
Chapter 5

Semisimple Compact Lie

Groups

We return now to considering a general finite dimensional semisimple com-
pact Lie group and its Lie algebra.

In the algebra there are many abelian subalgebras, though not invariant.
For example, any one dimensional subspace is an abelian subalgebra. If there
are several generators which commute with each other, then one can form a
larger abelian subspace. Let us take a maximal abelian subalgebra H ⊂ L, of
dimension m, which means there is no abelian subalgebra of larger dimension.
H is called a Cartan subalgebra, with basis Hi. m is the rank of L.

Consider a representation D of L. The matrices corresponding to the Hi

may all be simultaneously diagonalized, as they commute, so we label the
basis vectors µ, we have

Hi |µD〉 = µi |µD〉 .

The eigenvalues µi are called the weights and the vector ~µ = (µ1, µ2, . . . , µm)
is called the weight vector corresponding to the basis vector µ. Notice this
is a vector in a m-dimensional space, where m is the rank, not the dimension
of the full Lie algebra L or of the representation.

There is a vector ~µ for each dimension µ of the representation. But unlike
for SU(2), there may be several basis vectors in the representation with the
same ~µ, so we ought to include a subsidiary label x, Hi |µ, x, D〉 = µi |µ, x, D〉.

We consider in particular the adjoint representation. Then the basis
vectors are also the Lie algebra generators La. From compact semisimplicity
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we know we can choose Tr LaLb = λδab for the real basis vectors1. The
generators act on the states by2

La |Lb〉 = |[La, Lb]〉 = if c
ab |Lc〉 .

We will consider states in the complexification of L, so as to include things
like J±, so we can write in general

〈X1||X2〉 = λ−1 Tr
(

X†
1X2

)

for X1 and X2 any elements of the complexification of L, X =
∑

a νaLa with
νa ∈ C.

From above, Hi |Hj〉 = 0. The rest of the vector space L has a basis
which, having diagonalized H , satisfies

Hi |E~α〉 = αi |E~α〉 .

The Hi are hermitean and diagonal, but the eigenvectors E~α are not neces-
sarily real combinations of the hermitean Li, so E~α is not necessarily equal
to E†

~α. Nonetheless αi is real, as all the eigenvalues of a hermitean matrix
are, so, as

[Hi, E~α] = αiE~α,
[

Hi, E
†
~α

]

= −αiE
†
~α.

For each ~α, the αi, i = 1, . . .m, are not all zero because we assumed E~α is
not in the Cartan subalgebra. So E†

~α is another eigenvector E−~α. Normalize
the E~α’s so that 〈E~α, E~β

〉 = δ
~α,~β

as well as 〈Hi, Hj〉 = δij .
The {αi} for all the E~α are the non-zero weights of the adjoint represen-

tation, and are called the roots of the algebra. Again, each root is in the
m-dimensional vector space.

1Slight change in notation: assuming we are using a basis with diagonalized βab = λδab,
we change the name of the structure constants c

k
ij → fijk.

2The choice of basis vectors that makes the Killing form essentially the unit matrix
enables us to show the f ’s are totally antisymmetric, for

iλf c
ab = Tr ([La, Lb] Lc) = Tr (LaLbLc) − Tr (LbLaLc) = Tr (LaLbLc) − Tr (LaLcLb)

= Tr (La [Lb, Lc]) = iλf a
bc .
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The E~α generators act as raising operators in some direction for any
representation. If we have a state of weight ~µ in representation D, (so
Hi |µD〉 = µi |µD〉) then E~α |µD〉 is a state of weight ~µ + ~α, for

HiE~α |µD〉 = [Hi, E~α]
︸ ︷︷ ︸

αiE~α

|µD〉 + E~α Hi |µD〉
︸ ︷︷ ︸

µi|µD〉

= (αi + µi)E~α |µD〉 ,

unless, of course, it vanishes with E~α |µD〉 = 0.

In the adjoint representation consider the state E~α |E−~α〉. It has weight 0,
so commutes with each Hi and must be contained in the Cartan subalgebra,
for otherwise it could have been added to it. Thus E~α |E−~α〉 =

∑

i βi |Hi〉, or
[E~α, E−~α] =

∑

i βiHi. As [E~α, E−~α] is hermitian, βi is real. Note

βi = 〈Hi|E~α |E−~α〉 = 〈E−~α|E−~α |Hi〉
∗ = 〈E−~α||[E−~α, Hi]〉

∗ = α∗
i = αi,

so

[E~α, E−~α] =
∑

i

αiHi.

Now consider an arbitrary finite dimensional representation D and a state
of definite weight ~µ. Just as we did with L+ in SU(2), we will generate states
with E±~α until they vanish. Consider a specific E~α, and apply E~α until
you get to a state |~µ ′D〉 which vanishes upon further application of E~α, so
E~α |~µ

′D〉 = 0, with ~µ ′ = ~µ + p~α for some integer p ≥ 0. Normalize the state
|~µ ′D〉, and generate therefrom a sequence of normalized states

|~µ ′ − n~α, D〉 = N−1
n E−~α |~µ

′ − (n − 1)~α, D〉

as long as E−~α can be applied without killing the state. The Nn is a real
positive normalization factor so that all the states are normalized.

