 (short-dashed), 0.02 (dotted), 0.03 for
U=3 and V=0.25. Inset: The density of states
in the full frequency range at T=0.001.

FIG. 73. Optical conductivity s(v) of Ce3Bi4Pt3 for different
temperatures (from below: 25, 50, 75, 100, and 300 K), from
Bucher et al. (1994). A gap is opening below 100 K; the promi-
nent feature at Dc seems to be independent of temperature.
The inset presents the optical region of s.

FIG. 74. Optical conductivity s(v) of cubic FeSi for different
temperatures (from below: 20, 100, 150, 200, and 250 K), from
Schlesinger et al. (1993). The symbols at v=0 show the mea-
sured values of sdc for the same temperature sequence.
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not aware of attempts to study the LISA equations for
this model with more accurate methods. The model
should provide an interesting starting point to study
many-body effects in semiconductors within the LISA
framework. The same model with the opposite relative
sign of t was studied by Moeller, Dobrosavljevič, and
Ruckenstein (1995) using the iterated perturbation
theory method.

3. The multichannel Kondo lattice

Close to half-filling and for large U , charge fluctua-
tions can be ignored, and the periodic Anderson model
can be formulated as a Kondo lattice model using the
Schrieffer-Wolff canonical transformation. In this case
the conduction electrons interact with localized spins
only, and the Hamiltonian reads

(
ks

ekcks
1 cks1JK (

iss8
(

a5x ,y ,z
Si
a 1
2
cis

1 sss8
a cis8 . (292)

The LISA equations for this model (Georges, Kotliar,
and Si, 1992) are conveniently expressed in terms of the
conduction electron self-energy, defined from the corre-
sponding Green’s function by

Gc~ ivn ,k!5
1

ivn2ek2Sc~ ivn!
. (293)

The single-site effective action is found to be

Seff52E
0

b

dtE
0

b

dt8(
s

cs
1~t!G 0

21~t2t8!cs~t8!

1JK(
a
E
0

b

dtSa
1
2 (

ss8
cs

1sss8
a cs81Ls@S# ,

(294)

where Ls[S] is a spin-1/2 Lagrangian that can be ex-
pressed in any of the standard representations used to
construct a spin Lagrangian (e.g., Popov representation,
slave fermion, Schwinger boson, or Abrikosov pseudo-
fermion representation). Alternatively, if the spin is
treated in the coherent path integral formulation, Ls is
the spin Berry phase. Seff describes a single-impurity
Kondo model in an effective conduction bath G 0 .
The self-consistency condition reads

Gc~ ivn![2^c1~ ivn!c~ ivn!&Seff

5E
2`

` D~e!de

ivn2e2Sc~ ivn!
,

Sc[G 0
212Gc

21. (295)

The model can be generalized to considerM ‘‘flavors’’
or ‘‘channels’’ for the conduction electrons c ks

1 →c ksa
1 ,

with a=1, . . . ,M , yielding the multichannel Kondo lattice
Hamiltonian:

(
ksa

ekcksa
1 cksa1JK(

a51

M

(
iss8a

Si
acias

1
sss8
a

2
cias8 . (296)

The associated impurity model is the single-impurity
multichannel Kondo model. In the last few years there
has been an intensive search of lattice models exhibiting
a non-Fermi liquid fixed point at low temperatures.
Model (296) withM>1 is a very interesting candidate for
this behavior since in the absence of the self-consistency
condition (295) the local action Seff is known from the
work of Nozieres and Blandin (1981) to be driven to a
non-Fermi liquid fixed point. As pointed out by
Georges, Kotliar, and Si (1992) and Cox (1994), this im-
plies immediately that the lattice model with the Lorent-
zian density of states is not a Fermi liquid (since in that
case the self-consistency condition becomes trivial). The
same is likely to be true in d=` for other density of
states with nontrivial feedback from the lattice induced
by the self-consistency condition, as long as no low-
frequency singularity of the effective bath density of
states is induced in the process.
The single-site (d=`) dynamical mean-field theory ig-

nores however the important issues raised by the feed-
back of interimpurity interactions into single-particle
quantities, which could drastically change this picture.
More elaborate approaches such as the self-consistent
cluster embeddings of Sec. IX are required to put the
interimpurity effects and the local Kondo physics on
equal footing and answer this question (except in the
case where the inter-impurity coupling is a quenched
random exchange, see below). Note that, with two chan-
nels of conduction electrons, the two-impurity Kondo
model has been shown to display interesting non-Fermi
liquid behavior in the particle-hole symmetric case, in
the presence of finite RKKY interactions (Ingersent,
Jones, and Wilkins, 1992; Georges and Sengupta, 1995).
Even for the single-channel Kondo lattice, the question
of how intersite fluctuations affect Fermi liquid behavior
close to the AF phase boundaries requires an extension
of the single-site LISA approach. This question is crucial
for the physics of heavy fermions.

4. Metallic quantum spin glasses

There is one remarkable situation, however, in which
(RKKY) intersite magnetic couplings do induce precur-
sor effects of magnetic transitions even at the level of a
single-site LISA description. This is when these cou-
plings are modeled as a quenched random exchange.
This description is relevant when the low-temperature
phase has spin-glass order, as observed in Y12xUxPd3
and related compounds (cf. Maple et al., 1994, and ref-
erences therein). Recently, a Kondo lattice model taking
these effects into account has been studied in the d=`
limit (Sachdev, Read, and Oppermann, 1995; Sengupta
and Georges, 1995). Specializing to Ising exchange Jij ,
with a Gaussian distribution normalized such that
Jij
2 5 J2/z , the Hamiltonian reads

H52(
ijs

t ijc is
1 cjs1JK(

i
SW i•sW~ i !2(̂

ij&
JijSi

z
•Sj

z .

(297)
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Following the techniques of Sec. III, the problem is eas-
ily mapped onto a single-site effective action:

Seff52E
0

b

dtE
0

b

dt8(s ,abcsa
1 ~t!G 0ab

21 ~t2t8!csb~t8!

1JKE
0

b

dt(aSW a~t!•sWa~t!

2J2E
0

b

dtE
0

b

dt8(a ,bSa
z~t!Dab~t2t8!Sb

z~t8! (298)

in which a ,b51•••n are replica indices. A self-
consistency condition relates the Weiss functions to the
conduction electron Green’s function and the spin-spin
correlation function, which reads (on the Bethe lattice)

G 0ab
21 ~ ivn!5~ ivn1m!dab2t2Gab~ ivn!,

Dab~t2t8!5^TSa
z~t!Sb

z~t8!&Seff. (299)

In the high-temperature paramagnetic phase, all these
correlators are replica diagonal. Because Jij scales as
1/Ad , the magnetic exchange does enter the single-site
effective action in both phases, leading to new dynami-
cal effects.
The schematic phase diagram resulting from the

analysis of this model (Sachdev, Read, and Oppermann,
1995; Sengupta and Georges, 1995) is displayed in Fig.
75. A spin-glass phase is found for large J , with a freez-
ing critical temperature driven to Tc=0 when the
strength of the Kondo coupling is increased. This is
reminiscent of the Doniach (1977) phase diagram. Sev-
eral crossover regimes are found near this T=0 quantum
critical point. In the ‘‘quantum critical’’ regime, the spe-
cific heat coefficient g and uniform susceptibility x dis-
play nonanalytic corrections to Fermi-liquid behavior,
while the NMR relaxation rate and resistivity have a
non-Fermi liquid temperature dependence: r;T3/2,

1/T1T;1/T3/4 (Sengupta and Georges, 1995). In the low-
temperature part of the quantum-disordered region
(‘‘Kondo regime’’), Fermi-liquid behavior is recovered,
but the NMR and scattering rate are critically enhanced
as the transition is reached, while g and x are not.

B. The Falicov-Kimball model

We now turn to the spinless Falicov-Kimball model
(Falicov and Kimball, 1969). This model was originally
introduced to describe the metal-insulator transition of
systems containing both localized and itinerant elec-
trons. It has also attracted interest as a model for
electron-induced formation of crystalline order
(Kennedy and Lieb, 1986; Lieb, 1986). Remarkably, it
can be solved exactly by analytical methods in infinite
dimensions, as described in the pioneering work of
Brandt and Mielsch (1989, 1990, 1991).
The model involves spinless conduction electrons ci ,

and localized f electrons (or ions). The Hamiltonian
reads

H52(
ij

t ijc i
1cj1(

i
e ff i

1f i2m(
i

~ci
1ci1f i

1f i!

1U(
i
c i

1cif i
1f i . (300)

The chemical potential m constrains the total number of
electrons and ions. ef sets the energy level of the ions
with respect to the middle of the electron band. U is an
on-site repulsion between electrons and ions. When
ef=0, the model corresponds to the spin-1/2 Hubbard
model with only one of the spin components allowed to
hop.
Integrating out all the electrons except for those at the

central site we obtain the effective action of the associ-
ated impurity model (in a phase without translational
symmetry breaking):

Seff52E
0

b

dtE
0

b

dt8c1~t!G 0
21~t2t8!c~t8!

1E
0

b

dt$Uc1cf1f1f†~]/]t1e f!f

2m~c1c1f1f !%. (301)

In contrast to the Hubbard model, it is easy to solve for
the impurity model Green’s function in terms of the
Weiss function G 0 . Indeed, the two sectors of the Hil-
bert space f1f=0 and f1f=1 evolve independently under
the dynamics defined by (301). One thus obtains

G~ ivn![2^c1c&Seff5
w0

G 0
21~ ivn!

1
w1

G 0
21~ ivn!2U

,

(302)

where w0512w1 and

FIG. 75. Schematic phase diagram of the metallic spin-glass
model described in the text, as a function of T/J and Jc/J (with
Jc.L.TK). The full line is the critical boundary with the
spin-glass phase. All other lines are crossover lines between
the quantum-critical (QC) and quantum-disordered regimes
(QD1,QD2). The hatched region is that of classical behavior
near the critical boundary. From Sachdev, Read, and Opper-
mann (1995) and Sengupta and Georges (1995).
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w15H 11exp(b~e f2m!1(
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$ln@G 0
21~ ivn!#

2ln@G 0
21~ ivn!2U#%eivn0

1
)J 21

, (303)

Differentiating the partition function with respect to ef ,
we see that w1 is the f particle number per site. The local
conduction electron self-energy is defined as usual
through

G~ ivn!215G 0
21~ ivn!2S~ ivn!. (304)

When combined with the explicit form of the Green’s
function Eq. (302), this leads to the functional form of
the self-energy S(ivn)[Sn in terms of the local Green’s
function G(ivn)[Gn :

Sn~Gn!5U/221/2Gn6A~U/221/2Gn!21w1U/Gn,
(305)

where the sign is to be chosen (depending on frequency)
in such a way that ( has the appropriate analytic prop-
erties. Furthermore, the self-consistency equation reads,
as usual,

Gn5E
2`

`

de
D~e!

ivn1m2e2Sn~Gn!
, (306)

where D(e) is the conduction electron bare density of
states. Equations (303), (305), and (306), first derived by
Brandt and Mielsch (1989), form a closed set of equa-
tions for the conduction electron Green’s function and
self-energy in phases without long-range order. An inter-
pretation of these equations as a mean-field theory,
rather different in spirit to the mapping onto an effective
impurity problem, has been given by van Dongen and
Vollhardt (1990) and van Dongen (1991a, 1992).
Before turning to the description of possible long-

range order and of the phase diagram of the model, let
us mention some results on the behavior of the Green’s
function in phases without order (e.g., at high tempera-
ture). van Dongen (1991a, 1992) established that the
model displays a metal-insulator transition as a function
of U at half-filling nc1nf=1, at Uc5D when D(e) is
semicircular with a half-bandwidth D . Si, Kotliar, and
Georges (1992) established that there are two regions, as
a function of the total density n5nc1nf and U :
(i) For U larger than Uc(n), the number of f electrons

per site is either nf=0 or nf=1. In that region, the con-
duction electrons obviously behave as a free Fermi gas.
(ii) For U smaller than Uc(n), there is a finite occu-

pancy 0<nf<1, and the chemical potential remains
pinned at the effective f-electron level: m=Ef , with Ef
defined by w1=$1+expb(Ef−m)%−1. In this regime, the
conduction electron self-energy has a finite imaginary
part at zero frequency, and the Fermi-liquid theory
breaks down.
The f electron (ion) Green’s functions is more difficult

to obtain than the conduction electron one. To this aim,
it is useful to realize that the Hamiltonian form of the
impurity effective action (301) is the x-ray edge Hamil-
tonian:

H5(
k
Ekak

1ak1~e f2m!f1f1Uf1f(
kk8

ak
1ak8 (307)

with the spectral representation

G 0
215H(
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1
ivn2Ek

J 21

2m . (308)

It results from this mapping that, in the pinning region
mentioned above, the f-electron spectral function has an
x-ray edge singularity at low frequencies (Si, Kotliar, and
Georges, 1992). A numerical study of the heavy electron
Green’s function of this model (Brandt and Urbanek,
1992) is consistent with a thermal smearing of the x-ray
singularity. Further analytic work on this problem was
carried out by Janiš (1993).
At low temperature, the d=` Falicov-Kimball model

displays ordered phases in which both the conduction
electron and f-electron (ion) charge densities acquire
nonzero values, at a given ordering vector q. For the
symmetric half-filled case (ef=0, nc5nf51/2), the order-
ing is towards a commensurate [q=(p, . . . ,p)] ordered
state, in which the particles order in a checkerboard pat-
tern: the conduction electrons occupy one sublattice,
and the ions the other one. (Viewing each electrons spe-
cies as a given spin species, this state can be called a
spin-density wave state, and is the direct analog of the
Néel state). This is true in any dimension on a bipartite
lattice, and has been established rigorously (Brandt and
Schmidt 1986, 1987; Kennedy and Lieb, 1986). For d=`,
Brandt and Mielsch (1989, 1990, 1991) were able to es-
tablish equations for the CDW susceptibility x(q), and
computed the critical temperature at half-filling as a
function of U . van Dongen and Vollhardt (1990) showed
analytically that Tc;1/U for large U , while
Tc;U2 ln(1/U) for small U . The CDW transition is
second-order (Ising-like), but can be driven first-order in
the presence of a nearest-neighbor repulsion V (van
Dongen, 1991a, 1992). For V.U/2, a charge-density
wave transition is found instead, with doubly occupied
sites on one sublattice, and holes on the other (van Don-
gen, 1991a, 1992).
These results have been extended for arbitrary elec-

tron density nc (keeping nf=1/2) by Freericks (1993a),
for the d=` hypercubic lattice. He showed that, for a
given U , the ordering becomes incommensurate for a
range of electron concentrations. For still smaller densi-
ties, a segregated phase is found (in which ions and elec-
trons cluster in separate regions). As explained in Sec.
IV, the ordering wave vector can be characterized by
X(q)=1/dS i51

d cosqi . It varies continuously with U and
nc within the incommensurate phase. The phase dia-
gram established by Freericks (1993a) is displayed in
Fig. 76. Freericks (1993b) also used the LISA as a dy-
namical mean-field approximation to the finite-
dimensional Falicov-Kimball model, and concluded that
the approximation is inaccurate at strong coupling in
d=1, but is a very good description of the model in d>2.
The optical conductivity of the Falicov-Kimball model
on the hypercubic lattice was computed by Moeller,
Ruckenstein, and Schmitt-Rink (1992).
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Finally, let us mention that the Falicov-Kimball model
has been used by several authors to devise approxima-
tions to the solution of the d=` Hubbard model. The
general idea behind these approaches is to treat one of
the spin species as moving in the background of the
other one, considered frozen and static (Janiš and Voll-
hardt, 1992a; Li and d’Ambrumenil, 1992; Edwards,
1993; Laad, 1994).

