
Physics 618 Seventeenth Lecture March 24, 2017

We have been working on the machinery for finding irreducible repre-
sentations of SU(N) and SO(N) in terms of direct products of the defining
representation. This required us first to build apparatus for the permutation
group Sk acting on the indices of a tensor for the coefficients of an element of
⊗k

1
N. We first defined the group algebra, and discussed how elements of the

group algebra could project out individual irreducible representations of Sk.
Noting there is a representation η for each partition of k, we introduced the
Young graph, an array of boxes, and then a Young tableau τ , a graph with the
numbers 1 . . . k in the boxes. For each tableau, we defined a symmetrization
operator Pτ , an antisymmetrization operator Qτ , and a Young operator. We
also defined different linear combinations,

e
η
ij =

ℓη

k!

∑

P∈Sk

Γη
ji(P

−1)P,

where Γη
ji is the irreducible representation of Sk. We saw that the set of e

η
ij

for a fixed η form a two-sided ideal in the group algebra, and in fact give a
decompositon of the identity

1I =
∑

η i

e
η
ii

We also claimed that the e
η
ij were linear combinations of the form e

η
ij =

∑

ij sijQiPj, where i and j are standard tableaux which have their box num-
bers increase left to right in each row and top to bottom in each column.
These are fairly easy to count and give the dimension of the representation
η, though for larger representations the counting is less easy, so it helps to
have the magic formula

ℓη =
k!

∏

b

gb

,

where gb is the hook for box b.
Having found projectors for the irreducible representations of Sk, we turn

to considering how these act on the tensors of SU(N) with k indices. In total,
of course, there are Nk parameters, but these can be decomposed by the e

η
ii

into directions which don’t mix under SU(N). We saw, for example, that the

acting on a tensor component with two equal and one other index projects
out one state from the three possible orderings, while it kills a state with all
indices equal. In particular, we say that for SU(2), 2 ⊗ 2 ⊗ 2 = 4 ⊕ 2 ⊕ 2.
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Today

We will now formalize what we did in the simple example to discuss
general N and k and a general η. We consider the subspace of states in ⊗k

1
N

with ri indices equal to i, and note that while Sk will generate a span of
this space from one ordering e, this need not give k! independent vectors,
because there is a subgroup of Sk which leaves the tensor unchanged, namely
P = ⊗Sri

. Thus the space is also spanned by {PPPe|P ∈ Sk}, where
PP is the symmetrizer for P. We will see that the dimension of the space
projected out by e

η
ii from all permutations of e is the number of times the

identity representation of P is contained in Γη, which is just

γη =
∑

B∈P

χη(B)

/

∏

ri!.

Next, we need to count how many choices there are of the ri indices
equal to i for SU(N). That is, there are N possibilities for all indices equal,

N(N−1) choices for all equal except one (for k ≥ 3), and
(N

k

)

for all unequal.

Multiplying these by the number of states for each choice, γη and summing
over all possibilities gives the dimension of the representation of SU(N).

This is all a nontrivial calculation, so we will give another magic rule
which gives answers easily, again without proof. First, the γη are given by
counting the permissible placements of 1 . . . N in the boxes of the Young
graph. But actually to get the dimensions of the SU(N) representations,
which is our primary goal, there is an even easier recipe. It involves rules for
placing something analogous to a hook, but based on N , and then dividing
by the product of hooks.
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