The Elementary Particle Physics Frontier: First Results from the Large Hadron Collider

Steve Schnetzer Rutgers University NJAAPT Annual Meeting March 19, 2011

NJAAPT Meeting

Sunday, March 20, 2011

Outline

Particle Physics

- The Standard Model
- Issues with the Standard Model
- The Higgs Mechanism
- Supersymmetry

The LHC

- Need for Higher Energies
- The CMS Detector

Search for Extra Dimensions

- First Results
- Strong gravity
- Black hole production

What are the building blocks of nature?

Major advance in the 1970's

Mathematically consistent theory of the fundamental particles and their interactions

- Ingredients: Fermion matter particles
 - Gauge interactions
 - Gauge Bosons

Explains all physics down to ≈10⁻¹⁸ m !

Matter Particles

Real and a second secon

Twelve point-like Fundamental Fermions (spin -1/2) particles and anti-particles

Wide range of masses (arbitrary parameters)

Fundamental Interactions

Electromagnetism (QED)

- atomic physics
- chemistry
- biology

Strong (QCD)

- binding of quarks (protons, neutrons,)
- nuclear physics

Weak

- neutrino interaction
- heavy quark/lepton decay
- fusion (solar energy)

SM has nothing to Say about gravity

- \circ Too weak for experiments
- \circ $\,$ no quantum theory of gravity $\,$

Gauge Forces

All three interactions due to exchange of gauge (spin-1) Bosons

<u>Interaction</u>	<u>Fermions</u>	<u>Gauge</u> <u>Boson</u>	<u>Charges</u>
QED	e, μ, τ, quarks	photon	electrical charge (-)
QCD	quarks	gluons	color charge (r, g, b)
Weak	all	₩+, ₩-, Z	isocharge (up, down)

In order for the theory to make sense (not give infinities that can't be removed) it must be locally gauge symmetric

> The gauge Bosons (photon, gluons, W, Z) must be massless

The underlying theory is symmetric The symmetry in broken by the <u>solution</u>.

Example: Trajectory of ball in Newtonian physics

The solution (the universe) breaks the symmetry by choosing one of the (many) solutions

complex scalar field

actually a Mexican sombrero potential

Source of Particle Mass

According to the Standard Model all mass is due to the Higgs mechanism

The W and Z boson get mass by "eating" the Higgs field Higgs field gives the extra degree of Freedom (longitudinal polarization) Needed for a massive spin-1 particle

Fermions get mass by interacting with the vacuum Higgs field

Quanta of excitation of the Higgs field

physical Higgs scalar (spin-0) particle
Higgs mass not directly predicted by theory

Experimentally we are closing in

The LHC should soon fill in the gaps

Naturalness Problem

Problem with mass of fundamental scalar

Modifications to mass term due to Fermion loops are quadratically divergent

$$M_H^2 = M_0^2 + \frac{g_f}{8\pi^2} \Lambda^2$$

momentum of loop ranges up to cutoff Λ

 $\Lambda\,$ Is the energy scale where theory fails Presumably the Planck scale where quantum gravity effects become important $10^{19}~{\rm GeV/c}^2$

Higgs mass is 17 orders of magnitude smaller than its natural mass

A New Symmetry

For every particle there is a superparticle

fermion \leftrightarrow super boson boson \leftrightarrow super fermion

fermion and boson loops contribute to mass term with opposite signs.

They cancel

None of the super particles have been seenWhy?