C. Multiband models: Combining LISA and LDA

The models considered up to now in this article are
idealized models of strongly correlated electron systems
containing a single conduction electron band. In actual
materials, one is always faced with the issue of orbital
degeneracy. Even in relatively simple systems such as
the transition-metal monoxides (e.g., NiO, FeO, etc.), a
minimal realistic description must take into account a
fivefold d band splitted by crystal field effects into, for
example, dx22y2, d3z22r2, dxy , dxz , dyz , and a threefold
oxygen band px ,py ,pz . This also allows a classification
of transition-metal oxides into Mott insulators (for
Udd!ep2ed) and charge-transfer insulators (for
Udd@ep2ed ; see Zaanen, Sawatzky, and Allen, 1985).
In this section, we describe how the LISA approach can
be used as a dynamical mean-field approximation to deal
with the band degeneracy and lattice structure of actual
materials in a more realistic way. Quantitative calcula-
tions along these lines are only starting, but we expect it
to be a fruitful direction for further research.
The starting point of any such calculation is the band

structure of the material, as obtained e.g., by the LDA
method (or some other technique). This zeroth-order
starting point provides one with a Hamiltonian

H05(
nsk

en~k!cksn
1 cksn (309)

in which n denotes a band index. Band calculations are
an excellent description of many materials, but are well-
known to fail to predict correctly the insulating charac-
ter of oxides such as CoO or FeO because of the neglect
of electron-electron interactions. Various schemes have
been proposed to include those in the LDA approach
(such as the ‘‘LDA+U’’ method of Anisimov, Zaanen,
and Andersen, 1991). These schemes do lead to signifi-
cant improvement, but obviously do not include all the
dynamical effects of the interaction. Capturing these ef-
fects is the main motivation of the LISA method.
Starting from H0 , the most straightforward way of

implementing the LISA method is to use a tight-binding
projection of the band structure. This consists in project-
ing the Bloch waves onto a set of orbitals disa localized
at the sites Ri of a lattice appropriate to the material
considered:

cksn
1 5(

ia
eik•RiAna~k!disa

1 . (310)

In this formula, the Ana(k)[^aun,k& are the eigenvectors
of the single-particle Schrödinger equation and satisfy
the closure relations:

(
kn

Ana~k!Anb~k!*5dab ,

(
a

Ana~k!An8a~k!*5dnn8 . (311)

In terms of the tight-binding orbitals, the free Hamil-
tonian H0 takes the form

H05(
ij ,s

t ij
abdisa

1 djsb , (312)

in which the hopping amplitudes t ij
ab reads

t ij
ab5(

k
eik•~Ri2Rj!(

n
Ana~k!Anb~k!* en~k!, (313)

or, in reciprocal space,

tk
ab5(

n
Ana~k!en~k!Anb~k!* . (314)

Electron-electron interactions must now be added to
H0 . A word of caution is in order here, since the LDA
eigenstates en(k) already contain some of the effects of
these interactions. One of the main difficulties in this
context is thus to separate the static terms, taken into
account by LDA, from the additional terms, to be
treated dynamically, without double counting. Without
dealing further with this difficulty, we shall assume that
interactions can be introduced in the tight-binding rep-
resentation in the simplified form of Hubbard type local
interactions, and we shall consider the Hamiltonian

H5H01(
i

(
ab

Uabdi↑a
1 di↑adi↓b

1 di↓b . (315)

FIG. 76. Phase diagram of the Falicov-Kimball model on the
hypercubic lattice for nf=1/2, ef=0, as a function of U and elec-
tron concentration nc . Contour lines of constant X(q) are in-
dicated. From Freericks (1993a).
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The Hubbard parameters Uab can in principle also be
calculated in the framework of the LDA. Of course, a
more complete description of the interactions should in-
clude nonlocal terms coupling different sites, but the
treatment of the dynamical effects of such terms re-
quires an extension of the LISA method (cf. Sec. IX).
The LISA method maps this Hamiltonian onto the

solution of a self-consistent single-impurity problem.
The effective single-site action associated with H reads
(restricting ourselves to the paramagnetic phase)

Seff52E
0

b

dtE
0

b

dt8(
s

dsa
1 ~t!@G 0

21#ab~t2t8!dsb~t8!

1(
ab

UabE
0

b

dtd↑a
1 d↑ad↓b

1 d↓b . (316)

In order to obtain the self-consistency equation, we con-
sider the lattice Green’s function:

Gab~k,t2t8![2^Tdksa~t!dksb
1 ~t8!& (317)

and postulate a momentum-independent self-energy ma-
trix:

Gab~k,ivn!215~ ivn1m!dab2tk
ab2Sab~ ivn!.

(318)

The self-consistency condition requires that the local
(on-site) Green’s function coincides with the impurity
model one, with identical self-energies:

Gab~ ivn! imp5(
k
Gab~k,ivn!, (319)

with

Gab~t2t8! imp[2^Tdsadsb
1 &Seff,

Gab~ ivn! imp
21 5@G 0

21#ab2Sab . (320)

Note that not only the knowledge of the band energies
en(k) and the associated partial density of states is re-
quired to implement this self-consistency condition, but
also that of the matrix elements Ana(k).
In this general context, the LISA, despite its local

character, leads to ‘‘renormalized bands’’ [i.e., quasipar-
ticle poles of Gab(k,ivn)] that do not have, in general,
the same k dependence as the LDA ones en(k), and the
self-energy does acquire k dependence when expressed
in the basis of Bloch states:

Snn8~k,ivn!5(
ab

Ana~k!*Sab~ ivn!An8b~k!. (321)

Obviously, the results will depend strongly on the choice
of the tight-binding basis onto which the LDA results
are projected. As a result, the procedure is expected to
apply better to those materials for which a set of well-
defined localized orbitals is unambiguously dictated by
physical considerations.
In order to illustrate this strategy on a simple concrete

example, let us consider the three-band model of the
CuO2 layers in cuprate superconductors (Emery, 1987;
Varma, Schmitt-Rink, and Abrahams, 1987). The Hamil-

tonian involves dx22y2 and px ,py orbitals in the hole
representation (so that the vacuum corresponds to the
Cu+ configuration). Including correlations only on cop-
per sites as a first step, the Hamiltonian reads

H3B52tpd(
is

dis
1 ~pi1x ,s2pi2x ,s1pi1y ,s2pi2y ,s!

14tpp(
ks

sxsypkxs
1 pkys1H.c.

1ep(
i ,s

~pixs
1 pixs1piys

1 piys!1ed(
is

dis
1dis

1Ud(
i
ni↑
d ni↓

d (322)

with sx ,y[sin(kx ,y/2). In the LISA method, this model is
mapped onto a single-impurity Anderson model associ-
ated with copper sites:

Seff5UdE
0

b

dt nd↑~t!nd↓~t!

2E
0

b

dtE
0

b

dt8(
s

ds~t!G 0
21~t2t8!ds

1~t8!

(323)

and the self-consistency condition requests that the on-
site copper Green’s function SkGd(k,ivn) coincides with
the impurity Green’s function. Introducing a
momentum-independent copper self-energy Sd(ivn)
and expressing the matrix Green’s function in the
(dk ,pkx ,pky) basis, this condition reads

(
k

S zd i2tpdsx 2i2tpdsy
2i2tpdsx zp 4tppsxsy
i2tpdsy 4tppsxsy zp

D
dd

21

5Gd~ ivn![@G 0
212Sd#21, (324)

where zp[ivn1m2ep and zd5ivn1m2ed2Sd(ivn).
This equation takes a much simpler form in the absence
of direct oxygen-oxygen hopping tpp=0. In this case, the
copper and oxygen Green’s functions read

Gd~k,ivn!5
zp

zpzd2gk
2 ,

Gpx ,py
~k,ivn!5

zdzp24tpd
2 sy ,x

zp~zpzd2gk
2 !

(325)

with g k
2[4t pd

2 (s x
21s y

2). Hence the self-consistency con-
dition reads, in this case,

Gd~ ivn!5
zp
2tpd

2 D̃S zpzd
2tpd

2 22 D , (326)

where D̃ is the Hilbert transform of the square lattice
density of states:

D̃~z !5E d2k

~2p!2
1

z2coskx2cosky
. (327)
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These equations are easily extended to allow for symme-
try breaking (e.g., antiferromagnetic or superconduct-
ing), along the lines of Sec. V. They can also be extended
to include an oxygen-oxygen repulsion Upp . In this case,
one has to solve two impurity models, one associated
with copper sites and the other with oxygen sites. This is
because the copper and oxygen orbitals live on two dif-
ferent sublattices in the above Hamiltonian. For the
same reason, the dynamical (excitonic) effects of the
nearest-neighbor copper-oxygen repulsion (Varma,
Schmitt-Rink and Abrahams, 1987) cannot be captured
in the single-site LISA description. These effects, which
are considered in more detail in the next section (Sec.
VIII.D), can only be addressed in the LISA framework
for multiband models in which the various orbitals live
on the same lattice sites. For models such as (322), only
an extension of the LISA framework to self-consistent
clusters (Sec. IX) would be able to capture these effects.
Finally, let us mention that it is possible to construct a

model very similar to Eq. (322) which has a well-defined
(and nontrivial) d=` limit such that the LISA equations
become exact (Georges, Kotliar, and Krauth, 1993). The
precise geometry of the CuO2 layer is not suitable for
this purpose; moreover, the CuOd lattice with one oxy-
gen halfway between each copper site reduces to an
atomic problem as d→` [cf. Valenti and Gros, 1993; see,
however, the recent suggestion of Schmalian et al. (1995)
for a different scaling of the hopping in this model]. Al-
ternatively, one may consider a simplified model, which
is not quite realistic for the cuprates, but has the advan-
tage of having a nontrivial d=` limit. The model is sim-
ply a two-band CuO lattice involving a correlated ‘‘cop-
per’’ orbital ds living on the A sublattice of a bipartite
lattice, and an ‘‘oxygen’’ orbital living on the B sublat-
tice. The copper-copper hopping is scaled as tpd/Az , and
the direct hopping is scaled as tpp/z . In the limit z→`,
this model can be solved by considering a single-
impurity Anderson model on copper sites (when only
Ud is included), and the self-consistency condition reads
(on the Bethe lattice)

G 0
21~ ivn!5ivn1m2ed2tpd

2 Gp~ ivn!,

Gp~ ivn!215ivn1m2ep2tpd
2 Gd~ ivn!2tpp

2 Gp~ ivn!.
(328)

Some aspects of this model have been studied by
Georges, Kotliar, and Krauth (1993) and Caffarel and
Krauth (1994). It displays a metal to charge-transfer in-
sulator transition as a function of (ep2ed)/tpd for large
Ud at half-filling, and a Mott insulator to metal transi-
tion as a function of Ud/tpd for large (ep2ed)/tpd . The
crossover diagram is very similar to the analysis of
Zaanen, Sawatzky, and Allen (1985). Finally, a super-
conducting instability has been suggested to exist in this
model for some range of parameters.

D. The extended Hubbard model and excitonic effects

In this section, we shall review some insights provided
by the LISA approach into the physics of excitonic ef-
fects, that is, the dynamical effects due to the interband

Coulomb interaction. There has recently been a re-
newed theoretical interest in these effects, with the fol-
lowing motivations.
(i) There is new experimental evidence in favor of

Bose condensation of excitons (Lin and Wolfe, 1993;
Fortin, Fafard, and Mysyrowicz, 1993) and new experi-
mental tools for studying these effects in strongly illumi-
nated semiconductors. There is a strong need for an ap-
proach that can describe simultaneously collective and
single particle excitations, and the coherent and incoher-
ent parts of the excitation spectra going beyond the
Hartree-Fock approximation (Compte and Nozieres,
1982).
(ii) Interband Coulomb interactions may lead to im-

portant physical effects in the context of the LISA de-
scription of real materials using multiband models re-
viewed in the previous section (Sec. VIII.C). For cuprate
superconductors for example, the copper-oxygen repul-
sion has been proposed as playing a crucial role by
Varma, Schmitt-Rink, and Abrahams (1987; see also
Varma and Giamarchi, 1994, for a review). In the limit
of large connectivity z , intersite Coulomb interactions
must be scaled as 1/z , and thus produce only Hartree
renormalizations of the band. Hence, excitonic effects
must be studied in models where the various orbitals live
on the same sublattice sites, as done in the present sec-
tion.
(iii) It has been shown by Si and Kotliar (1993) that

the Anderson impurity model, in the weak coupling
limit can lead to different type of phases when the posi-
tion of the impurity level is tuned to the Fermi level. In
the lattice (Si, Kotliar, and Georges 1992), this tuning of
the impurity level to the Fermi level occurs in a finite
range of densities when the hybridization renormalizes
to zero as in the Falicov-Kimball model (Sec. VIII.B).
From this perspective, the interband interaction is a pa-
rameter that allows us to vary independently the rel-
evant variables of the local impurity model.
Si and Kotliar (1993) considered a model in which

localized (‘‘copper’’) orbitals ds and itinerant (‘‘oxy-
gen’’) orbitals ps live on the same lattice sites. The mo-
tivation is to retain the dynamical effects of the copper-
oxygen repulsion and a nontrivial off-diagonal self-
energy Spd . The Hamiltonian of the model is in the
same general class as Eq. (315) and reads

H5(
k

(
s51

N

~ek2m!pks
1 pks1(

i
(
s51

N

~ed
02m!dis

1dis

1
U

2 (
i

(
sÞs8

N

dis
1disdis8

1 dis8

1(
i

(
s51

N

t~dis
1pis1H.c.!

1
V1

N (
i

(
s ,s851

N

pis
1pisdis8

1 dis8

1
V2

N (
i

(
s ,s851

N

pis
1pis8dis8

1 dis . (329)
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The itinerant electrons have dispersion ek , while the lo-
calized electrons electrons have an energy level e d

o, and
an on-site Coulomb interaction U which is taken to be
infinity. These two species of electrons are coupled, at
every site, through a hybridization t , a density density
interaction V1/N , and a Kondo-exchange interaction
V2/N . For generality, an arbitrary spin degeneracy N is
considered, which will also allow us to make contact
with results from large-N expansion. In the spinless case
(N=1) this model reduces to a generalized Falicov-
Kimball model that includes, besides the usual interac-
tion V1 , a hybridization term. In the spin-1/2 case (N=2)
it is a version of the extended Hubbard model first stud-
ied in the context of the mixed valence problem (Varma,
1976; Khomskii, 1979).
The k-dependent lattice Green’s functions are given

by

Gd~k,ivn!215ivn1m2ed
o2Sdd~ ivn!

2
~ t2Spd!2

ivn1m2ek2Spp
, (330)

Gp~k,ivn!215ivn1m2ek2Spp~ ivn!

2
~ t2Spd!2

ivn1m2ed
o2Sdd

. (331)

In which the S’s are the components of the (matrix) self-
energy in the pi ,di basis.
The single-site effective action associated with this

Hamiltonian in the LISA framework reads

Seff52E
0

b

dtE
0

b

dt8c1~t!G 0
21~t2t8!c~t8!

1E
0

b

dtSV1

N (
s ,s8

ps
1psds8

1 ds8

1
V2

N (
s ,s8

ps
1ps8ds8

1 ds

1
U

2 (
sÞs8

ds
1dsds8

1 ds8D , (332)

where c+=(p1,d1). The Weiss function G 0
−1 is a 232

matrix in this context. The self-consistency equation
reads

E
2`

`

de D~e!S ivn1m2e2Spp
imp

t2Sdp
imp

t2Spd
imp

ivn1m2ed
o2Sdd

impD 21

5S ~G 0
21!pp2Spp

imp

~G 0
21!dp2Sdp

imp
~G 0

21!pd2Spd
imp

~G 0
21!dd2Sdd

impD . (333)

This set of equations has been investigated in detail by
Si and Kotliar (1993) in the case of a Lorentzian density
of states of the conduction electrons (for which the self-
consistency condition becomes trivial, cf. Sec. II). The
spinless version has also been studied on the Bethe lat-
tice (Si et al., 1994). The central result obtained by these
authors is that this model has three different phases with
unbroken translational symmetry corresponding to dif-

ferent regions of densities and coupling constants: the
ordinary Fermi-liquid phase, a weak-coupling non-
Fermi-liquid phase, and an ‘‘intermediate phase’’ exhib-
iting the phenomena of charge and spin separation.
Since the techniques used in the derivation of these

results are most naturally formulated in the language of
the generalized Anderson impurity model and since
these techniques are likely to be useful in the analysis of
more general models, we review the most relevant
points of the analysis below.
The impurity model is first written in Hamiltonian

form. The generalized Anderson impurity Hamiltonian
describes three local states coupled to an electron bath
with a smooth density of states:

H5(
ls

~ ẽ l2m!als
1 als1Ed

ods
1ds1

U

2 (
sÞs8

ds
1dsds8

1 ds8

1(
s

t~ds
1als1H.c.!1V1 (

ss8l
ds

1dsals8
1 als8

1
V2

4 (
s1 ,s2l ,s3 ,s4

tWs1s2
•tWs3s4

ds1

1 ds2
als3

1 als4, (334)

where tW denotes the Pauli matrices. The impurity fluctu-
ates between a singlet and a spin doublet us&=d s

+u0& with
Es5E d

o. An infinite on-site interaction, U=`, is intro-
duced to enforce the three-dimensional restricted con-
figuration space. The hybridization t , the density-density
interaction V1 , and the spin-exchange interaction V2 de-
scribe the generic couplings between the local states and
the electron bath. ẽ l describes the dispersion of the elec-
trons in the bath.
We envision calculating N-point correlation functions

of Hubbard operators Xa,b at N values of imaginary
time, as a Feynman sum over trajectories in local con-
figuration space. The insertion of Hubbard operators
forces the system to be at a certain configuration or to
flip configurations at given values of imaginary time. The
amplitude for this process is the sum over all trajectories
consistent with these constraints. The weight of each tra-
jectory depends of course on the reaction of the elec-
trons in the neighboring sites to a given local trajectory
(Haldane, 1978b; Si and Kotliar, 1993). The partition
function has the form

Z

Z0
5 (

n50

`

(
a1 ,.. . ,an

exp~2S@t1 ,. . . ,tn# !, (335)

where

S@t1 ,. . . ,tn#5(
i,j

@K~a i ,a j!1K~a i11 ,a j11!

