
Intermediate Quantum Mechanics

Lecture 20 Notes (4/8/15)

The Hydrogen Atom III

Degeneracy

• As noted in the last lecture, for a given value of n the possible values of l run
from l = 0 to l = n− 1 and each of these different l states have the same energy.
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• Since for each l value there are 2l + 1 degenerate states, for a given n the total
degeneracy for a given n is:

n−1∑
l=0

(2l + 1) = n2

Electron Spin

• The electron carries an intrinsic angular momentum called spin. This angular
momentum is given by the quantum number s = 1/2. The possible values of the
spin angular component along any axis (for example, the z-axis) ismsh̄ = ± h̄/2.

The magnitude of the spin is
∣∣~̂s ∣∣ =

√
s(s+ 1) =

√
3/2

• If there is no external magnetic field, Ŝz commutes with the Hamiltonian, [Ĥ, Ŝz]
and the energy is independent of the value of ms. Since for each n, l state there
are two possible values of ms, the degeneracy is increased by a factor of two. For
a given value of n, the degeneracy is 2n2.

Total angular momentum

• The total angular momentum operator, ~̂J , is the vector sum of the orbital angular
momentum operator and the spin angular momentum operator.

~̂J = ~̂L + ~̂S Ĵz = L̂z + Ŝz

• There are two values of j depending upon whether the electron is spin-up or
spin-down in the direction of ~L. In the first case, we have: j = l + 1/2. In the
second case, we have: j = l − 1/2. l = 0 is a special case with just one value of
j, j = 1/2.

j =

{
l ± 1/2 l 6= 0

1/2 l = 0
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• For a state with given n and l, there are two way of distinguishing the n2 =
2(2l + 1) states. We can specify the quantum numbers ml and ms or we can
specify the quantum numbers j and mj. Which set is the best to use, the
so-called “good” quantum numbers, depends on the particular problem.

• For l = 1 and s = 1/2, the states are specified by either specifying the three
values of ml times the two values of ms (3⊗ 2) or by specifying the four values
of mj for j = 3/2 plus the two values of mj for j = 1/2 (4⊕ 2).

Spin-orbit coupling

• For states with l 6= 0, there will be a coupling between the magnetic moment
due to the orbital angular momentum and the the magnetic moment due to the
spin angular momentum resulting in an energy shift.

• In the rest frame of the electron, the proton has an orbital angular momentum
with respect to the electron that is equal to the orbital angular momentum of the
electron with respect to the proton in the proton rest frame. In its rest frame, the
electron sees a magnetic moment due to the proton orbital angular momentum.
There will be a magnet dipole-dipole interaction between the magnetic moment
due to the orbital angular momentum and the magnetic moment due to the
electron spin.

~µL =
e

2m
~L ~µS = − ge

2m
~S

∆Eso ∝ − ~µL · ~µS ∝ ~L · ~S

• g is the gyromagnetic ratio for the electron. To first order, g = 2 with a small
0.1% higher order correction. This value of g = 2 follows directly from the
relativistic Dirac equation.

• We can obtain an expression for ~L · ~S by the following:

J2 = ~J · ~J = (~L+ ~S) · (~L+ ~S) = L2 + S2 + 2 ~L · ~S

⇒ 2 ~L · ~S = J2 − L2 − S2 −→ j(j + 1) − l(l + 1) − 3/4

⇒ ∆Eso ∝ (j + 1) − l(l + 1) − 3/4

• For the 2p state we have:

2pj j l 2 ~L · ~S
—– —– —- ———

2p1/2 1/2 1 − 2

2p3/2 3/2 1 1

The four j = 3/2 states are shifted up by one unit of energy while the two
j = 1/2 states are shifted down by two units of energy.
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2p
j = 1/2

j = 3/2
(4)

(2)

Corrections to the hydrogen atom energy levels

• The following is a list all of the corrections to the energy levels of the hydrogen
atom. The fractional size of the correction is given in parentheses.

− Reduced mass (10−3)

The largest correction is to simply use the reduced mass instead of the electron
mass:

mred =
memp

me +mp

= 0.999me

It affects all of the energy levels equally.

− Relativistic energy-momentum relation (10−5)

E =
√
m2c4 + p2c2 = mc2

√
1 +

p2

m2c2
≈ mc2

(
1 +

p2

2m2c2
− p4

8m4c4
+ · · ·

)
= mc2 +

p2

2m
− p4

8m3c2
+ · · ·

Replace Ĥ =
p̂2

2m
in the Schrodinger equation with Ĥ =

p̂2

2m
− p̂4

8m3c2
.

− Darwin term (10−5)

The electron position is fuzzy by an amount equal to its Compton wavelength,
h̄/mc = 2.4×10−12 m. The electron can never be located more precisely than
this. As a result, the electron does not experience a point source Coulomb
potential but rather the source of the potential is smeared out by an amount
equal to the Compton wavelength.

− Lamb shift (10−6)

This is a quantum field theory correction. The first order Feynman diagram
representing the Coulomb interaction between the electron and the proton in
the hydrogen atom is the exchange of a virtual photon between the electron
and the proton:
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The next order corrections are given by the following diagrams in which the
exchanged photon briefly turns into a virtual electron-positron pair or another
virtual photon is exchanged between the initial and final electron. The first of
these two diagrams is called vacuum polarization. Together the two diagrams
give the Lamb shift. This is a slight (order of 10−6 shift of the 2p1/2 states to
a lower energy than the 2s1/2 states. This was predicted by Willis Lamb in
the 1940’s and shortly afterward experimentally confirmed. This successful
prediction was an important step in establishing quantum field theory.

− Finite size of the proton (10−10)

This is an extremely small effect. The electron in the 1s state has a very small
but non zero probability of being inside of the proton. It then experiences a
Coulomb potential due to the effectively smaller proton charge.
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