Total credit 40 points. Do all problems and show all work. This is a closed book/notes exam, but a one-sided 8.5x11 sheet with only formulae is allowed. Submit the sheet with your bluebook. No calculators/phones, tackle any (simple) calculations on your own.

1. (5 pts) True or false?
 i) Stern-Gerlach experiment (which showed spin quantization) employs a uniform magnetic field. False: The field has to be non-uniform.
 ii) When an extremely strong magnetic field is applied to the hydrogen atom, \(j \) is no longer a good quantum number. True: Torque due to the magnetic field destroys \(J \) conservation.
 iii) Degeneracy pressure of neutrons prevents a white dwarf from collapsing further. False: that from electrons.
 iv) Band gaps are a general consequence of a periodic potential. True.
 v) In quantum statistical mechanics, the total energy constraint results in the concept of temperature. True.

2. (8 pts) Starting with the Schrodinger equation, derive the stationary-state wavefunctions and energies for a particle of mass \(m \) in an infinite cubical well of dimension \(a \). Show your work step by step, but you don’t need to normalize the wavefunctions. Find the degeneracies for the lowest five energy levels.

 Soln: Separate the 3-d Cartesian Schrodinger equation by writing \(\psi(x,y,z) = X(x)Y(y)Z(z) \). Solve the separated equations to get the sinusoidal solutions \(\sin(n_x \pi x/a) \), etc, as well as the energy quantization condition \(E = \left(\frac{\hbar^2 \pi^2}{2ma^2} \right)(n_x^2 + n_y^2 + n_z^2) \), where \(n_i = 1,2,3... \) Now count the degeneracies as follows:

 Lowest: \(\Sigma n^2 = 3 \) : \((n_x,n_y,n_z) = (111) \implies n_d = 1 \). Next: \(\Sigma n^2 = 6 \) : \((211), (121), (112), n_d = 3 \). Next: \(\Sigma n^2 = 9 \) : \((221), (212), (122), n_d = 3 \). Next: \(\Sigma n^2 = 11 \) : \((311), (131), (113), n_d = 3 \). Next: \(\Sigma n^2 = 12 \) : \((222), n_d = 1 \).

3. (8 pts) Use the variational principle to find an upper bound on the ground state energy for the quartic potential \(V(x) = x^4 \) using a gaussian trial wave function \(e^{-bx^2} \). Be sure
to normalize first. \(\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}\), \(\int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \sqrt{\pi}/2\), and \(\int_{-\infty}^{\infty} x^4 e^{-x^2} dx = 3\sqrt{\pi}/4\).

Sohn: Get the normalized trial function by integrating the square of given function: \(\psi(x) = \left(\frac{2b}{\pi}\right)^{1/4} e^{-bx^2}\). Then,

\[
\langle V \rangle = \left(\frac{2b}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} dx \ x^4 \ e^{-2bx^2} = 2\sqrt{\frac{2b}{\pi}} \int_{0}^{\infty} dx x^4 e^{-2bx^2} = \frac{3}{16b^2}.
\]

(1)

Similarly,

\[
\langle KE \rangle = \left(\frac{2b}{\pi}\right)^{1/2} \left(\frac{-h^2}{2m}\right) \int_{-\infty}^{\infty} dx \ e^{-bx^2} \left(d^2/\text{dx}^2\right) e^{-bx^2} = \ldots = \frac{h^2b}{2m}.
\]

(2)

So

\[
\langle H \rangle = \frac{h^2b}{2m} + \frac{3}{16b^2}
\]

(3)

\[
\frac{d}{db} \langle H \rangle = \frac{h^2}{2m} - \frac{3}{8b^3} = 0 \Rightarrow b = \left(\frac{3m}{4h^2}\right)^{1/3}
\]

(4)

An upper bound of the ground state energy is

\[
\langle H \rangle_{\text{min}} = \frac{3}{2} \left(\frac{3h^4}{32m^2}\right)^{1/3}
\]

(5)

4. (9 pts) (a) Derive the lowest order correction (\(\langle \psi_n | \delta H | \psi_n \rangle\)) to the energy levels of the one-dimensional harmonic oscillator (\(V = (1/2)m\omega^2 x^2\)) due to the perturbation \(\delta H = \alpha p^2/(2m)\), where \(\alpha \approx 0\). (b) Obtain the exact energy levels by recognizing that the perturbed Hamiltonian represents an oscillator with different \(\omega\). (c) Show that (a) follows from (b). \(p = i\sqrt{h\omega/2}(a_+ - a_-)\), \(a_+ \psi_n = \sqrt{n+1} \psi_{n+1}\), and \(a_- \psi_n = \sqrt{n} \psi_{n-1}\).