2K~a i ,a j11!2K~a i11 ,a j!#ln
t j2t i

jo

2(
i

ln~ya ia i11
!1(

i
ha i11

t i112t i
jo

.

(336)
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In this expression, ti , for i51,.. . ,n , labels the hopping
events from local states uai& to uai11&, and jo is the ultra-
violet inverse energy cutoff. K(a,b) are stiffness con-
stants affecting each transition between states, and the
fugacities ya,b are the bare amplitudes for quantum me-
chanical hopping between the configuration a and b.
These quantities play an essential role in determining
the long-time, low-energy behavior of this system. The
charge fugacity is given by the hybridization
y0,s5yt5tj , and the spin fugacity corresponds to the
transverse component of the Kondo exchange
ysÞs85yj5(V 2

'/2)j . The fields ha describe the energy
splitting among the local configurations. They have to be
introduced since generically there is no symmetry be-
tween the local many-body configurations. In our three-
state problem, there exists a spin rotational symmetry
but not a symmetry between spin and charge. Therefore,
we introduce a field related to the d level Ed , i.e., h0
=−2

3Edj and hs5 1
3Edj .

The logarithmic interaction in the action (336) can be
written as a spin model with long-range 1/t2 interaction:

(
i,j

K~a i ,a j!S j0
t i2t j

D 2.
This allows an extension of Cardy’s renormalization-
group analysis (Cardy, 1981; Chakravarty and Hirsch,
1982) to this problem (Si and Kotliar, 1993). The bare
values of the stiffness constants K(a,b) provide the ini-
tial conditions of the renormalization group flow.
The renormalization group allows for a precise de-

scription of the possible low-energy behavior of this sys-
tem. If the amplitude for making transitions between all
states increases at long distance, the system is a Fermi
liquid. If the amplitude for making transitions between
states with different charge renormalizes to zero, non-
Fermi liquid behavior results. Depending on the behav-
ior of the spin degrees of freedom one can obtain a weak
coupling phase where the amplitudes for making quan-
tum mechanical transitions between different states all
renormalize to zero, and an intermediate phase where
the spin degrees of freedom are coherent but where the
charge degrees of freedom cannot tunnel quantum me-
chanically.
The basin of attraction of the different phases can be

expressed approximately in terms of the bare interac-
tions via the combinations:

2K~0,s!5e t
o5

1
2 F S 12

d2
p

2
d1
p D 21S d1

p
2

d2
p D 2G ,

2K~sÞs8!5e j
o5S 122

d2
p D 2, (337)

where the phase shifts are d1=tan
−1(proV1) and

d2=tan
−1(proV2/4), with ro the conduction electron den-

sity of states at the Fermi level. The intermediate phase
occurs for et>1 and ej>1. A qualitative behavior of vari-
ous correlators in this phase was presented by Si and
Kotliar (1993), but a quantitative computation of the ex-
ponents governing the various correlation functions has

not been carried out, except for the case of an exactly
solvable Toulouse point (Kotliar and Si, 1995).
Much more is known about the weak coupling (mixed

valence) regime. The correlation functions at low fre-
quencies have a regular perturbation expansion

in the running fugacities, t* 5 t(v/G)e t* , and (V2
')*

5 V2
'(v/G)e j* . This allows one to calculate the one-

particle local Green’s functions. Gcc is not renormalized
by the fugacities since the c electron does not create a
kink. On the other hand, Gdc(v);v−1+a and
Gdd(v);v−1+b at low frequencies. Here the exponents
are given, to leading order, by a 5 2(d1* 1 d2* )/p 1 @(d1*
1 d2* )/p#21 (d1* /p)

2 andb 5 @(d1* 1 d2* )/p#21 (d1* /p)
2.

Starred expressions indicate that the coupling constants
have to be evaluated at their fixed point value. The mul-
tiparticle correlation functions show power-law behav-
ior. For example,

^ds
1ds8~t!ds8

1 ds~0 !&;~t!2a1,

^ds
1cs8~t!cs8

1 ds~0 !&;~t!2a2,

^ds
1cs8

1
~t!cs8ds~0 !&;~t!2a3, (338)

where, to leading order, a1 5 2e j* (1 2 ds ,s8), a2

5 2e t* ds ,s8 1 2e tj* (1 2 ds ,s8), and a3 5 2e t* ( 2 d1* /p ,
2 d2* /p)ds ,s8 1 2e tj* (2 d1* /p ,2 d2* /p)(12 ds ,s8).Here,
e tj* (d1* /p ,d2* /p) 5 1

2@(1 2 d1* /p)
2 1 (d1* /p 1 d2* /p)

2# .
Therefore, the d1c1 superconducting correlation func-
tion is divergent, while the excitonic and d-electron cor-
relation functions vanish.
It is interesting to point out that these results are not

very different qualitatively from what is found in one
dimension. There, a system at zero temperature is a Lut-
tinger liquid (the one-dimensional version of a Fermi
liquid) when the interactions are sufficiently repulsive,
or a charge density wave or superconductor when the
interactions are attractive.
The stability of the non-Fermi-liquid phases relies on

the degree of ‘‘charge frustration’’ of the lattice, just as
the stability of the Mott insulating phase depended on
the degree of magnetic frustration.
While the non-Fermi-liquid regimes occurred for

negative values of the charge-charge interactions when
the density of states is Lorentzian, it has been argued
(Kotliar and Si, 1993) that for realistic density of states
these phases could occur for repulsive values of the Cou-
lomb interactions. In this view, the generalized Anderson
impurity model emerges as a result of a projective self-
consistent reduction of a realistic model to low energy.
We stress that the wide variety of behaviors found

even in the simplest Lorentzian case is indicative of the
power and breadth of the LISA approach. More de-
tailed investigations of this model are clearly needed.

E. Electron-phonon coupling and the Holstein model

In this section, we briefly review recent investigations
of the electron-phonon problem in the LISA (d=`)
framework. The attention is focused on the Holstein

99A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



model of Einstein phonons coupled to electrons through
a local interaction (Holstein, 1959). The Hamiltonian
reads

H52 (
^ij& ,s

t ij~cis
1 cjs1H.c.!1g(

i
xi~ni↑1ni↓!

1
1
2 (

i
~pi

21V2xi
2!, (339)

where xi is the phonon coordinate and pi the phonon
momentum at site i . g is the electron-phonon coupling
constant, and V the phonon frequency. For simplicity,
the phonon mass has been normalized to M=1, so that
the spring constant is k=V2.
It is sometimes useful to think of the phonon bath in

this problem as inducing an effective retarded interaction
between the electrons. Integrating out the phonons, this
interaction takes the form

(
i
E
0

b

dtE
0

b

dt8ni~t!Ueff~t2t8!ni~t8!, (340)

in which ni5ni↑1ni↓ and the Fourier transform of
Ueff(t−t8) reads

Ueff~ iv!52
g2

2
1

V21v2 . (341)

The time-scale associated with the retarded character of
this interaction is 1/V. It has to be compared to the char-
acteristic time-scale for electronic motions, which is set
by the conduction electron bandwidth, of order t (with a
hopping scaled as t ij}t/Ad). Two regimes can be distin-
guished.
(i) For V@t , the phonons react instantaneously and

the effective interaction is no longer retarded. From
(341), we see that the model maps onto an attractive
Hubbard model, with an interaction strength:

U52
g2

V252 lim
v→0

Ueff~v!. (342)

U is the energy scale for the binding of electrons into
local pairs, which occurs when U/t is large (bipolaron
binding energy). For a general review of the physics of
systems with local instantaneous pairing and of the
negative-U Hubbard model, the reader is directed to the
article of Micnas, Ranninger, and Robaszkiewicz (1990),
and references therein.
(ii) In the opposite (adiabatic) limit of V!t , the

phonons become completely static, and the effective
electron-electron interaction becomes independent of
time: Ueff(t−t8)=U . In that limit, the conduction elec-
trons interact with a localized continuous degree of free-
dom having no dynamics and entering only through an-
nealed averages. As a result, a mapping onto an
attractive Falicov-Kimball model (generalized to many
states) can be established (Freericks, Jarrell, and Scala-
pino, 1993).
It is convenient to use the dimensionless ratios U/t

and V/t as the control parameters of this model, to-
gether with the total electron density n . One of the im-

portant questions is the existence of phases with long-
range order at low temperature. Obvious candidates are
charge density wave (CDW) ordering (commensurate or
incommensurate) and superconducting order, which
compete with each other. Exactly at half-filling (n=1)
and in the instantaneous limit V@t , an additional SU(2)
pseudospin symmetry relates the commensurate CDW
state and the superconducting state, so that they cannot
be distinguished. From the extreme limits described
above, one expects that superconducting order is fa-
vored for large values of V/t and sufficiently away from
half-filling, while CDW order is favored for small V/t
and close to half-filling. Competition of CDW and super-
conducting ordering is a physically relevant issue for
compounds such as Ba12xKxBiO3, which has a CDW
commensurate phase for x=0 and becomes supercon-
ducting for x>0.35 (Cava et al., 1988; Pei et al., 1990).
The LISA method maps the Holstein model onto the

solution of a self-consistent single-impurity problem,
supplemented by a self-consistency condition. In a phase
without long-range order, the single-site effective action
is easily obtained following the methods of Secs. II and
III, and reads (Freericks, Jarrell, and Scalapino, 1993,
1994):

Seff52E
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dtE
0

b

dt8(
s
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21~t2t8!cs~t8!
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1
2 E
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dt@ ẋ21V2x2#

1gE
0

b

dt x~t!(
s

cs
1~t!cs~t!. (343)

Denoting by G(t2t8)[2^Tc(t)c1(t8)& the conduc-
tion electron Green’s function associated with this effec-
tive action, and defining a self-energy from S=G 0

−1−G−1,
the self-consistency condition takes the usual form:

G~ ivn!5D̃(ivn1m2S~ ivn!) (344)

in which D̃ is the Hilbert transform of the noninteract-
ing electronic density of states. Generalizations of these
equations to phases with long-range order are easily de-
rived along the lines of Sec. V and the various
momentum-dependent response functions (e.g., xCDW,
xSC) can be related to the impurity model response func-
tions following the lines of Sec. IV. This impurity model
is a generalization of the single-impurity Anderson
model to a retarded electron-electron interaction (after
integrating out the bosonic field). It coincides with the
negative U Anderson model in the instantaneous limit
V→`.
The QMC method described in Sec. VI has been

adapted to the solution of the LISA equations for the
Holstein model by Freericks, Jarrell, and Scalapino
(1993, 1994). This numerical approach is especially use-
ful in order to investigate the physics of this model in the
difficult region of intermediate coupling. Far from this
region, analytical techniques have been used to investi-
gate the weak- and strong-coupling regimes, which will
be briefly reviewed below.
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The phase diagram resulting from these studies has
the form displayed in Fig. 77, as a function of tempera-
ture and electron density, for various coupling strengths.
(The weak-coupling phase diagram obtained by Ciuchi
et al. (1993) is qualitatively similar.) Note that this phase
diagram has been established by looking for instabilities
signalled by the divergence of two-particle response
functions, and that in principle it should be supple-
mented by a calculation of free-energies, in order to
check whether first-order transitions intervene. Close to
half-filling, the system orders into a commensurate
CDW phase below Tc

CDW(n). This critical temperature
is maximum at half-filling (n=1), and decreases mono-
tonically when n is decreased. In weak-coupling and for
small phonon frequency, Ciuchi et al. (1993) demon-
strated that a narrow range of densities exists at which
the CDW becomes incommensurate. In contrast, in the
QMC study of Freericks, Jarrell, and Scalapino (1993,
1994) at intermediate phonon frequency, no incommen-
surate order was reported. For still lower densities
n,nc , the ordering is into a superconducting phase. The
critical density nc(uUu,V) is a decreasing function of the
coupling strength uUu, and an increasing function of the
phonon frequency V. For a Gaussian density of states
with t ij5t/2Ad , the maximum value of Tc

CDW was found
to be of order 0.15t (independently of phonon fre-
quency) while the maximum Tc

SC was found to strongly
depend on frequency, and is always smaller than the
maximum value of Tc

CDW . Tc
CDW (uUu, n=1) is small for

both small and large uUu, with a maximum in between
(Fig. 78).
Freericks, Jarrell, and Scalapino (1993, 1994) also con-

sidered the effective phonon potential Veff(x) resulting
from the average over conduction electron degrees of

freedom. This is easily computed in the QMC method
from the probability distribution of the phonon coordi-
nate: P(x) } e2bVeff(x). Veff(x) is depicted in Fig. 79 for
the half-filled case and various values of the coupling
strength uUu. Interestingly, the effective potential
changes from a harmonic form in weak coupling to a
strongly anharmonic double-well form in strong-
coupling. In the anharmonic region, the system can be
considered as a random mixture of empty sites and bi-

FIG. 77. Phase diagram of the Holstein model on the hyper-
cubic lattice (t ij5t* /2

Ad) with V/t*=0.5 and three different
coupling strengths (g=0.4,0.5,0.625). The solid dots are the
QMC results for the commensurate CDW transition, and the
open diamonds are for the superconducting transition. From
Freericks, Jarrell, and Scalapino (1993).

FIG. 78. The critical temperature for CDW ordering in the
half-filled Hubbard model vs coupling g . The QMC results
(dots) are compared to various approximations. From Freer-
icks, Jarrell, and Scalapino (1993).

FIG. 79. Effective phonon potential for the half-filled Holstein
model with V/t*=0.5 and bt*=7 plotted vs the normalized co-
ordinate x*52xMV2/2g . Four different values of g are dis-
played: g=0.325 (dotted line), g=0.5 (dashed line), g=0.625
(solid line), g=1.0 (dashed-dotted line). From Freericks, Jar-
rell, and Scalapino (1993, 1994).
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polarons that fluctuates in time. Tunneling through the
barrier induces correlations between these two states.
The maximum value of Tc

CDW (uUu, n=1) is reached
when the barrier height is of the order of Tc itself. These
results are qualitatively similar to the findings of Yu and
Anderson (1984).
These numerical results can be substantiated and

compared to various analytic approximation schemes for
weak and strong coupling:
(i) In the weak-coupling regime uUu!t , explicit ex-

pressions can be obtained for the various response func-
tions, and the CDW and superconducting transition
temperatures can be derived in closed form (Ciuchi
et al., 1993; Freericks and Scalapino, 1994; Freericks,
1994; Freericks and Jarrell, 1994a). Technically, the sim-
plifications of perturbation theory arising in the d→`
limit and explained in Sec. III.B allow one to perform
these weak-coupling expansions without resorting to ad-
ditional approximations such as the neglecting of vertex
corrections. Because of the Migdal theorem, these ver-
tex corrections are small in the adiabatic limit V/t!1,
but become important in the opposite (instantaneous)
limit, as studied in detail in the above references. The
weak-coupling phase diagram (Ciuchi et al., 1993) dis-
plays all the features of the generic case described
above. Recently, various schemes attempting to extend
these perturbative methods beyond the weak-coupling
regime have been studied in great detail for the d=`
Holstein model, and compared to each other and to nu-
merical results (Freericks et al., 1993; Freericks, 1994).
These schemes include various types of conserving ap-
proximations, the Migdal-Eliashberg approximation
(valid for V/t!1), and the (nonconserving) iterated per-
turbation theory scheme of Sec. VI.B.2, and modified
versions of it (Freericks and Jarrell, 1994a). The conclu-
sion of these studies is that the iterated perturbation
theory approximation is superior to both second-order
conserving schemes and the Migdal-Eliashberg theory
for estimating the self-energy and the vertex functions,
but that none of these approximate methods is accurate
for a wide range of values of uUu/t and V/t . The iterated
perturbation theory approximation turned out to be
very accurate in predicting the CDW transition tempera-
ture at half-filling and the SC transition temperature in
the doped case, because of accidental cancellations be-
tween self-energy and vertex higher-order corrections.
(ii) In the strong-coupling regime uUu@t , the electrons

pair into bipolarons (see Micnas, Ranninger, and
Robaszkiewicz, 1990). In this limit, degenerate perturba-
tion theory in the hopping t can be used to map the
Holstein model onto an anisotropic Heisenberg antifer-
romagnet in a uniform external field (Beni, Pincus, and
Kanamori, 1974; Hirsch and Fradkin, 1982, 1983). This
expansion was pushed to fourth order by Freericks
(1993c). This introduces a four-spin coupling and frus-
tration in the effective Hamiltonian. The method was
applied in the d=` limit (in which the effective spin
model can be treated within mean-field theory) in order
to find explicit formulas for Tc

CDW/t and Tc
SC/t valid to

order (t/uUu)3, which were successfully compared to the

QMC results. In particular these formula correctly indi-
cate the existence of a maximum in Tc vs U .
Recently, Freericks and Jarrell (1995b) considered the

effect of an additional Coulomb repulsion +UcS ini↑ni↓
in the Holstein Hamiltonian. They concentrated on the
case of a small to moderate value of Uc in comparison to
uUu, and found that both (incommensurate) CDW
phases and the superconducting phase are stabilized by
the Coulomb repulsion. However, surprisingly, the com-
mensurate CDW transition temperature is more robust
than the superconducting one.
In contrast to these rather detailed studies of the Hol-

stein model phase diagram, comparatively little is
known about the properties of the paramagnetic normal
state above the superconducting and CDW ordering
temperatures. Among the various physical issues is the
crossover between a normal Fermi liquid at weak cou-
pling to a normal state with a large number of pre-
formed local pairs (bipolarons) at strong-coupling (see,
e.g., Nozieres and Schmitt-Rink, 1985; Randeria, Duan,
and Shieh, 1989, 1990). These local pairs form much
above the superconducting transition temperature, and
should substantially affect Fermi-liquid properties (see,
e.g., Randeria et al., 1992). The LISA framework seems
very well adapted to address these issues in the future.
A recent work somewhat related to these issues is due

to Ciuchi, de Pasquale, and Feinberg (1995), who con-
sidered the problem of a single electron coupled to Ein-
stein phonons in the d→` limit. Even though the single-
electron problem is not directly related to the finite-
density one, it does clarify the structure of the collective
entity formed by the electron dressed by the phonon
bath (small polaron problem). Ciuchi, de Pasquale, and
Feinberg were able to find an exact solution of the im-
purity effective action (343) under the assumption that a
single particle is present in the conduction electron ef-
fective bath, in the form of a continuous fraction repre-
sentation of the electron Green’s function. Their results
for the single-electron spectral density and self-energy
are depicted in Fig. 80 for increasing coupling strengths.
A polaron quasiparticle resonance (with infinite lifetime
ImS=0) splits out of the continuum above a critical cou-
pling. The effective mass of the polaron state was also
calculated in the work of Ciuchi, de Pasquale, and Fein-
berg (1995), providing an interpolation between the
known weak-coupling and strong-coupling results (in
the latter case, the polaron mass enhancement is of or-
der e uUu/V).