Thus

|~µ ′ − n~α, D〉 =

(
n∏

r=1

N−1
r

)

En
−~α |~µ

′, D〉 ,
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E~α |~µ
′ − n~α, D〉 =

(
n∏

r=1

N−1
r

)
n−1∑

r=0

En−r−1
−~α [E~α, E−~α] Er

−~α |~µ
′, D〉

=

(
n∏

r=1

N−1
r

)
n−1∑

r=0

En−r−1
−~α

∑

i

αiHi E
r
−~α |~µ

′, D〉

︸ ︷︷ ︸

(~µ ′−r~α)·~α Er

−~α
|~µ ′,D〉

= N−1
n

(

n(~µ ′ · ~α) −
1

2
n(n − 1)α2

)(n−1∏

r=1

N−1
r

)

En−1
−~α |~µ ′, D〉

︸ ︷︷ ︸

|~µ−(n−1)~α,D〉

.

So

〈~µ − (n − 1)~α, D|E~α |~µ
′ − n~α, D〉 =

n(~µ ′ · ~α) − 1
2
n(n − 1)α2

Nn

= 〈~µ ′ − n~α, D|E−~α |~µ − (n − 1)~α, D〉∗ = Nn,

so |Nn|
2 = n~µ ′ · ~α − 1

2
n(n − 1)α2.

For a finite dimensional representation, Nn+1 = 0 for some n ≥ 0, so

(n + 1)

[

~µ ′ · ~α −
1

2
nα2

]

= 0, or
~µ ′ · ~α

α2
=

n

2
.

For the original vector ~µ,

~µ · ~α

α2
=

(~µ ′ − p~α) · ~α

α2
=

n

2
− p.

If we had applied the lowering operator E−~α to |~µ, D〉 directly, we would have
gotten zero after some integer number q + 1 of applications of E−~α , with
n + 1 = q + 1 + p, so we may write

~µ · ~α

α2
=

q − p

2
.

In the adjoint representation ~µ is a root, say ~β, so
~α · ~β

α2
=

n

2
for every

pair of roots ~α and ~β, for some integer n. Multiplying by the same relation
with ~α ↔ ~β,

(~α · ~β)2

α2β2
= cos2 θ =

m

4
,
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with m an integer which must be 0, 1, 2, 3, or 4. θ is the angle between the
two roots. Thus the possible angles between roots are 0, 30◦, 45◦, 60◦, 90◦,
120◦, 135◦, 150◦, 180◦.

Of course every root has an angle of 0◦ with itself and 180◦ with its
conjugate. We now show that the angle between two different generators Eα

and Eβ cannot be 0. For suppose ~α ‖ ~β with |~β| ≥ |~α|. Then as

~α · ~β

β2
=

|~α|

|~β|
≤ 1,

the only possibilities are ~β = 2~α or ~β = ~α. First consider the possibility that
~α = ~β, that two different vectors E~α and E ′

~α have the same root. They can
be chosen orthogonal. Now E−~α |E

′
~α〉 =

∑

i βiHi as it has weight zero. Then

βi = 〈Hi|E−~α |E
′
~α〉 = 〈E ′

~α|E~α |Hi〉
∗ = 〈E ′

~α||[E~α, Hi]〉
∗

= −〈E ′
~α||[Hi, E~α]〉

∗

= −〈E ′
~α|Hi |E~α〉

∗ = −αi〈E
′
~α||E~α〉

∗
= 0,

so the number of times E−~α can lower |E ′
~α〉 is zero, q = 0, and ~α·~α

α2 = 1 =
q−p

2
= −p/2, which is impossible as p ≥ 0. Therefore no root has two

independent eigenvectors.
Now consider ~β = 2~α. ~α + ~β can’t be a root, as it would be 3~α, so E~α

cannot raise
∣
∣
∣E~β

〉

, the relevant p = 0, but n = 4, so E−~α

∣
∣
∣E~β

〉

6= 0, and it

has weight ~α, so must be proportional to |E~α〉, E−~α

∣
∣
∣E~β

〉

= k |E~α〉. Then

k = 〈E~α|E−~α

∣
∣
∣E~β

〉

=
〈

E~β

∣
∣
∣E~α |E~α〉

∗ =
〈

E~β

∣
∣
∣|[E~α, E~α]〉

∗

= 0, so again we

have a contradiction, which rules θ 6= 0 for different roots, and θ 6= 180◦ for
non-conjugate roots.

Notice that E±~α and
∑

αiHi form an SU(2) subalgebra, and the string of
n values generated about a given ~µ is a j = n/2 representation of this SU(2),
and the above investigation into the possible values is a rehash of what we
did for SU(2).

Before we go on, we need another example, and a very important one in
elementary particle physics, SU(3).

But first a recap:

We are in the process of classifying all finite dimensional compact semisim-
ple Lie algebras and their finite-dimensional irreducible representations.
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H is the Cartan subalgebra of the Lie algebra L we are considering, with
generators Hi for H and E~α for the rest of L.

Hi |~µ, D〉 = µi |~µ, D〉 ,

{
~µ is the weight of the state |~µ, D〉

in representation D

Hi |E~α〉 = αi |E~α〉 ,

{
~α is the root, the weight of a state in the

adjoint representation

Considering E~α as a raising operator acting on a state |~µ, D〉,
p = number of times E~α can act on |~µ, D〉 before vanishing,
q = number of times E−~α can act on |~µ, D〉 before vanishing.

Then q − p = 2
~µ · ~α

α2
.

If ~α and ~β are roots, the angle θ between them has 4 cos2 θ an integer,
and θ 6= 0 for different roots.