Sohn: (a) \(p^2 = -(h\omega/2)(a_+ - a_-)^2 \Rightarrow \delta H = (ah\omega/4)(a_-a_+ + a_+a_- + \text{irrelevant terms}) \Rightarrow \langle \psi_n | \delta H | \psi_n \rangle = (ah\omega/4)(\sqrt{n+1}\sqrt{n+1} + \sqrt{n}\sqrt{(n-1)+1}) = (\alpha/2)(n + 1/2)h\omega\).

Therefore, the first order corrected energies are \((1 + \alpha/2)(n + 1/2)h\omega\). (b) The perturbed Hamiltonian applies exactly to an oscillator with mass \(M = m/(1 + \alpha)\) and potential \((1/2)M(\sqrt{1+\alpha})^2 \omega^2 x^2\), thus with (exact) energies \((n + 1/2)h(\sqrt{1+\alpha}) \omega\). (c) Approximating \(\sqrt{1+\alpha}\) by \(1 + \alpha/2\) gives (a) from (b).

5. (10 pts) [There is little computation in this question, especially after part (a). You may assume \(\hbar = 1\) for convenience. \(\langle s \ m \rangle\) denotes the conventional eigenstates of \(S_z\).] A spin-2 particle is in the unnormalized \(S_x\) eigenstate \(\psi = |2 \ 2\rangle + 2|2 \ 1\rangle + \sqrt{6}|2 \ 0\rangle + 2|2 \ -1\rangle + |2 \ -2\rangle\).

(a) Use \(S_x = (S_+ + S_-)/2\), and \(S_{\pm}|2 \ m\rangle = \sqrt{2(2+1)-m(m+1)} |2 \ m \pm 1\rangle\) to find the \(S_x\)
eigenvalue

Soh: $S_+|\psi\rangle = 0 + 2\sqrt{6-2}|2\ 2\rangle + \sqrt{6}\sqrt{6}|2\ 1\rangle + 2\sqrt{6}|2\ 0\rangle + \sqrt{6} - (-2)(-1)|2 - 1\rangle$.

$S_-|\psi\rangle = \sqrt{6 - 2}|2\ 1\rangle + 2\sqrt{6}|2\ 0\rangle + \sqrt{6}\sqrt{6}|2\ - 1\rangle + 2\sqrt{6} - (-1)(-2)|2 - 2\rangle + 0$.

Therefore, $S_x|\psi\rangle = (S_+|\psi\rangle + S_-|\psi\rangle)/2 = = 2|\psi\rangle$, i.e., S_x eigenvalue is 2.

(b) Describe precisely the results of measuring (i) S_x, (ii) S_x^2, (iii) S^2 and (iv) $S_y^2 + S_z^2$.

Soh: Always i)2, ii)4, iii)2(2+1)=6, iv)6-4=2

(c) Using b(iv), what is $\langle S_x^2 \rangle$?

Soh: Half of b(iv), i.e. 1

(d) (Normalize the wavefunction.) What are the possible measurement values for S_z, and what are their measurement probabilities?

Soh: Normalizing, $|\psi\rangle = |2\ 2\rangle/4 + |2\ 1\rangle/2 + \sqrt{3}/8|2\ 0\rangle + |2 - 1\rangle/2 + |2 - 2\rangle/4$. Therefore, the possible and measurement values(probabilities) are: +2(1/16), +1(1/4), 0(3/8), -1(1/4), and -2(1/16).

(e) What are the possible measurement values for S_z^2, and what are their measurement probabilities?

Soh: 4(1/8), 1(1/2), and 0(3/8).

(f) Using (d), calculate $\langle S_z \rangle$.

Soh: Since the positive and negative values occur with equal probability, the weighted average is zero. $\langle S_z \rangle = 0$.

(g) Using (e), calculate $\langle S_z^2 \rangle$.

Soh: $\langle S_z^2 \rangle = 4(1/8) + 1(1/2) + 0 = 1$.

(h) How can the maximum S_z^2 (=-4, from (e)) be larger than $S_y^2 + S_z^2$ (=-2, from (b))?

Soh: Given state is not an S_z eigenstate. However, when a measurement results in, say, $S_z=2$ and hence $S_z^2=4$, the state collapses into the corresponding S_z eigenstate, which is different from the given state. QM can be strange.