F. Colossal magnetoresistance and doped manganates

Perovskite-type manganese oxides La12xAxMnO3,
where A is in the second column of the periodic table
(Ba, Sr) are being studied intensively. From the point of
view of fundamental physics, this system offers another
material where the strength of the electron-electron in-
teraction and the carrier concentration can be varied
continuously (Tokura et al., 1994; Hwang et al., 1995).
From the point of view of technological applications,

the goal is to exploit the ‘‘colossal (negative) magnetore-
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sistance’’ phenomenon (von Helmholt et al., 1993; Jin
et al., 1994): a drop in resistivity when a magnetic field is
applied, which, in a certain region of temperature and
concentration, is larger by orders of magnitude than in
previously known systems. The goal of this section is not
to provide an introduction to this rapidly developing
field (for recent discussions and references on this prob-
lem, see, e.g., Millis, Littlewood, and Shraiman, 1995),
but to point out several recent applications of the LISA
dynamical mean-field approach to this problem, and to
indicate open questions.
Several aspects of the physics of these materials are

well understood. The electronically active orbitals are
the Mn d orbitals, and the mean number of d electrons
per Mn is 4−x . The cubic crystal field splitting and
Hund’s rule coupling are sufficiently large that three
electrons go into tightly bound dxy , dyz , dxz core states
and couple to form an S=3/2 spin. The remaining (1−x)
electrons go into a band of width ;2.5 eV made mostly
of the outer-shell dx22y2 and d3z22r2 orbitals. The outer
shell electrons are aligned to the core states by a Hund’s
Rule coupling JH which is believed to be large. The
large value of JH means that the hopping of an outer-
shell electron between two Mn sites is affected by the
relative alignment of the core spins, being maximal
when the core spins are parallel and minimum when
they are antiparallel. This phenomenon, called ‘‘double
exchange,’’ is believed to play a significant role in this
material.
It is also known (Kanamori, 1959; Goodenough, 1968;

Kuggel and Khomski, 1973, 1982) that the conduction
electrons in LaMnO3 have a twofold orbital degeneracy.
In this case, spin and orbital correlations are very impor-
tant. In addition to the possibility of spontaneous orbital
ordering, Kuggel and Khomski have reviewed the result-
ing Jahn-Teller electron phonon coupling which accom-
panies the orbital degeneracy. In fact the cubic-

tetragonal phase transition observed for 0&x&0.2 is
known to be due to a frozen-in Jahn-Teller distortion
with long-range order.
As a function of doping, this compound displays a rich

variety of physical phenomena. Its ground-state varies
from being an antiferromagnetic Mott insulator, to a fer-
romagnetic metal, to a charge ordered state (Urushibara
et al., 1995). Disorder can also play an important role in
the optimization of the physical properties of this com-
pound.
A model Hamiltonian can be written to describe this

compound: H5H01HJ2T1HHub with
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In Eq. (345) dias creates an outer-shell d electron of
spin s in the a orbital on site i , and nias 5 dias

1 dias. The
local lattice distortions that cause the Jahn-Teller split-
ting transform as a twofold degenerate representation of
the cubic group, which couples to the electrons as a

FIG. 80. Spectral density and inverse lifetime
(ImS) for a single electron in the Holstein
model, at different values of the coupling
l5g2/(MV2t* )5uUu/t* , for fixed g2/MV3

=5. From Ciuchi, de Pasquale, and Feinberg
(1995).
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traceless symmetric matrix (Millis, Shraiman, and Muel-
ler, 1995): Q5r[cos(f)tz+sin(f)tx]. In Eq. (346), g is
the electron-phonon coupling, k the phonon stiffness,
and P is the momentum canonically conjugate to Q . The
external magnetic field is hW ; for simplicity we have
coupled it to the local spin, and a more sophisticated
model should include its coupling to the orbital and spin
degrees of freedom of the conduction band as well. The
parent compound is an antiferromagnetically ordered
Mott insulator. Equation (347) describes a minimal
model of the electron-electron interactions, containing
two orbitals, and neglecting spin-flip terms (Cyrot and
Lyon-Caen, 1975). For further discussion of spin-
rotational invariance, see, e.g., Dworin and Narath
(1970).
The LISA framework is very promising for dealing

with this Hamiltonian, asserting the relative importance
of the various terms, and contributing to the understand-
ing of these compounds. Several studies using this
framework have already appeared, and we summarize
the main results below. In a nice series of papers, Fu-
rukawa (1994, 1995a, 1995b, 1995c) investigated the
double exchange model (ferromagnetic Kondo lattice)—
Eq. (345)—with the local spins treated in the classical
approximation (Sc→`). In this limit, the model is very
similar to the Falicov-Kimball model, and many results
can be obtained analytically. Furukawa was able to ac-
count qualitatively for the strong dependence of the dc
conductivity on magnetic field and temperature, for the
anomalous temperature dependence of the optical con-
ductivity, and for the doping dependence of the Curie
temperature.
Millis, Littlewood, and Shraiman (1995) and Zang,

Bishop, and Roder (1995) have argued that the electron-
phonon (Jahn-Teller) interaction is crucial, however, in
order to account for the large value of the resistivity in
the paramagnetic phase and near the transition. Millis,
Shraiman, and Mueller (1995) have added the Jahn-
Teller Hamiltonian Eq. (346), and also applied a LISA
treatment, neglecting the quantum fluctuations of the
phonon field. (See also the related treatment of this
problem by Zang, Bishop, and Roder using the Lang-
Firstov transformation.)
The local effects of disorder can be simply incorpo-

rated in the LISA framework. A recent study of the
effects of disorder has been carried out by Sarma et al.
(1995) in connection with the doped titanate series. It
would be interesting to carry out a similar study using a
generalization of Hamiltonian (345)–(347) in order to
understand the effects of disorder on the photoemission
spectroscopy and on the conductivity of the doped man-
ganates.
Finally, we point out that the dynamical effects of the

Hubbard interactions have not yet been treated for this
problem. Photoemission experiments (Saitoh et al.,
1995) and optical conductivity measurements (Okimoto
et al., 1995) on this material reveal the transfer of spec-
tral weight over large energy scales, reminiscent of the
V2O3 system. This phenomenon is a dynamical manifes-
tation of the Coulomb interactions which so far can only

be described using the LISA method, as described in
detail in Sec. VII. Applying this method to the doubly
degenerate Hubbard model appropriate for the manga-
nates, in order to account for these effects, would shed
significant light on this system.

G. Systems with quenched disorder

1. Models of disorder

An important advantage the LISA has over other
techniques for treating the strong correlation problem is
that the dynamical mean field equations and the tech-
niques to solve them can be easily adapted to situations
where the lattice translational invariance is broken by
local imperfections, or when there is no underlying pe-
riodic lattice as in the case of amorphous systems. Ran-
domness can affect both the hopping matrix elements
(off-diagonal disorder) and the site energies (diagonal
disorder). So far, most studies have focused on the dis-
ordered Hubbard model Hamiltonian:

H5(
ij

(
s

@2t ij1« id ij#cis
1 cjs1U(

i
ni↑ni↓ . (348)

A very useful parametrization of the off-diagonal disor-
der is the one used by Dobrosavljevič and Kotliar (1993,
1994), in which the following form is chosen for the hop-
ping term:

t ij5yijxixj . (349)

The yij’s are independent bond variables with a symmet-
ric distribution, as in the gauge invariant model of Weg-
ner (1976), and the xi’s are local site variables (which
directly control the hopping randomness), with a distri-
bution PH(xi). The intuitive content of this idea is to
associate small values of xi to sites which are weakly
coupled to the rest of the sites and large values of xi to
sites which are strongly hybridized with their neighbors.
This is a suitable model for a doped semiconductor such
as Si:P. One can take the yij’s to be Gaussian random
variables with zero mean, and with the variance

yij
25

1
z
fijt

2. (350)

Here, the matrix f ij is the lattice connectivity matrix
(f ij=1 for sites connected by a bond, f ij=0 for discon-
nected sites), and one scales the (square of the) hopping
elements t ij

2 by the coordination number z5S jf ij , in or-
der to obtain finite result in the z→` limit. Diagonal
disorder is also introduced through the distribution of
site energies « iPS(« i).
The local version of the pure Hubbard model is an

Anderson impurity model. The local version of the dis-
ordered Hubbard model is a collection of Anderson im-
purity models which describe the physics of the different
local environments felt at different sites. The local ac-
tion describing site i has the form
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with the self-consistency condition (on the Bethe lattice)
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(352)

whereGjs(vn) 5 ^cjs
† (vn)cjs(vn)& are the local Green’s

functions evaluated using the effective action in Eq.
(351).

2. Interplay of disorder and SDW or CDW ordering

The properties of this model in the presence of diag-
onal disorder have been studied in a series of works by
Vollhardt and collaborators. The dynamical mean-field
equations in this case were established by Janiš and Voll-
hardt (1992b). Using quantum Monte Carlo methods,
Janiš, Ulmke, and Vollhardt (1993; see also Ulmke, Ja-
niš, and Vollhardt, 1995) investigated the phase diagram
at half-filling for a binary distribution of the form

PS~« i!5 1
2 @d~« i2

1
2 D!1d~« i1

1
2 D!# . (353)

Their phase diagram (obtained by evaluating the re-
sponse functions) is reprinted in Fig. 81. They observed
that a weak diagonal disorder suppresses the Néel tem-
perature for small U but enhances it slightly for large U .
For small values of U , the magnetism is due to a spin
density wave formation. Magnetic ordering in this limit
is strongly dependent on the existence of perfect nesting,
which is suppressed by disorder, causing a strong reduc-
tion of TN as disorder is increased for small U . It is
useful to think about this model in the limit U.D and
D>D , in which metallic behavior is suppressed. In this
limit the model has two regimes: in one regime when
U<D the system is a band insulator, and the correlations
can be treated perturbatively: for U>D the system is a
Néel-Mott insulator and the disorder can be treated per-
turbatively. The exchange constant in that limit de-
creases with increasing D.
Janiš, Ulmke, and Vollhardt (1993) also computed the

compressibility as a function of U for fixed temperature.
It has a maximum when U is close to D. This can be
understood by analyzing the atomic limit of the associ-
ated impurity model: for U.D, two atomic configura-
tions are found to be degenerate, giving rise to a large
charge response. The authors conjecture that the metal
insulator transition at T=0 in this model will occur from
an antiferromagnetic metallic phase to an antiferromag-
netic insulating phase, as in the fully frustrated model of
Sec. VII.
The interplay of disorder and charge density wave for-

mation was analyzed in a model of spinless fermions
with nearest-neighbor interactions by Vlaming, Uhrig,
and Vollhardt (1992) and Uhrig and Vlaming (1993; see

also Vlaming and Vollhardt, 1992 for the general formal-
ism associated with disordered spinless fermion models
in d=`). In this model the limit of large lattice coordi-
nation reduces to the Hartree approximation, and hence
one is really dealing with a static mean-field theory. Even
in this relatively crude approximation, this model dis-
plays a metal-insulator transition from a homogeneous
metallic phase to an insulating charge density wave
state. The behavior of the physical quantities near this
transition has been studied as a function of filling, tem-
perature, and frequency. Away from half-filling this
model displays incommensurate order and phase sepa-
ration (Uhrig and Vlaming, 1993).
Finally, let us mention that the dynamics of a single

hole in the d5` t2J model with local disorder has
been investigated by Strack and Vollhardt (1992).

3. Formation of local moments and the Mott transition
in disordered systems

Many disordered systems, such as doped semiconduc-
tors, do not order magnetically down to the lowest tem-
peratures that have been measured. For these systems,
the paramagnetic solution of the dynamical mean field
equations is relevant. Dobrosavljevič and Kotliar (1993,
1994) applied the LISA method to the physics of these
systems, and observed that it provides a microscopic
derivation of the two-fluid model (Quirt and Marko,
1972). This simple model of a strongly disordered metal
is known to be very successful in interpreting experi-
ments on these systems. In this picture, the disordered
system is viewed as a sum of a localized component and
of an itinerant component. The localized component
controls the susceptibility and other thermodynamic
properties while the itinerant component controls the
transport. The LISA method justifies this picture, and
allows one to deal with the dynamical effects of the in-

FIG. 81. T-U phase diagram for disorder strengths D=0,2,4,8.
The paramagnetic (antiferromagnetic) phase is stable above
(below) the curves. From Janiš, Ulmke, and Vollhardt (1993).
The results are for the Bethe lattice, and U , T , D are in units
of D/2, with D the half-bandwidth.
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teraction and the strong-coupling regime (for a Hartree
treatment of the interaction in this problem, see Milo-
vanović, Sachdev, and Bhatt, 1989).
The disorder induces a broad distribution of Kondo

energies. At a given temperature the ‘‘localized’’ compo-
nent of the two-fluid picture is identified with the sites
having a Kondo energy lower than the temperature,
while the ‘‘itinerant’’ component is identified with those
sites that have a Kondo temperature larger than the
temperature. Once the local Green’s functions are self-
consistently determined, the energy E(T) and the spe-
cific heat have an additive form over the members of the
ensemble having energies «i and hopping parameters xi :

E~T !5E d« iPS~« i!E dxiPH~xi!
1
b (

n
@ ivn1m

1Wi~vn!#Gi~vn!. (354)

For a continuous distribution of xi’s, the low-
temperature specific heat is dominated by sites with
TK(xi),T , and has the form

g~T !;
1
T
n fr~T !. (355)

Here, the fraction of ‘‘free spins’’ reads
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. (357)

For any distribution PH(xi) that extends all the way to
xi=0, and having a low xi tail slower than exponential
(e.g., power-law or lognormal), the resulting g(T) di-
verges as T→0. The precise form of this singularity de-
pends on the details of PH(xi). However, for any power-
law or even lognormal form of the law xi tail, the
quantity n fr(T) decreases to zero as T→0 slower than
any power, giving an anomalously slow decrease of the
number of ‘‘free’’ spins with temperature, and a large
anomaly in g(T).
Therefore, for a large class of models with continuous

distributions of hopping, the LISA equations admit non-
Fermi-liquid metallic solutions. We expect the non-
Fermi-liquid behavior of disordered metallic phases to
be a generic feature of such model beyond mean-field
theory (cf. Bhatt and Fisher, 1992). However, the de-
tailed dependence on the probability distribution for dis-
order is likely to be an artifact of the d=` mean-field
theory, and is probably replaced by renormalized distri-
butions.
The transport coefficients such as the conductivity can

also be written as averages over the ensemble of Ander-
son impurity models, but in this case, the transport is
nonlinear in the probability distribution of randomness
and it weights more heavily the sites with a large Kondo
temperature. For instance, the conductivity reads (Sec.
IV)

Res~v!54pa2t2E dv8rW~v8!rW~v81v!

