1. (10 points.) Consider the wave function (for a fixed time $t = 0$) $\psi(x,0) = A(a^2 - x^2)$ for $-a < x < a$, and zero elsewhere. Determine (a) the normalization constant A (b) expectations $<x>$, $<p>$, $<x^2>$, and $<p^2>$ (c) uncertainties σ_x and σ_p, and (d) verify consistency with the uncertainty principle.

2a. (7 points.) (Assume $\hbar = m = 1$ in this problem.) Show that the wavefunction $xe^{-x^2/2}$ is an eigenstate of the harmonic oscillator. What is the energy? What is the probability of finding this oscillating particle outside its classical amplitude? You can leave your answer in terms of definite integrals involving gaussian functions, but then go home and evaluate the actual number.

2b. (3 points.) Uncertainty principle: If an electron is confined to a half-Angstrom region, roughly what would be its momentum and kinetic energy? (Electron mass=$(1/2)\text{MeV}/c^2$, 1Angstrom=$10^{-10}m = 10^5fm$, $\hbar c = 200 \text{(MeV)(fm)}$, $1fm = 10^{-15}m$, and $1\text{MeV} = 10^6eV$. Maybe you recognize what this is, but ok if you don’t.)

3a. (7 points.) Consider the (unnormalized) wavefunctions $\psi_a = \psi_1 + \psi_2 + \psi_3$ and $\psi_b = \psi_1 - 2\psi_2$, where the three ψ_i’s form an orthonormal basis. (a) Explicitly calculate the projection operator (matrix) along ψ_b. (b) “Make” ψ_a orthogonal to ψ_b, i.e. extract the part of ψ_a that is orthogonal to ψ_b using the projection matrix that you just calculated. (c) Verify the orthogonality.

3b. (3 points.) Show that $[x,p] = i\hbar$, where x and p are the usual position and momentum operators, respectively. Then use this result to evaluate $[x,p^2]$ without explicit differentiation. (Think “add/subtract terms”.)