Maybe masses are too large to have been produced

Supersymmetry is broken

Masses can't be much larger than a few TeV or solution of naturalness problem will be ruined

Heisenberg Uncertainty

 $p = \hbar/\lambda$

 $\Delta x \Delta p \ge \hbar/2$

the more finely you want to probe something

the harder you have to kick it

Mass Energy

 $E = mc^2$

Mass is energy

to produce particles with large mass need large collision energy

The Large Hadron Collider

Why Such Big Tools

RF cavity

dipole magnets

Bend particles in circle

Accelerate them a bit every time around

CMS

Centripetal Force

at relativistic velocities energy is proportional to p

$$E = pc$$

Charged particle in magnetic field

$$F_{mag} = qvB$$

Centripetal force

$$F_{cent} = mv^2/R$$

$$mv^2/R = qvB$$

R = mv/qB = p/qB

 $R \propto E$

LHC Dipole Magnets

Go

• 1232, 15-m long, 35 tons

Superconducting Coils

- 8.4 T (for 7 TeV beam)
- 11,700 Amps
- 1.9° K

Energy in LHC Beam

10^{14} 7 TeV protons

- Energy stored in in LHC beam is about 362 MJ (design)
 - How much energy is this?
 - The two LHC beams together could melt nearly one ton of copper.
 - Equivalent to 77.4 kg of TNT
 - Energy of an aircraft carrier traveling 11.7 knots
 - Equivalent to a person in a Subaru driving at 1700 km/h.

14 TeV Proton Collisions

Bag of quarks and gluons

MS Experiment at the LHC, CERN

ded: 2010-Jul-09 02:25:58.839811 GMT(04:25:58 CEST)

proton

Doly part of the energy is available for each of these collisions remember the quark and gluon distributed whether the sort this out

Only part of the energy i (remember the quark and

 \Rightarrow to get 1 TeV collisions of constituents need proton-proton enter of mass energy > 10 TeV.

Only 1 in 10 billion coldisions collision are really of inferent fraction $f^{\text{mass energy}} > 1$

Big Huge Detectors

Compact Muon Solenoid

Anatomy of a Detector

Tracker:

~1 m² Pixels (66M channels)

~200 m² Si microstrips (9.6M channels)

Iron Yoke

A Slice of the CMS Detector

3.8 T Solenoid

ECAL: Electromagnetic calorimeter - 76K PbWO₄ crystals

12,500 tons 21 m long 15 m diameter HCAL: hermetic Brass/ Scintillator sampling hadronic calorimeter

Sunday, March 20, 2011

- Discover the Higgs Boson
- Discover Supersymmetric Particles

This is what the LHC is designed for. You should be hearing a lot about these soon.

Higgs to Four Muons Event

 μ^{+} μ^{-} μ^{+} μ^{-}

Only a few percent probability when it was discovered (Sept.) that it was just background

Now consistent with the data we have

Sunday, March 20, 2011

Why is gravity so weak?

probably the most important question in particle physics

This is 18 orders of magnitude from the weak scale of 100 GeV. Why?

Extra Dimensions

Answer:

Maybe there are extra "large" dimensions. Gravity lives in these other dimensions while other forces only live in three dimensions

String theory \longrightarrow 7 extra dimension

assumed to be size of Planck scale

But maybe not

Cavendish Experiment

Only confirmed down to about 0.1 mm

below that we don't know

Gauss's Law

gravity proportional to density of force lines on surface $F\sim 1/r^2 ~~{\rm for~3~dimensions}$

 $F \sim 1/r$ for 2 dimensions

 $F \sim 1/r^{n-1}$ for n dimensions

If there is a "large" extra dimension gravity will go as

 $F \sim 1/r^3$

at distances smaller than the size of the extra dimension

Gravity will get strong faster May see strong

gravity at the LHC

Number of extra dimensions	Minimum size for stron gravity at 1 TeV	g
1	6 x 10 ¹² m	ruled out!
2	0.6 mm	probably ruled out
3	3 nm	OK!
•	•	
•	•	
•	•	
7	2 fm	

Knocking Gravitons Out of the Brane

Knock gravitons out of the brane into the bulk

that then come back and decay to photons

q

If gravity strong collisions may pack enough energy (mass) into a volume with radius less than Schwarzschild radius to create black hole

These would evaporate immediately 10⁻²⁶ s by Hawking radiation

Black Hole Limits

Conclusion

The LHC if off and running This is only the beginning **Coming attractions** Higgs Supersymmetry Extra Dimensions **Mini Black Holes** The Unexpected

The coming months and years are going to be very exciting even revolutionary