3
f~v8!2f~v81v!

v
, (358)

where f(v) is the Fermi function, and rW(v) is the local
spectral function corresponding to the averaged cavity
field:

rW~v!52
1
p
Im E d« iPS~« i!

3E dxiPH~xi!xi
2Gi~v1i01!. (359)

At v=0, and low temperatures, the expression reduces to

sdc~T !54pa2t2rW
2 ~v50,T !. (360)

The behavior of the transport and thermodynamics of a
disordered system near the Mott transition was exam-
ined in the work of Dobrosavljecvič and Kotliar (1993,
1994). At zero temperature there is minimal metallic
conductivity while at finite temperatures there is a
rounded jump. This is shown in Fig. 82. It is amusing to
notice that these results are very similar to the analysis
of the experimental data by Möbius (1989, 1990). Far
from the transition the presence of local moments does
induce anomalous low-temperature corrections to sdc ,
which could be crucial in understanding the transport
properties in systems such as doped semiconductors.
These anomalous contributions arise because in a disor-
dered system different sites have different environ-
ments.

FIG. 82. DC conductivity as a function of temperature for the
model described in the text. Note the sharp increase at low
temperature, reflecting the onset of coherence due to Kondo
screening of the local moments. From Dobrosavljevič and Kot-
liar (1994).

106 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



It is useful to analyze qualitatively Eqs. (359) and
(360) assuming off-diagonal disorder only. Even far from
the transition, the statistical distribution of hoppings re-
sults in the existence of strongly correlated sites with a
spectral function r i(vn) which develops a sharp peak
near the Fermi surface. As the temperature is increased
from T=0, inelastic scattering will destroy this coherent
peak at a characteristic temperature TK . However, in a
random system, this process takes place locally, and a
given site becomes ‘‘incoherent’’ at T;TK(xi), when
this Kondo resonance is washed out. Thus, in contrast to
thermodynamic response, appreciable contributions to
the conductivity come from those sites with TK(xi).T ,
which remain coherent:

r i~vn→0 !;H 0, TK~xi!,T ,
1

xi
2Do

, TK~xi!.T . (361)

Again, to leading order we can ignore the frequency de-
pendence of r i(vn), and we find (at vn→0)

rW~T !;E
xmax~T !

1`

dxiPH~xi!. (362)

By using this result, and Eq. (360), we find that the lead-
ing low-temperature correction to the dc conductivity
assumes the form

dsdc~T !;n fr~T !. (363)

It is interesting to note that, although n fr(T) vanishes
more slowly than any power as T→0, for realistic distri-
butions one can write:

n fr~T !5Ta~T !, (364)

where a(T) depends on temperature only very weakly,
typically logarithmically (Dobrosavljevič, Kirkpatrick,
and Kotliar, 1992). Experimentally, one expects to mea-
sure some effective exponent a. Since a→0 at T→0, one
expects these effective exponents to be small. This be-
havior is to be contrasted with the fact that similar,
nonanalytic finite temperature corrections to the con-
ductivity of dirty metals follow from weak localization
and interaction effects. Mean-field theory then produces
a very different mechanism for anomalous temperature
dependence of the conductivity.
A full theory of the interplay of disorder and interac-

tions should include both the local moments and the
hydrodynamic (diffusion) corrections. As discussed in
Sec. IX, the loop expansion (Dobrosavljevič and Kotliar,
1993, 1994) would incorporate these two distinct correc-
tions to the transport coefficients in a unified frame-
work.
Finally, we emphasize that one of the main limitations

of the LISA method in dealing with disordered elec-
tronic systems is its inability to capture the effects of
Anderson localization. Indeed, localization effects disap-
pear in the d→` limit. Physically, this is because each
site has a large number of neighbors, so that diffusive
behavior is always possible. Formally, it manifests itself,
e.g., in the fact that the on-site Green’s function is a

self-averaging quantity. It would be extremely interest-
ing to find a way out of this difficulty, perhaps along the
lines of Sec. IX.

IX. BEYOND d5`: INCLUDING SPATIAL FLUCTUATIONS

A. Motivations

An obvious limitation of the dynamical mean-field
theory based on the d→` limit is that it fails to capture
fully the dynamical effects of intersite interactions, in ei-
ther the charge channel (e.g., nearest-neighbor repul-
sion) or spin channel (exchange). More precisely, we
have seen that these interactions do enter two-particle
response functions at specific values of q (such as q=0)
but do not affect local response functions or one-particle
properties. Hence the approach is able to capture the
possible symmetry breakings induced by these interac-
tions, but does not take into account the dynamical ef-
fect of the fluctuations in the high-temperature disor-
dered phase. An example making this observation
particularly clear is that of the t-J model in d=`. In the
paramagnetic phase, the exchange coupling J disappears
completely from the mean-field equations based on a
single-site effective action. The antiferromagnetic phase
transition has no precursor effect on one-particle prop-
erties in this limit. (Note that this no longer applies for
random exchange couplings, as described in Sec.
VIII.A.4.)
Such dynamical effects are crucial however for the

physics of several strongly correlated fermion problems.
A few prominent examples are quoted here.
(i) In heavy-fermion compounds, the competition of

the RKKY interaction with the Kondo effect is a crucial
question, which remains largely unanswered. As de-
scribed in Sec. VIII.A.1, only some aspects of this com-
petition are captured in the LISA framework.
(ii) In the cuprate superconductors, the superex-

change interaction J is a fairly large scale. This interac-
tion has to be taken into account in the description of
the spin dynamics, such as the ‘‘spin-gap’’ phenomenon.
Large-N (Castellani, Grilli, and Kotliar, 1991) and
large-S (Kane, Lee, and Read, 1989) studies suggest that
the divergence of the effective mass near the Mott tran-
sition found in the d=` approach (Sec. VII) is going to
be significantly modified by intersite interactions when J
is large.
(iii) The dynamical effects of longer-range Coulomb

repulsion (such as a nearest-neighbor term Vpdnisnjs8)
may also be important for cuprates (Varma, Schmitt-
Rink, and Abrahams, 1987). Such an interaction reduces
to its Hartree term in the single-site mean field theory
(Müller-Hartmann, 1989a; cf. Secs. VIII.C and VIII.D).
(iv) Anderson localization, that is the possibility of an

insulating state which is caused entirely by randomness,
plays an important role in the physics of doped semicon-
ductors. This phenomena is absent in the limit of infinite
dimensions because spatial fluctuations caused by the
randomness are completely averaged out, and the
Green’s function becomes self-averaging (Sec. VIII.G).
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The same limitations affect the description of ordered
phases. It is impossible, for example, to describe a pair-
ing state with extended spatial symmetry (such as
d-wave) in the context of the single-site approach.
All these observations call for an extension of the dy-

namical mean-field framework to take into account
these nonlocal physical effects. One may hope that,
whenever the relevant correlation lengths of a physical
system are small, it may be sufficient to include short-
range fluctuations and that an approach based on a
quasilocal point of view is valid. This suggests extending
the dynamical mean-field framework from a single-site
effective theory to that of a finite cluster embedded in a
self-consistent medium.
Such generalizations of mean-field theory based on a

self-consistent cluster embedding have a long history in
the statistical mechanics of classical spin models (see,
e.g., Burley, 1972). The simplest example is the Bethe-
Peierls approximation which reintroduces pair correla-
tion effects. These methods have been developed sys-
tematically, following in particular the work of Kikuchi
(1951), and have led to sequences of approximations
based on larger and larger clusters which give an excel-
lent quantitative description of thermodynamic proper-
ties (Suzuki, 1988). Critical properties can even be in-
ferred from the study of the convergence of this
sequence of approximations. In these sections, we shall
describe various possible ways of generalizing these clus-
ter approaches to models of strongly correlated fermi-
ons. The subject is still at a developmental stage. Very
few actual calculations have been undertaken using
these schemes, and it may be that these approximations
suffer from various limitations or inconsistencies. These
methods however are natural extensions of the LISA
framework, and in one form or another this type of ap-
proach should allow progress to be made on some of the
physical issues above. We view this section as an incen-
tive for further investigation of this route. Another pos-
sible, perhaps more systematic, approach is to perform
direct 1/d expansions for properly chosen quantities.
This has not yet been undertaken for the Hubbard
model or any other model of comparable complexity.
1/d expansions have been performed, however, for sim-
pler models (Vlaming and Vollhardt, 1992; Halvorsen,
Uhrig, and Czycholl, 1994) and have also been used as a
simplifying tool of approximation methods (Schweitzer
and Czycholl, 1990b, 1991a; van Dongen, 1994).
Apart from these attempts to include the physics of

short-range fluctuations, an outstanding problem in the
field is to include long-wavelength modes (such as spin
waves), which are absent in the d=` limit. This requires
some kind of loop expansion around this limit. In order
to set up this expansion, a functional integral formula-
tion is needed, in which the LISA appears as a saddle
point. So far, this has been accomplished only for models
involving hopping randomness (Dobrosavljevič and Kot-
liar, 1993, 1994). While this approach has not yet been
extended to nonrandom models, and no loop corrections

to physical quantities have been calculated yet, we be-
lieve it deserves further investigation and we describe it
briefly in Sec. IX.D.

B. The Bethe-Peierls approximation

The most natural extension of the Weiss mean field
approach is the Bethe-Peierls approximation. For classi-
cal systems, this coincides with the exact solution on a
Bethe lattice. For quantum systems, the exact solution
of a model of correlated electrons on the Bethe lattice
can be reduced to an infinite number of coupled func-
tional equations for an infinite number of functions (i.e.,
all the connected n-point functions). Unfortunately,
given the difficulty of handling mean field equations for
just a single function (as in the z=` limit), this route
looks, at this point, prohibitively difficult, so we must
introduce additional approximations to obtain tractable
schemes.
The first self-consistent cluster scheme that we shall

introduce is a fairly straightforward adaptation of the
Bethe-Peierls scheme for spin systems. It is designed for
the Bethe lattice with finite connectivity z . The idea is to
single-out a finite cluster of sites, made of a central site o
and its nearest neighbors i51,.. . ,z (Fig. 83). Following
the strategy of the cavity method (Sec. III.A), one thinks
of eliminating all degrees of freedom in the lattice ex-
cept on that single cluster. No small parameter (like 1/z)
is now available to control this elimination, and one has
to resort to some approximations. The approximation
made here is to include, in the effective action for the
cluster, only the quadratic (one-particle) terms gener-
ated by the elimination procedure. With this assumption,
the most general form for the cluster effective action
reads

Seff52E
0

b

dtE
0

b

dt8(
s

(
iPB

cis
1 ~t!G 0

21~t2t8!cis~t8!

2E
0

b

dt(
s

cos
1 ~t!~2]t1m!cos~t!

2E
0

b

dt (
s ,iPB

t io~cis
1 cos1cos

1 cis!

1UE
0

b

dtFno↑no↓1 (
iPB

ni↑ni↓G . (365)

In this expression, G 0 is the ‘‘Weiss function’’ resulting
from the elimination of the lattice degrees of freedom.

FIG. 83. Cluster used in the Bethe-Peierls method.
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Note that it acts only on the z sites of the boundaryB of
the cluster, since only those are connected to the rest of
the lattice. Also, note that it is purely site diagonal: this
is a feature of the Bethe lattice, which splits into z dis-
connected sublattices once the cavity has been created
(i.e., the cluster has been removed), so that two different
sites on the boundary can no longer communicate. t is
the nearest-neighbor hopping, which is not being scaled
as 1/Az in this section.
From Seff , interacting Green’s functions can be calcu-

lated as a function of G 0 for both the central sites and
the sites on the boundary:

Goo~t2t8![2^Tco~t!co
1~t8!&Seff,

Gii52^Tci~t!ci
1~t8!&Seff. (366)

One needs to supplement these equations with a single
self-consistency equation to obtain a closed set of equa-
tions for the single unknown function G 0 . A very natural
way of achieving this is to request translation invariance
of the lattice Green’s function, i.e., to determine G 0 from
the condition

Goo@G 0#5Gii@G 0# . (367)

Equations (365), (366), and (367) form a closed set of
equations which are exact in the following limits.
(i) Large connectivity z→`. Restoring the scaling

t5t
*
/Az , the boundary sites can be eliminated to domi-

nant order so that an effective single-site action for the
central site is obtained, with a Weiss function:

G 0
215ivn1m2t2(

i51

z

Gii~ ivn!

5ivn1m2t
*
2Goo~ ivn!, (368)

where Eq. (367) has been used. This is seen to be
equivalent to the exact mean-field equations for the z=`
Bethe lattice.
(ii) Atomic limit t=0. In that case the cluster effective

action splits into z+1 disconnected pieces. The piece cor-
responding to the central site is seen to be the single-site
action of the Hubbard model in the atomic limit, so that
Goo5Gatomic . In view of the form of the effective action
for the boundary sites, the self-consistency condition Eq.
(367) then implies G 0

−1=ivn1m , as required.
(iii) Free system U=0. The effective action becomes

quadratic and can be solved in closed form. Diagonaliz-
ing the corresponding (z11)3(z11) matrix yields
G oo

215ivn1m2zt2G 0 and Gii=G 0−t
2G 0

−1 . The self-
consistency condition (367) then leads to the following
equation for G 0 : (z21)t2G 0

2−(ivn1m)G 0+1=0. Com-
paring with Eq. (A41) of Appendix A, one identifies G 0
with the cavity Green’s function G ii

(o), and checks that
these equations yield the exact Green’s function in the
free case for the Bethe lattice with arbitrary connectiv-
ity, as expected.
It should be pointed out that, in contrast to classical

spin systems, these equations inspired by the Bethe-
Peierls method are not exact for the finite connectivity
Bethe lattice except in the above limits. Indeed, higher-

order cumulants have been neglected in the effective
action.
Though simple in spirit, the Bethe-Peierls approxima-

tion has several limitations. It is designed for the Bethe
lattice, has no clear generalization to cluster involving
loops, and requires the solution of an Anderson model
involving z+1 impurity sites. The next section describes
more flexible and practical cluster approximations.

C. Self-consistent cluster approximations

We describe here a self-consistent cluster embedding
approximation that has been recently proposed indepen-
dently by the present authors and by Schiller and In-
gersent (1995). The idea is to replace the lattice problem
by that of a cluster of a specific shape, embedded self-
consistently in the lattice in all possible ways. As we
shall see, in order to avoid double counting, subclusters
of the original cluster must also be considered. The
method can in principle be adapted to any lattice and an
arbitrary cluster shape. In this section however, we shall
illustrate it on the simplest example, namely that of a
cluster made of a pair of neighboring sites.
In order to set up the equations, it is convenient to

work in terms of the Luttinger-Ward functional F[$Gij%]
already introduced in Sec. III.B and defined as the sum
of all vacuum-to-vacuum skeleton diagrams. The free
energy can be viewed as a functional of both the full
Green’s function Gij and of the self-energy Sij , which
reads

V@Gij ,S ij#52Tr ln@~ ivn1m!d ij2t ij2S ij#

2TrS•G1F@$Gij%# . (369)

Stationarity with respect to both G and S yields the
Dyson equation relating these quantities and the expres-
sion of S as the derivative of the Luttinger-Ward func-
tional:

Gij5@ ivn1m2t ij2S ij#
21, S ij5

dF

dGij
. (370)

The main idea of the self-consistent cluster method is to
expand the functional F as a sum of functionals involv-
ing the contribution of single-site clusters, two-site clus-
ters of nearest-neighbor sites, etc. A very similar proce-
dure is applied to the entropy term for classical
statistical mechanics models (see, e.g., Sanchez, Ducas-
telle, and Gratias, 1984; Morita, 1990). Let us write such
an expansion as

F5(
i

F̃1@Gii#1(̂
ij&

F̃2@Gii ,Gjj ,Gij#1••• , (371)

where only contributions of single sites and pairs of
nearest neighbors have been explicitly written. The aux-
iliary functionals F̃1 ,F̃2 are the ‘‘connected’’ contribu-
tions of single-site and pair clusters. They are deter-
mined by the observation that this expansion can also be
applied to a lattice made of just a single site or a single
pair, and thus
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F1@Gii#5F̃1@Gii# , (372)

F2@Gii ,Gjj ,Gij#5F̃2@Gii ,Gjj ,Gij#1F1@Gii#

1F1@Gjj# , (373)

where F1 and F2 are the Luttinger-Ward functionals cor-
responding to a single-site and a pair cluster, respec-
tively. Thus, one gets the expansion

F5~12z !(
i

F1@Gii#1(̂
ij&

F2@Gii ,Gjj ,Gij#1••• ,

(374)

where z is the connectivity of the lattice. The crucial
role of the last subtracted term in (374) is to avoid over-
counting of the single-site contributions, as can be
checked by working out the first few orders of perturba-
tion theory for F explicitly.
The self-consistent cluster approximation simply

amounts to truncating this expansion at a given order.
The rationale behind this approximation is that the cu-
mulants F̃ should become small for large cluster sizes. If
only F1 is included, the single-site dynamical mean-field
theory (exact for d=`) is recovered, as discussed in Sec.
III.B. Including both single-sites and pair clusters yields
the next approximation. Using (370), the self-energy has
two components within this approximation: a purely lo-
cal one Sloc(ivn) and a nearest-neighbor one SNN(ivn),
given by

S loc5
dF

dGii
5~12z !

dF1

dGii
1z

dF2

dGii
, (375)

SNN5
dF2

dGij
. (376)

These equations express the self-energy as a functional
of the full Green’s functions. Combined with the Dyson
equation in (370) relating Gij to Sij , one obtains in prin-
ciple a set of closed equations for these quantities. How-
ever, in order to put these equations in a practical form,
it is convenient to generate F1 and F2 from the action of
a one-impurity and a two-impurity model, respectively.
One thus introduces two sets of auxiliary Weiss fields: a
local one G 0(1) for the single-impurity model, and a 232
matrix [G 0(2)]ij , where i ,j can take the values 1,2 and
denote the two nearest-neighbor sites in a pair. The ef-
fective actions generating F1 and F2 read

Seff
~1 !52E

0

b

dtE
0

b

dt8(
s

c1s
† ~t!G 0~1 !

