
Physics 618 Ninth Lecture Feb. 14, 2017

Last time we started our detailed discussion of SU(2) by noting that by se-
lecting L3 to be the generator of the one-dimensional Cartan subalgebra and

observing that L± =
L1 ± iL2√

2
are raising and lowering operators, meaning

that if we have any eigenstate em of L3 with eigenvalue m, we have eigen-
states L±em with eigenvalues m± 1 unless the operator annihilates the state
em. As each state so generated gives a new dimension to the vector space, if
the representation is to be finite dimensional there must be a highest weight
state with m = mmax =: j and another with lowest m value, which we found
to be mmin = −j. Writing the states so generated as |j, m〉, we found the
representations, one for each j with 2j ∈ N, with

L3 |j, m〉 = m |j, m〉

L+ |j, m〉 =
1√
2

√

(j − m)(j + m + 1) |j, m+1〉

L− |j, m〉 =
1√
2

√

(j + m)(j − m + 1) |j, m−1〉

We then began our discussion of decomposing the tensor product of two
irreducible representations into a direct sum of irreducible representations.
This is important in physics because when a total state can be considered as
having two noninteracting or nearly noninteracting components, the full state
transforms under symmetries as the tensor product of the pieces. Choosing
to diagonalize L3 we saw that each finite dimensional representation has a
“highest weight” state with the eigenvalue m of L3 we call j. We saw that
there is a unique (up to equivalence) irreducible representation for each j

equal to a nonnegative integer or half-integer. Then we began looking at the
tensor product Γj1 ⊗ Γj2 and observed that the highest m is j1 + j2, so that
is the highest j in the representation.

Today

We will continue to examine the m values in the tensor product, to con-
clude that

Γj1 ⊗ Γj2 ∼=
j1+j2
⊕

j=|j1−j2|

Γj ,

that is, we get a piece for each j between the difference of the two j’s and
the sum, though of course only integer j’s if j1 + j2 is an integer, and only
integer plus 1

2
otherwise.

When the pieces of a quantum mechanical wave function do interact in a
way obeying the symmetry, each irreducible component in the direct sum will
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be affected separately, so it is important to be able to project the pieces of the
direct product onto the individual states in the direct sum. This overlap is
what physicists call Clebsch-Gordon coefficients, or less ambiguously, Vector
coupling constants.

We will give the procedure for finding those coefficients, starting a simple
example of (j = 1) ⊗ (j = 1

2
), which you will finish up for homework. Of

course when you really need Clebsch-Gordon coefficients you can find them
from the Particle Data Group (pdg.lbl.gov) or Wikipedia, but you should
have worked one set out for yourself.

We will consider the representations of the finite group elements and how
these relate to the spherical harmonics Y m

ℓ (θ, φ) and the Wigner-Eckhart
theorem. This determines much of how transitions in nuclei or atomic physics
occur when a photon is released, for example.

We will then turn to another SU(2) group, that of isospin in nuclear and
particle physics. There is an approximate symmetry under which protons
and neutrons can be viewed as interchangable, and hadronic states then
form irreducible representations of the SU(2) which involves rotations in the
abstract two-dimensional space formed by this pair of states. Nowadays this
is just a small part of flavor symmetry, but it is a much better symmetry than
the rest, and it is significant in nuclear physics that nuclei form multiplets
under this group, and in low-energy high-energy physics as well, as we shall
see.

Reminders:

Homework 4 is due Thursday, Feb. 16.

I will try to get Homework 5 posted before Thursday.
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