21 ~t2t8!c1s~t8!

1UE
0

b

dt n1↑n1↓ , (377)

Seff
~2 !52E

0

b

dtE
0

b

dt8 (
i ,j51

2

(
s

cis
† ~t!@G 0~2 !

21 ~t2t8!# ij

3cjs~t8!1U(
i51

2 E
0

b

dt ni↑ni↓ . (378)

Let us denote by G loc[G115G22 and GNN[G125G21
the local (on-site) and nearest-neighbor Green’s func-

tions of the lattice model. The Weiss fields must be cho-
sen so that the impurity Green’s function coincide with
G loc and GNN . This must yield three self-consistency
conditions to fully determine the three Weiss fields G 0(1)
and [G 0(2)]ij . The first condition is simply that the
Green’s function of the single-impurity model must co-
incide with the on-site component of the two-impurity
model Green’s function. In order to express the two
other conditions, we define self-energies associated with
each impurity model in the usual way:

S~1 ![G 0~1 !
21 2G loc

21, S ij
~2 ![@G 0~2 !

21 # ij2@G21# ij ,

i ,jP$1,2%. (379)

From which the on-site and nearest-neighbor compo-
nents of the lattice self-energy can be obtained using
(376) as

S loc~ ivn!5~12z !S~1 !~ ivn!1zS11
~2 !~ ivn!,

SNN~ ivn!5S12
~2 !~ ivn!. (380)

The two additional self-consistency conditions then read

G loc5(
k

1
ivn1m2ek2S loc~ ivn!2C~k!SNN~ ivn!

,

(381)

GNN5(
k

eik•d
W

ivn1m2ek2S loc~ ivn!2C~k!SNN~ ivn!
,

(382)

where C(k) is the Fourier transform of the lattice con-
nectivity matrix, and dW is the lattice vector between
nearest-neighbor sites. For a model with only nearest-
neighbor hopping t ij5t , one has ek=tC(k). These expres-
sions can be further simplified:

G loc5
1

11SNN /t
D̃S ivn1m2S loc

11SNN /t
D , (383)

zGNN5
1

t1SNN
@211~ ivn1m2S loc!G loc# . (384)

The solution of the one and two-impurity effective ac-
tions submitted to the set of self-consistency equations
just established provides us, in principle, with a closed
approximation scheme for the determination of the
Green’s functions and self-energies. In practice, one will
have to proceed, as usual, by iteration, for example,
along the following route:

S~1 !,S ij
~2 ! ——→

Eq. ~380!

S loc,SNN ——→
Eq. ~381!

G loc ,

GNN ——→
Eq. ~379!

G 0~1 ! , @G 0~2 !# ij→S~1 !new,S ij
~2 !new , (385)

where the last step requires the solution of both impu-
rity models, and is of course the hard part in practice.
Some general remarks can be made on this type of

approximations. First we note that, like the Bethe-
Peierls approximation, it is exact in the limits t=0
(atomic), U=0 (free), and the exact single-site equations
are recovered for d=`. Also, the pair scheme includes

110 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



all contributions to the free-energy up to order 1/d .
Nonetheless, it is not obvious a priori that these approxi-
mations are free of intrinsic difficulties, in contrast to the
single-site dynamical mean-field theory which was free
of internal inconsistencies because of the underlying
d=` limit. In the cluster scheme, it is not guaranteed for
example that the solutions satisfy analyticity properties
(i.e., have always positive spectral densities). Indeed, it
is well known that attempts to generalize to clusters the
CPA approximation for disordered alloys are faced with
such problems (see Elliott, Krumhansl, and Leath, 1974,
for a review).
Only exploratory studies of this set of equations have

been made in special cases at this time. Schiller and In-
gersent (1995) have applied it to the Falicov-Kimball
model, and the present authors have applied the IPT
scheme to these equations for the half-filled Hubbard
model in a preliminary study of the effect of intersite
fluctuations on the Mott transition. In both of these
works, problems with the analyticity and uniqueness of
the solutions have been noted in some range of param-
eters. It is not yet clear whether this is intrinsic to the
method or connected to the approximations made. In
any case, self-consistent cluster embeddings have the po-
tential to account for the competition between local co-
herence and intersite effects. This is achieved by bring-
ing in the physics of two-impurity models that are
known to capture this competition (see, e.g., Jones,
Varma, and Wilkins, 1988). In contrast, a perturbative
expansion in 1/d would reintroduce these effects only as
a subdominant perturbation. The authors feel that
cluster-embedding schemes should be explored further
before a final conclusion is reached. Simpler cluster-
embedding schemes can also be devised, like naively ex-
tending the CPA approach of Sec. III.D to a single pair
of sites plus an effective medium. However, such naive
extensions have overcounting problems. This is the ra-
tionale for introducing the two simultaneous impurity
problems, as was done in this section.

D. Functional integral formulation and loop expansion

A quite different approach, beyond the d=` mean
field solution, intended to capturing long-wavelength
fluctuations, is to carry out a loop expansion, for which it
is necessary to obtain the mean-field equations as a
saddle point in a functional integral representation of
the partition function. Expansion around the saddle
point then generates the conventional loop expansion
for spin systems. In the quantum case, this functional
integral representation has been derived only in the case
of the random models described in Sec. VIII.G (Dobro-
savljevič and Kotliar, 1994). We summarize their method
below. The starting point is the functional integral rep-
resentation of the partition function of the random
model described in Sec. VIII.G. Its Hamiltonian was
given by

H5(
ij

(
s

@2t ij1« id ij#cis
1 cjs1U(

i
c i↑

1ci↑ci↓
1ci↓ .

(386)

The partition function is replicated so as to be able to
carry out the disorder average:

Zn5E D« iP@« i#DtijP@ t ij#E Dc̄iDciexp$2S%, (387)

with the action S5S loc+Shop consisting of a local part
(that includes the Hubbard interaction)

S loc5(
i
S loc~ i !5(

i
F(

a ,s
E
0

b

dt c̄ si
a @]t1« i2m#csi

a

1U(
a ,i

E
0

b

dt c̄↑i
a c↑i

a c̄↓i
a c↓i

a G , (388)

and a hopping part

Shop5(̂
ij&

Shop~ i ,j !5(̂
ij&

F t ij(
a ,s

E
0

b

dt@ c̄ si
a csj

a 1H.c.#G .
(389)

Here, c̄ s ,i
a and c s ,i

a are the electronic (Grassmann) fields
with spin s=↑,↓, the replica index a=1,...,n , at lattice site
i , and b is the inverse temperature. The random site
energies «i are described by their probability distribu-
tion PS[« i], and the random hopping elements t ij by the
corresponding distribution PH[t ij]. In the following, a
specific form of the hopping t ij5xixjyij will be chosen,
the xi’s being random variables with a distribution
PX(x), and yij being independent Gaussian variables
such that yij

2 5 t2f ij /z , with f ij the lattice connectivity ma-
trix.
At this point, it is convenient to explicitly perform the

averaging over the Gaussian random (bond) variables
yij , after which the hopping part of the action takes the
form

Shop5
1
2
t2(

ij

1
z
fijxi

2xj
2F(

as
E
0

b

dt@ c̄ si
a ~t!csj

a ~t!

1H.c.#G 2. (390)

As we can see from this expression, the averaging over
disorder has generated a quartic term in the action,
which is nonlocal in (imaginary) time, spin, and replica
indices. We are now in a position to introduce collective
Q fields of the form

Qv1v2

a1a2 ,s1s2~ i !5
1
z (

j
f ijxj

2c̄ js1
a1 ~v1!cjs2

a2 ~v2!, (391)

by decoupling the (quartic) hopping term using a
Hubbard-Stratonovich transformation.
It is now possible to formally integrate out the elec-

tron (Grassmann) fields, and the resulting action for the
Q fields can be written as

S@Q#5Shop@Q#1S loc@Q# . (392)

The nonlocal part of the action Shop[Q] takes a simple
quadratic form in terms of the Q fields
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Shop@Q#52
1
2
t2(

ij
(

a1a2
(
s1s2

(
v1v2

KijQv1v1

a1a2 ,s1s2~ i !

3Qv2v1

a2a1 ,s2s1~ j !, (393)

where Kij51/zf ij
21 is the inverse lattice matrix, scaled by

coordination number z . In contrast, all the nonlineari-
ties are contained in the local part of the action

S loc@Q#52(
i

lnE dxiPX~xi!E d« iPS~« i!

3E Dc̄iDciexp$2Seff@ c̄ i ,ci ,Qi ,xi ,« i#%,

(394)

where the effective action for on-site electrons takes the
form

Seff@ c̄ i ,ci ,Qi ,xi ,« i#52 (
a1a2

(
s1s2

(
v1v2

c̄ is1
a1 ~v1!

3@~ iv11m2« i!da1a2
ds1s2dv1v2

2xi
2t2Qv1v2

a1a2 ,s1s2~ i !#cis2
a2 ~v2!

1U(
a

(
v11v35v21v4

c̄ i↑
a ~v1!

3ci↑
a ~v2!c̄ i↓

a ~v3!ci↓
a ~v4!. (395)

The local effective action Seff[ c̄ i ,ci ,Qi ,xi ,« i] is identi-
cal to the action of a (generalized) Anderson impurity
model embedded in an electronic bath characterized by
a hybridization function xi

2t2Qv1v2

a1a2 ,s1s2(i). We can thus

interpret our system as a collection of Anderson impu-
rity models that are ‘‘connected’’ through the existence
of collective Q fields. Here we note that, in contrast to
an ordinary Anderson model, the hybridization function
is now nondiagonal in frequency, spin, and replica indi-
ces. Physically, this reflects the fact that, for an arbitrary
dimension, each site can be regarded as an Anderson
impurity model in a fluctuating bath, which breaks local
translational invariance in time, space, and spin.
When z→`, the functional integral over Q fields, rep-

resenting the partition function, can be evaluated ex-
actly by a saddle-point method, and we should rederive
the mean-field theory.

dS@Q#

dQv1v2

a1a2 ,s1s2~ i !
50. (396)

Assuming that the saddle-point solution QSP is transla-
tionally invariant in time, space, and conserves spin, and
is diagonal in all indices

@Qv1v2

a1a2 ,s1s2~ i !#uSP5da1a2
ds1s2dv1v2

Qs
SP~v!, (397)

the saddle-point equations assume the form

Qs
SP~v!5E d« iPS~« i!E dxiPX~xi!xi

2Gi ,s~v!, (398)

where

Gi ,s~v!5^ c̄ s~v!cs~v!&Seff@ c̄ ,c ,QSP,xi ,« i#
. (399)

Hence, the Weiss function entering the effective action
for site i reads G 0

21 5 ivn 2 xi
2t2Qs

SP(v), so that the dy-
namical mean-field equations of the LISA method are
recovered at the saddle-point level.
In order to systematically study the fluctuation effects,

one should carry out an expansion in terms of the devia-
tions of the collective Q fields from their saddle-point
value, i.e., in powers of dQ(i)5Q(i)2QSP. This expan-
sion around a nontrivial function has been used in other
disordered problems, such as spin glasses, to generate
systematic corrections to the mean-field theory (de Do-
minicis, Kondor, and Temesvari, 1987).
The method is particularly convenient when applied

to long-range models, i.e., f ij=1 for ui2ju,L , where L is
a cutoff distance and the coordination z;Ld. In that
case, the loop corrections are ordered by a small param-
eter 1/z . The loop expansion can be applied also to large
dimensionality models and in that case a given order in a
loop expansion can be considered to be an infinite re-
summation of the simple 1/d expansion, since each term
contains all powers of 1/d . When the expansion of the
effective action in terms of dQ is carried to lowest, qua-
dratic order, we obtain a theory describing Gaussian
fluctuations around the saddle point, which represent
weakly interacting collective modes. Higher-order terms
in the expansion then generate effective interactions of
these modes, which under appropriate conditions can
lead to fluctuation-driven phase transitions.
The Gaussian fluctuations of the Q fields would allow

us to compute the leading corrections to mean-field
theory. They have the form

S ~2 !@Q#52
1
2
t2 (
l1•••l4

E dk

~2p!d
dQl1l2

~k !@~L2k211 !

3d l1l4d l2l32t2W~ l1!W~ l3!d l1l2d l3l4

1t2G~ l1•••l4!#dQl3l4
~2k !. (400)

This expression is appropriate for a long-ranged model
in which case the inverse lattice matrix in momentum
space takes the form K(k)'11L2k2, and the momen-
tum integrals should be cut off at L=2p/L . Note that the
coefficient of k2, which can be interpreted as the stiffness
of the dQ modes, is ;L2, so we see that indeed the
fluctuations are suppressed for L→`. In the above for-
mula, the index lm is used to represent the frequency,
spin, and replica indices. The local vertex function
G(l1•••l4) is given by

G~ l1•••l4!5E d« iPS~« i!E dxiPX~xi!

3xi
4^ c̄ i~ l1!ci~ l2!c̄ i~ l3!ci~ l4!&Seff@QSP# . (401)

At this level, the dynamics of the collective fluctuations
dQ is governed by the form of S(2)[dQ], which is ex-
pressed in terms of the local correlation functions of the
saddle-point theory, i.e., of the d=` disordered Hubbard
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model. Accordingly, a detailed study of the d=` limit
does not provide only a mean-field description of the
problem, but also determines the form of the leading
corrections resulting from fluctuations. Corrections to
physical quantities at the one-loop level have, however,
not been calculated to date. The transverse fluctuations
in these theories are the soft modes identified by
Finkhelstein (1987) in his pioneering work on the inter-
play of localization and interactions. A detailed study of
the effects of fluctuations still remains to be carried out.
The methods of Sec. VI.C may prove to be very useful
for the evaluation of the coefficients of the effective La-
grangian.
In the derivation presented in this section, the ran-

domness on the hopping matrix elements greatly facili-
tated the formulation of a path-integral approach. Nev-
ertheless it seems to us that it only played the role of a
technical trick, and in fact one should be able to formu-
late a similar loop expansion for the nonrandom models.
This is clearly an important problem for further re-
search.

X. CONCLUSION

This rather long article can only end with a brief con-
clusion. The main message that we have tried to convey
is that the local impurity self-consistent approximation
(LISA) provides a powerful framework for the quanti-
tative description of strongly correlated fermion sys-
tems. This approximation becomes exact in the limit of
infinite dimensions/infinite lattice coordination, but can
be viewed more generally as a dynamical mean-field
theory for these systems. As reviewed in this article, this
approach has led to significant progress on several prob-
lems in the physics of strongly correlated fermions.
Some favorable comparisons of the LISA results to ex-
perimental findings on various materials have already
been made.
In the hope of stimulating further work in this area,

we have tried to emphasize in this article the physical
content of the LISA method, and to review in detail the
derivation of the dynamical mean-field equations, and
the various analytical techniques and numerical algo-
rithms available to solve them. It seems to us that there
are at least three general directions in which further re-
search is needed and progress is possible:
(i) Improvements in the efficiency and flexibility of

the algorithms for the solution of the LISA dynamical
mean-field equations would be technically very helpful
(cf. Sec. VI).
(ii) In an attempt to push further the comparison with

experiments (particularly on transition metal oxides), an
effort could be made to include more realistic features
of the actual materials (such as band structure aspects
and orbital degeneracy) within the LISA method. It may
even be possible to incorporate ideas from the LISA
method into electronic structure calculations of real ma-
terials (cf. Sec. VIII.C).
(iii) The LISA method is a mean-field approximation

in the sense that it freezes spatial fluctuations. It is

clearly an outstanding theoretical problem in the field to
go beyond the LISA, and treat these fluctuations in a
consistent manner (both from the point of view of short-
range correlations and of long wavelength collective
modes, cf. Sec. IX).
In our view, the field of strongly correlated electron

systems is ripe for new progress, and we expect the
LISA method to play a major role in the quantitative
description of these fascinating materials.
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APPENDIX A: FERMIOLOGY IN d5`

In this appendix, we collect various useful results on
the fermiology of tight-binding electrons on infinite-
dimensional lattices. A large part of this section follows
the paper of Müller-Hartmann (1989a).

1. Density of states of some d5` lattices

We start with the simplest case of free electrons on a
d-dimensional cubic lattice with nearest-neighbor hop-
ping. The lattice spacing a is set to a=1. The hopping is
normalized to

t ij5
t

A2d
(A1)

so that the Fourier transform of the kinetic energy per
spin reads

ek52
2t

A2d (
i51

d

coski . (A2)
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The density of states

D~e!5E ddk

~2p!d
d~e2ek![^d~e2ek!& (A3)

can be obtained in the limit d=` by applying the central
limit theorem to the sum in Eq. (A2). Indeed, in this
limit, coski can be considered (for a generic k) as a ran-
dom number between −1 and 1, and the mean and vari-
ance of ek read (denoting by ^•••& averages over the Bril-
louin zone)

^ek&50, ^ek
2&5

4t2

2d
d^cos2k1&5t2. (A4)

The density of states is thus a Gaussian for d=`:

D~e!5
1

A2pt2
e2e2/2t2. (A5)

The tails of D(e) extending to infinity are due to the
‘‘exceptional’’ values of the momentum (such that k=0)
which contribute ‘‘coherently’’ to the sum in Eq. (A2),
so that the sum becomes of order d rather than Ad .
Equation (A5) can be established more explicitly, and
finite-dimensional corrections estimated, by introducing
the Fourier transform

Fd~s ![E
2`

1`

de eiseD~e!. (A6)

This reads

Fd~s !5F E
2p

1p dk

2p
expS 2i

2ts

A2d
cosk D G d. (A7)

This integral is easily expanded in powers of 1/d :

Fd~s !5expF2
t2

2
s22

t4

16d
s41OS 1d2D G . (A8)

For d=`, all terms but the first one can be ignored in the
argument of the exponent, and the inverse transform
yields Eq. (A5). Retaining higher terms yields finite-
dimensional corrections to the Gaussian limiting form.
Fd(s) can actually be obtained in explicit form:

Fd~s !5F J0S 2t

A2d
s D G d, (A9)

where J0 is the Bessel function. The asymptotic expan-
sion above is controlled to all orders in 1/d by the maxi-
mum of J0 at s=0. The density of states for a finite-
dimensional lattice differs from the Gaussian mostly
because of Van Hove singularities [of the form
(e2eVH)

d/221], which are due to the opposite region of
integration s>Ad , and contribute exponentially small
contributions (of order e2d) to the expansion above.
These singularities are thus ‘‘nonperturbative’’ effects
from the viewpoint of a 1/d expansion. Quantitative
comparison between the density of states in finite di-
mensions and the Gaussian form is displayed in Fig. 84
(from Vollhardt, 1993). It is seen that the d=` limit be-
comes a rather good approximation very quickly, and

that already for d=3, the density of states differs appre-
ciably from the Gaussian only in the vicinity of the Van
Hove singularities.
We also derive the expression (11) for the Hilbert

transform of the Gaussian density of states:

D̃~z ![E
2`

1`

de
D~e!

z2e
. (A10)

It is convenient to introduce the integral representation
(valid for Imz>0):

1
z2e

52iE
0

1`

dleil~z2e!. (A11)

Performing the Gaussian integration over e, one obtains

D̃~z !52iE
0

1`

dl eilz2l2/4. (A12)

Shifting the integration variable finally yields

D̃~z !52iApe2z2erfc~2iz ! ~Imz.0 !, (A13)

where the complementary complex error function is de-
fined by

erfc~z ![
2

Ap
E
z

1`

e2t2dt . (A14)

The function D̃(z) is directly proportional to the func-
tion w(z) discussed in Chapter 7 of Abramowitz and
Stegun (1972), in which many useful properties are
listed. An efficient numerical algorithm for the evalua-

FIG. 84. Density of state D(e) for tight-binding electrons with
nearest neighbor hopping on a hypercubic lattice of various
dimensionalities. From Vollhardt (1994).
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tion of this function in the complex plane is imple-
mented in the program LISAQMC.F (cf. Appendix D).
We now discuss longer-range hopping on the d=` cu-

bic lattice (Müller-Hartmann, 1989a). A first possibility
is to consider only hopping to those neighbors of a given
site that can be reached in m jumps along a given coor-
dinate axis. The number of such distant neighbors is al-
ways 2d , independently of m , so the kinetic energy is
scaled as

ek5 (
m51

`

tmem~k!, em~k![2
2

A2d (
i51

d

cos~mki!,

(A15)

where the tm’s are hopping parameters. Extending the
asymptotic expansion above to this case, it is easy to see
that the density of states remains Gaussian, with the pa-
rameter t in (A5) given by

t25 (
m51

`

tm
2 . (A16)

The reason for this is that the hopping energies em(k)
become statistically independent in the limit of high di-
mensions. Since the dynamical mean-field equations for
the one-particle Green’s function in a paramagnetic
phase only involve the density of states D(e), we see
that these extra hoppings leave unchanged all one-
particle properties. However, it is expected that two-
particle response functions are affected, and that the pos-
sible symmetry breaking towards a magnetic phase at
low temperature are different for different choices of
tm’s corresponding to the same value of t . In particular,
note that the perfect nesting condition ek1Q 5 2ek [with
Q=(p,...,p)] is no longer satisfied if hopping is allowed to
neighbors with an even value of m . As we shall see be-
low, the momentum dependence of response functions is
affected by the tm’s.
More general forms of longer-range hoppings do

modify the density of states, however. We consider the
simple model which has hopping to any of the 2d near-
est neighbors, and to the 2d(d21) next nearest neigh-
bors (along the diagonals of an elementary cell). The
kinetic energy is written as

ek5t1enn~k!1t11ennn~k!, (A17)

enn~k!52
2

A2d (
i51

d

coski , (A18)

ennn~k!52
4

A2d~d21 !
(
i52

d

(
j51

i21

coskicoskj . (A19)

The mean-square energy is now given by

^ek
2&5t1

21t11
2 . (A20)

The density of states is no longer Gaussian, however,
because enn(k) and ennn(k) are not independent vari-
ables. Indeed, a simple calculation shows that

lim
d→`

enn~k!2512&ennn~k!, (A21)

so that the kinetic energy can be rewritten, as d→`:

ek→t1enn~k!1
t11

&
@12enn~k!2# . (A22)

The density of states is then easily found from the
known Gaussian distribution of the variable enn(k), and
reads (Müller-Hartmann, 1989a)

D~e!5A~2/p!
1
E
cosh~Et1/2t11

2 !e ~ t1
2
2E2!/4t11

2
,

E~e![@ t1
212t11

2 22&t11e#1/2, (A23)

where it is understood that D(e)=0 whenever E(e) is not
real. D(e) has a finite band edge, with a square-root
divergence. The ratio t11/t1 is a parameter controlling
the degree of magnetic frustration of the model.
We finally mention a last example, which has been

studied by Santoro et al. (1993) and consists in the d=`
generalization of the honeycomb (d=2) or diamond
(d=3) lattices. A generalization of these lattices to arbi-
trary dimensions can be defined as a bipartite lattice such
that (i) each lattice site has d+1 nearest neighbors at a
distance a=1, belonging to the opposite sublattice, and
(ii) denoting by ei , i51,.. . ,d11, the set of d+1 unit vec-
tors connecting lattice sites to its neighbors, any pair of
these vectors make a constant angle:

ei•ej521/d , iÞj . (A24)

The common feature of this class of lattices in arbitrary
dimensions is that the density of state is symmetric D(e)
5D(2e) but vanishes linearly at the Fermi energy for
the half-filled case D(e)}ueu, so that one has a ‘‘semi-
metal.’’ For d→`, the density of states takes the limiting
form:

D~e!5
ueu
t2

e2e2/2t2. (A25)

In Fig. 85, a comparison is made between this limiting
form and the density of states of the honeycomb (d=2)
and diamond (d=3) lattices. These lattices are bipartite,
but not nested, so that the critical value of U for antifer-
romagnetic long-range order at half-filling is nonzero
[and found by Santoro et al. (1993) to be Uc/t.2.3 for
d→`].

2. Momentum dependence of response functions

We shall now discuss the momentum dependence of
two-particle response functions on d=` lattices, concen-
trating for simplicity on the hypercubic lattice with
nearest-neighbor hopping. As shown in Sec. IV, the mo-
mentum dependence is entirely contained in the
particle-hole bubble:

x̃q
0~ in , ;iv![2(

k
G~k,in!G~k1q,in1iv!

52(
k

1
zn2ek

1
zn1v2ek1q

, (A26)

where zn[in1m2S(in). This can be rewritten:
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x̃q
0~ in ;iv!52E

2`

1`

de1D~e1!E
2`

1`

de2D~e2!

3
Dq~e1 ,e2!

~zn2e1!~zn1v2e2!
, (A27)

where

Dq~e1 ,e2![(
k

d~ek2e1!d~ek1q2e2! (A28)

The function Dq(e1 ,e2) measures the distribution of en-
ergies of a particle-hole pair of momentum q. It is con-
venient to consider the Fourier transform:

Dq~s1 ,s2![E
2`

1`

de1E
2`

1`

de2e
i~s1e11s2e2!Dq~e1 ,e2!,

(A29)

which reads

Dq~s1 ,s2!5E ddk

~2p!d
expH 2it

A2d F s1(
i51

d

coski

1s2(
i51

d

cos~ki1qi!G J . (A30)

As above, the exponential can be expanded in powers of
1/Ad , and the averages over the Brillouin zone are eas-
ily performed, with

^coskicos~ki1qi!&5^cos2ki&cosqi2^coskisinki&sinqi

5
1
2
cosqi (A31)

So that, for d=`,

Dq~s1 ,s2!5expS 2
t2

2
@s1

21s2
212X~q!s1s2# D . (A32)

As discussed in Sec. IV, the q dependence is entirely
contained in the parameter

X~q!5
1
d (

i51

d

cosqi . (A33)

The Fourier transform of Eq. (A32) yields the final ex-
pression:

Dq~e1 ,e2!5
1

2pt2A12X2
exp2

1
2t2~12X2!

3~e1
21e2

222Xe1e2!, (A34)

which can be used into (A27) for the computation of
x̃q
0(in ;iv). Note that Dq(e1 ,e2) takes a simpler form for

the uniform wave vector q=0 (X=+1), the nesting wave
vector q=Q (X=−1), and a generic wave vector corre-
sponding to X=0:

Generic q ~X50 !: Dq~e1 ,e2!5D~e1!D~e2!,
(A35)

q50 ~X511 !: Dq~e1 ,e2!5d~e12e2!D~e1!,
(A36)

q5Q ~X521 !: Dq~e1 ,e2!5d~e11e2!D~e1!,
(A37)

leading to the expressions (72) given in Sec. IV.
We note finally that the q dependence of two-particle

response functions depends crucially on the specific lat-
tice. Two lattices having the same density of states (and
hence the same one-particle Green’s functions in the ab-
sence of long-range order) may well have different re-
sponse functions. An example is provided by the model
with longer-range hopping along the coordinate axis, Eq.
(A15), which always has a Gaussian density of states.
The above expression (A34) of Dq(e1 ,e2) in terms of X
still holds for this model, but the q dependence of X(q)
is modified, namely,

X~q!5
1
d (

m51

` tm
2

t2 (
i51

d

cos~mqi!. (A38)

Note in particular that X(p, . . . ,p)=−1 only if there is no
hoppings to neighbors with an even value of m . If such
hoppings are present, no wave vector satisfies X=−1, re-
flecting the absence of nesting.

3. Fermions on the Bethe lattice

We conclude this appendix by summarizing some use-
ful properties of the Bethe lattice and its large connec-
tivity limit. The Bethe lattice of connectivity z is the
tree-like structure displayed in Fig. 86. It is bipartite for
all values of z . The special case z=2 yields a one-
dimensional lattice. Except in this case, there is no
simple Fourier transform on these lattices, and it is very
convenient to use the cavity method of Sec. III.A. Let us
derive the density of states of tight binding electrons

FIG. 85. Density of states of the generalized diamond lattice
for various dimensionalities. From Santoro et al. (1993).
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with nearest-neighbor hopping t ij5t/Az , for arbitrary
connectivity z . We concentrate on site o and perform
the Gaussian integration over all other sites (Fig. 86).
Setting z[ivn+m, this yields

Goo
21~z!5z2

t2

z (
^i ,o&

Gii
~o !5z2t2Gii

~o ! . (A39)

In this equation i denotes a neighbor of o and G ii
(o) is

the Green’s function of site i once o has been removed.
Translation invariance has been used, all sites i being
identical. For finite connectivity however, G ii

(o) does not
coincide with Goo even in the limit of an infinite lattice.
This is because the local topology has been changed
when removing site o : each neighbor i now has only z−1
nearest neighbors. For large connectivity, this is of
course a 1/z effect, and G ii

(o) can be identified to Goo in
the equation above, yielding a closed formula. Even for
finite connectivity however, the elimination process can
be taken one step further, performing the Gaussian in-
tegration over the z−1 neighbors of each site i . This
yields

@Gii
~o !#215z2~z21 !

t2

z
Gjj

~o ,i ! . (A40)

In this equation, G jj
(o ,i) denotes the Green’s function of a

neighbor j of i , in the truncated tree where both sites o
and i have been removed. For an infinite lattice, j is
entirely similar to i , so that G ii

(o)5G jj
(o ,i). This yields a

closed equation for this quantity:

z21
z

t2@Gii
~o !#22zGii

~o !1150, (A41)

from which the local Green’s function G[Goo [which is
also the Hilbert transform D̃(z) of the density of states]
is finally obtained as [for Im(z)>0]

G[D̃~z!5
~z22 !z2zAz224~z21 !t2/z

2~zt22z2!
. (A42)

The density of states D(e)=−ImG(e1i01)/p thus reads

D~e!5
Ae224~z21 !t2/z
2p~ t22e2/z !

. (A43)

(One can check that the familiar d=1 expression can be
recovered for z=2.) Taking the z→` limit yields the ex-
pressions often used in this article:

G[D̃~z!5
z2Az224t2

2t2
, D~e!5

Ae224t2

2pt2
. (A44)

It may also be useful to quote the expression of the
reciprocal function R(G) of the Hilbert transform D̃(z),
i.e., such that R(D̃(z))=z. For arbitrary connectivity, it is
the solution of the quadratic equation:

~z21 !R21
~z21 !~z22 !

G
R

2~z21 !2S z

z21
t21

1
G2D50. (A45)

For z→`, one recovers (Sec. II)

R~G !5t2G1
1
G
. (A46)

APPENDIX B: DETAILS OF THE MONTE CARLO
ALGORITHM

In this Appendix, we first sketch the derivation of
some of the formulas in Sec. VI.A.1, and show the
equivalence of the Hirsch-Fye approach with the
Blanckenbeckler, Scalapino, and Sugar algorithm. We
also provide some guidance for the QMC programs pro-
vided with this article. Finally, details are given on the
numerical implementation of the self-consistency condi-
tion.

1. Some derivations

Equation (139) for the discretized partition function
can be established by making use of the following iden-
tity:

Trci
1 ,ci

$e2( ijci
1Aijcje2( ijci

1Bijcje2( ijci
1Cijcj%

[det@11e2Ae2Be2C# , (B1)

and of its generalization to more than three matrices.
Equation (B1) is easily derived using the rules of Gauss-
ian integration for Grassmann variables, and a very in-
structive elementary derivation can be found in (Hirsch,
1985). The equivalence of det O s1 ,.. . ,sL

with the Blanck-
enbeckler, Scalapino, and Sugar formula Eq. (139) can
then be shown by Gaussian elimination (replacing suc-
cessively the first row of O by multiples of rows
L ,L−1,...,1, $O 1i%i51,.. . ,L→$O 1i2BLBL21•••BL2k11
3OL2k11,i%i51,.. . ,L for k50,1,.. . ,L21).

FIG. 86. Bethe lattice (depicted here with connectivity z=3).
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The identity gs1 ,.. . ,sL
Dt 5 O s1 ,.. . ,sL

21 is easily established in a similar way. It is quite useful to consider the simple
example of a 333 matrix (of matrices Bi), for which we explicitly write down the inverse.

O5S 1 0 B3

2B1 1 0

0 2B2 1
D , (B2)

O215S $11B3B2B1%
21 2B3B2$11B1B3B2%

21 2B3$11B2B1B3%
21

B1$11B3B2B1%
21 $11B1B3B2%

21 2B1B3$11B2B1B3%
21

B2B1$11B3B2B1%
21 B2$11B1B3B2%

21 $11B2B1B3%
21

D . (B3)

The reader will easily be able to verify Eq. (B3) and to
generalize it for arbitrary L . Manifestly, Eq. (B3) repro-
duces Eq. (140).
To derive the Dyson equation it is useful to consider

the matrix O exp(−V) with the Lns3Lns matrix

es1 ,.. . ,sL
2Ṽ 5S e2V~s1!

• • 0

• e2V~s2!
• •

• • • •

0 • • e2V~sL!

D ; (B4)

O exp(−Ṽ) is therefore a matrix which depends on
(s1 ,. . . ,sL) only in the space- and time-diagonal ele-
ments

O s1 ,.. . ,sL
es1 ,.. . ,sL

2Ṽ 2O s18 , . . . ,sL8
es18 , . . . ,sL8

2Ṽ
5es1 ,.. . ,sL

2Ṽ 2es18 , . . . ,sL8
2Ṽ .

(B5)

Abbreviating g [ gs1 ,.. . ,sL and g8 [ gs18 , . . . ,sL8 , etc., and us-

ing O=g−1, it is very easy to see that Eq. (B5) leads
to exp(V82V)g82g5g[exp(V82V)−1]g8, which is
equivalent to Eq. (125).

2. Numerical implementation of the QMC
and Gray code enumeration

As described in the main body of the paper, the
Monte Carlo procedure consists of two independent
parts (single impurity problem, self-consistency). This
structure is mirrored in the setup of our numerical pro-
gram, which consists of two parts: LISAQMC.F and
LISASELF.F. The programs communicate with each other
via files that contain the current values of G(t i) and
G 0(ti).
In the program LISAQMC.F, the different parts of the

algorithm are distributed over a few subroutines, in a
way explained in the following table:

function purpose Equation

DETRAT calculate determinant ratio Eq.~131!
INITIAL initialize ~G 0

Dt(t)→O 0,...,0
−1 (t,t8)) 2

RECORD perform fast update Eq.~130!
UPDATE computeGs1 ,...,sL

Dt from G 0
Dt Eq. ~128!

Besides the Monte Carlo update, the program
LISAQMC.F also allows one to compute physical Green’s
functions by complete enumeration using the Gray code.
In this method, all possible configurations of Ising spins
are visited in an order in which every configuration of
spins (s1 ,. . . ,sL) differs from the following one
(s18 , . . . ,sL8 ) in a single index only (si 5 si8 , except for a
single value of i). More precisely, the configurations are
enumerated by flipping the spin si with the largest pos-
sible value of i, provided that this flip does not yield a
previously visited configuration. As an example, let us
give the first steps of a Gray code enumeration for L=5:

3
1 1 1 1 1

1 1 1 1 2

1 1 1 2 2

1 1 1 2 1

1 1 2 2 1

1 1 2 2 2

1 1 2 1 2

1 1 2 1 1

A
Gray code

4 3
1 1 1 1 1

1 1 1 1 2

1 1 1 2 1

1 1 1 2 2

1 1 2 1 1

1 1 2 1 2

1 1 2 2 1

1 1 2 2 2

A
standard

4 (B6)

This algorithm can be simply programmed (cf. Press
et al., 1991). By doing this, we can again compute the
Green’s function Gs1 ,.. . ,sk8 , . . . ,sL

Dt from Gs1 ,.. . ,sk , . . . ,sL
Dt by the

fast update RECORD [in O(L2) steps], rather than hav-
ing to compute it from G 0

Dt in O(L3) steps (using
UPDATE). Naturally, the averages must now be com-
puted by including the determinant in the statistical
weight. Furthermore, the normalization needs also be
calculated. Further details can be found in the program
LISAQMC.F.
Both the Monte Carlo and the exact enumeration in-

clude checks to avoid loss of precision. In the Monte
Carlo algorithm, this is done from time to time by con-
fronting the result of subroutine UPDATE with the single
spin-flip updates. In the exact enumeration calculation,
the precision can be evaluated simply by restarting the
Gray code with an initial spin configuration (s1 ,. . . ,sL)
different from (1,...,1).
Finally, we briefly discuss the discretization error in Dt

which is introduced by the Trotter breakup. Let us first
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note the remarkable fact that besides this error—i.e., the
passage from Z [Eq. (116)] to ZDt [Eq. (120)]—no other
systematic error is introduced. Due to the cyclic nature
of the fermion trace

Tr exp~2tH0!exp~2tH1!

5Tr exp~2tH0/2!exp~2tH1!exp~2tH0/2!, (B7)

Eq. (120) can be obtained from Eq. (116) using the
third-order approximation in Dt :

e2Dt~H01H1!5e2DtH0/2e2DtH1e2DtH0/21O~Dt3!,
(B8)

which results in an O(Dt2) discretization error for
ZDt5Z1O(Dt2). An important point is that in order to
keep the systematic errors introduced by the Trotter
breakup under control, one should not use a value of the
argument that is too large for the exponential in Eq.
(119). As a working rule one may use DtU/2<1, but this
depends of course on the quantity considered.
Regarding the Green’s function, it has been estab-

lished that the error committed when solving the Ander-
son impurity model with the Hirsch-Fye algorithm is
also of order Dt2 (Fye, 1986). In the LISA context (i.e.,
with the additional complication of the self-consistency
condition), this observation still appears to hold empiri-
cally (see, e.g., the inset of Fig. 14).

3. Numerical implementation
of the self-consistency condition

As indicated in the main text, the Fourier transform
of the discretized GDt(t) is not calculated by a straight-
forward fast Fourier transform. Rather, it is an interpo-
lation of G(t) which is Fourier transformed. In the pro-
gram FOURIER, a (natural) spline interpolation

G interpol~t!5a i1b i~t2t i!1g i~t2t i!
21d i~t2t i!

3,

t i,t,t i11 , (B9)

is computed. The coefficients a i ,b i ,g i ,d i are analyti-
cally calculated from the GDt(t i) such that G

interpol(t) is
a twice continuously differentiable function (cf.
Stoer and Bulirsch, 1980). From G interpol(t) it is a
simple matter to calculate the piecewise integral
*−b

b dtG interpol(t) exp(itvn), which yields G(ivn). Ex-
plicit formulas can be found in the subroutine FOURIER.

APPENDIX C: DETAILS OF THE EXACT
DIAGONALIZATION ALGORITHM

In this appendix, we assemble a few details on the
exact diagonalization algorithms and make contact with
the programs LISADIAG.F and LISALANC.F. Both pro-
grams split up into three main parts, of which the first
and the third are identical.
(i) The construction ofH (or of the nonzero elements

of the matrix) is achieved by the subroutine BUILDBASIS,
which constructs the vectors ui& defined in Eq. (143), for
each of the sectors (n↑,n↓) at a time. After construction

of the Hilbert space, the Hamiltonian is built with the
subroutines ADAG and A, which allow the computing of
the vectors a j

1ui& and ajui& . In the exact diagonalization
program, the matrix H is then diagonalized exactly
(subroutine DIAG), using the QL algorithm (Stoer and
Bulirsch, 1980). For reasons of simplicity, the eigenvec-
tors (which are later needed for the calculation of
Green’s functions) are then dumped onto file storage.
In the Lanczos procedure, the ground-state eigenval-

ues for all sectors are calculated by diagonalizing H in
an (approximately) invariant subspace spanned by vec-
tors Hnup0&, n50,.. . ,nL . The power of the Lanczos al-
gorithm stems from the fact that usually a small number
of vectors (nL;100, largely independent of the dimen-
sion of H) allows an extremely precise computation of
the ground-state eigenvalue and eigenvector—cf. Lin
and Gubernatis (1993) for a practical introduction to the
Lanczos method, and Golub and Van Loan (1983) for a
thorough discussion. The diagonalization of H, re-
stricted to the indicated subspace, is again performed
using the QL algorithm. This first Lanczos procedure is
coded in the subroutine FINDGROUNDSTATE1. A simple
iterative scheme (vector iteration) then verifies (in the
routine FINDGROUNDSTATE), that the ground state has
indeed been found to machine precision.
(ii) The calculation of the Green’s function is done in

a straightforward manner in the case of the exact diago-
nalization algorithm: to calculate ^iud1uj&, the corre-
sponding vectors are fetched from disk storage and
computed. In the case of the Lanczos procedure,
the vector d+ug.s.& is initially formed, where ug.s.& is
the overall ground state of the Hamiltonian (the lowest
of the sector-wise ground states computed being
FINDGROUNDSTATE1). The procedure has to be general-
ized in the case of a ground-state degeneracy (several
sectors with the same ground-state eigenvalue). The
Green’s function can then be calculated from a second
Lanczos procedure, with initial vector up0&5d1ugs& (cf.
Haydock et al., 1975). It is straightforward to determine
the parameters of the continuous fractions Eq. (146):

ai
a5^pi

auHupi
a&, bi

a25
^pi

aupi
a&

^pi21
a upi21

a &
, (C1)

where a=&,^ and up 0
.&5d†ug.s.&, up 0

,&5d ug.s.& and

upi11
a &5Hupi

a&2ai
aupi

a&2bi
a2uf i21

a & (C2)

and b 0
a=0. The construction of the up i

a& is done in the
subroutine LANCZOS. The evaluation of the continued
fractions is programmed in the subroutine
COMPUTEGREEN. Again, care has to be taken in the case
of a degenerate ground state.
(iii) After computing the Green’s function, we are

able to iterate once through the self-consistency loop.
The projection of the ‘‘new’’ bath Green’s function
G 0→G 0

ns can be easily assembled from a routine,
CALCG0, which evaluates G 0

ns for a given set of param-
eters V , ẽ , another one, ENERGY, which calculates the
mismatch between G 0

ns and G 0 , and a minimization rou-
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tine, (conjugate-gradient routine MINIMIZE), which de-
termines the optimal function G 0

ns.
In Fig. 87, we give an example of the comparison be-

tween G 0
ns(iv) and G 0(iv), again for the half-filled

Hubbard model at U/t=3 for ns=3, . . . ,8 and at
bDA2=200. Naturally, the agreement between the two
quantities is the least acceptable at small frequencies,
closest to the real axis. However, at larger frequencies,
G 0

ns and G 0 agree for all intents and purposes. For ex-
ample, at v=0.1, the two solutions differ by less than
10−5, and there is virtually no detectable dependence on
ns . The precision obtained is thus quite spectacular. The
mismatch between G 0 and G 0

ns decreases nicely by a
constant factor as ns is incremented by one, as shown in
the inset of the figure. This scaling of the ‘‘discretiza-
tion’’ error with the number of sites is an empirical fact,
but a highly plausible one: In increasing the number of
sites, the Hilbert space of the Hamiltonian increases ex-
ponentially, and there is a much larger number of basis
vectors, of which the function G 0

ns can be constructed.
This scaling would not be observed if the positions of
the conduction electrons were taken fixed.
It is very interesting to compare the full diagonaliza-

tion algorithm with the Lanczos procedure, and the in-
teresting reader is invited to perform such a comparison.
The full diagonalization program contains an option
which allows computing zero-temperature Green’s func-
tions (and other response functions), which (should)
agree to machine precision with the ones of the Lanczos
algorithm. The zero-temperature Green’s functions, and

other response functions may however appreciably dif-
fer from the (self-consistent) results at very small finite
temperatures. This is as it should be, and translates the
importance of low-temperature scales, for example, in
the vicinity of the Mott transition. Notice that most of
the low-temperature variability is brought in through the
self-consistency condition: at a given G 0

ns, the calculated
Green’s functions almost coincide, but are driven apart
under repeated iterations. As was mentioned in several
places throughout the article, the impurity model is usu-
ally uncritical, and the critical effects are brought in by
the lattice, i.e., by the self-consistency condition.

APPENDIX D: ACCESS TO FORTRAN PROGRAMS

The programs described in this section may be ob-
tained by ANONYMOUS FTP, or in the WWW.
To access the programs by ftp, you should log on to

ftp.lps.ens.fr. Register as ‘‘anonymous,’’ and give your
complete electronic address as the password. You should
first retrieve a file called HOW-TO-GET-SOFTWARE,
which will inform you about the availability of codes.
This file also points you to the necessary auxiliary files
and provides further information. Suppose your user-
name is username@usernode.univ.edu. To retrieve the
above file (and any other), you should proceed as fol-
lows:

FIG. 87. Effective bath Green’s functions G 0

and G 0
ns at self-consistency for the half-filled

Hubbard model at U53D/&, bD/&=200 for
ns=4, . . . ,8. Curves labeled ns=4, . . . ,6 are for
the exact diagonalization algorithm at finite
temperature b. The curves at ns=7 and 8 were
obtained by the Lanczos algorithm, in which
b only serves as a discretization parameter
defining the grid of imaginary frequencies.
The inset shows the maximum difference be-
tween G 0 and G 0

ns as a function of ns (note
the semilogarithmic scale).
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ftp ftp.lps.ens.fr
Username: anonymous
Password: username@usernode.univ.edu

cd pub/users/lisa
ls

get HOW-TO-GET-SOFTWARE
The WWW access is via http://www.lps.ens.fr/;krauth
A short synopsis of the available programs is given in

the following table:

Program Purpose Section

QMCEXAMPLE.F small example by Blanckenbecler, Scalapino, and
O −1, Hirsch-Fye algorithm

VI.A.1.e

LISAQMC.F Hirsch-Fye algorithm VI.A.1.c
LISASELF.F Fourier transformst→iv , self-consistency VI.A.1.d
LISADIAG.F exact diagonalization, finite temperature VI.A.2. C
LISALANC.F Lanczos algorithm~zero temperature! VI.A.2. C
LISAIPT0.F iterated perturbation theory approximation~zero tem-

perature!
VI.B.2

LISAIPT.F iterated perturbation theory approximation~finite
temperature!

VI.B.2
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1994, Europhys. Lett. 27, 299.
Gubernatis, J. E., M. Jarrell, R. N. Silver, D. S. Sivia, 1991,
Phys. Rev. B 44, 6011.
Gubernatis, J. E., T. C. Olson, D. J. Scalapino, and R. L. Sugar,
1986, J. Stat. Phys. 43, 831.
Gunnarson, O., and K. Schönhammer, 1983a, Phys. Rev. Lett.
50, 604.
Gunnarson, O., and K. Schönhammer, 1983b, Phys. Rev. B 28,
4315.
Gutzwiller, M. C., 1965, Phys. Rev. 137, A1726.
Haldane, F. D. M., 1978a, Phys. Rev. Lett. 40, 416 (Ph.D thesis,
Univ. of Cambridge).
Haldane, F. D. M., 1978b, J Phys. C 11, 5015.
Halvorsen, E., G. S. Uhrig, and G. Czycholl, 1994, Z. Phys. B
94, 291.
Haydock, R., 1985, The Recursion Method and Its Applications
(Springer-Verlag, Heidelberg).
Haydock, R., V. Heine, and M. J. Kelly, 1975, J. Phys. C 8,
2591.
Held, K., M. Ulmke, and D. Volhardt, 1995, Preprint No. cond-
mat/9505147.
Hewson, A. C., 1993, The Kondo Problem to Heavy Fermions,
Cambridge Studies in Magnetism Vol. 2 (Cambridge Univer-
sity Press, Cambridge, England).
Hirsch, J. E., 1983, Phys. Rev. B 28, 4059.
Hirsch, J. E., 1985, Phys. Rev. B 31, 4403.
Hirsch, J. E., 1988, Phys. Rev. B 38, 12 023.
Hirsch, J. E., and E. Fradkin, 1982, Phys. Rev. Lett. 49, 402.
Hirsch, J. E., and E. Fradkin, 1983, Phys. Rev. B 27, 4302.
Hirsch, J. E., and R. M. Fye, 1986, Phys. Rev. Lett. 56, 2521.
Holstein, T., 1959, Ann. Phys. (N.Y.) 8, 325.
Hong, J., and H. Y. Kee, 1995a, Phys. Rev. B 52, 2415.
Hong, J., and H. Y. Kee, 1995b, Europhys. Lett. (to be pub-
lished).

122 A. Georges et al.: Dynamical mean-field theory of . . .

Rev. Mod. Phys., Vol. 68, No. 1, January 1996



Hubbard, J., 1964, Proc. Roy. Soc. (London) A 281, 401.
Hubbard, J., 1979, Phys. Rev. B 19, 2626.
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