
Chapter 7

Simple Roots

Now let us return to the general theory, using SU(3) and SU(2) as examples.

Consider a compact semisimple finite dimensional Lie algebra L (as usual)
with a definite Cartan subalgebra and a fixed basis for it, H1, H2, . . . , Hm.
Any representation can be written with a basis in which the Hi are diagonal,
so the m eigenvalues belonging to a given basis vector in the representation
is an m component vector µ1, . . . µm which we have already defined as the
weight.

We give an ordering to the weights by an alphabetic method, that is,
µ > µ′ if the first nonzeroth element of the vector ~µ−~µ ′ is greater than zero.
~µ = ~µ ′ only if the vectors are identical.

This definition is clearly arbitrary, because it depends on our choice of
basis for H, even on the order in which we list the basis elements. It is
nonetheless useful. A weight is positive if it is > 0.

The adjoint representation is also subject to this definition, so we have
imposed an ordering on the roots1. Now all the roots are either positive or
negative. The positive roots can be considered raising operators, and the
negative ones their conjugate lowering operators.

Note because Georgi has chosen H1 = T3 and H2 = T8, instead of the
other way around, the raising operators are T+, V+, and U−, not U+. If he
had interchanged H1 and H2, T+, V+, and U+ would have been the raising
operators. Which order one chooses is not important as long as you stick to
it, and as we are following Georgi, we better stick to his.

When we want to know how the algebra acts on a representation vector

1We have shown (page 89) that no two generators have the same root.
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space, we don’t need to investigate how [A, B] operates if we already know
how A and B work separately. So if we already know the action of two roots

E~α and E~β
, we don’t need to worry about

[

E~α, E~β

]

∝ E
~α+~β

, even if it is a

root. We therefore define
A simple root is a positive root which cannot be written as a sum of

two positive roots.
Lemma: If ~α and ~β are unequal simple roots, ~α−~β is not a root, and ~α·~β ≤ 0.

Proof: If ~α − ~β is a root, so is ~β − ~α, and one of them is positive, say
~α − ~β. Then ~α is the sum of positive roots ~α − ~β and ~β, and is not simple,
which contradicts the hypothesis.

If ~β − ~α is not a root, the q for the ~α multiplet starting from ~β is zero,

and
~α · ~β

α2
= −p

2
≤ 0.

The set of nonnegative integers p for each ordered pair ~α, ~β determine
not only the angles cos2 θαβ = pαβpβα/4 but also the relative magnitudes
β2/α2 = pαβ/pβα for all the simple root vectors. And each p can only be 0,
1, 2, or 3. Also either both pαβ and pβα are zero or at least one of the two is
1.

Now if there aren’t too many simple roots we should be able to determine
everything. We now show that the number of simple roots is equal to the
rank m of the group.

First, we show that they are linearly independant. Suppose not, so there
exists a relation

∑

i xiα
i = 0 with some real xi 6= 0. Divide the expression

into two parts with the coefficients positive or negative.

∑

i∋ xi>0

xi~α
i +

∑

i∋ xi<0

xi~α
i = 0,

or, calling the first piece y :=
∑

i∋ xi>0
xi~α

i and minus the second z :=
∑

i∋ xi<0
|xi|~α i, we have y = z. Now y and z are both positive linear combi-

nations of positive roots, so each is nonzero, but

y2 = y · z =
∑

i∋ xi>0

j∋ xj<0

|xi||xj|~α i · ~α j ≤ 0,

because all the included ~α i · ~α j are ≤ 0. This contradicts y2 > 0 as y 6= 0.
QED.
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Thus the number of positive roots cannot be greater than the dimension-
ality of the space they live in, which is the rank of the algebra.

Second, we show any positive root φ is a sum of one or more simple roots
~αi with nonnegative integer coefficients K~αi

. Suppose not. Then there is a
smallest positive root which cannot be so written, and it is not simple, so
it can be written as a sum of two positive roots, each smaller than it, and
hence expressible as such.

Third, we show that the simple roots span the whole m dimensional space,
and hence there are exactly m of them. For if not, let v be a vector in the
m dimensional space perpendicular to all the simple roots. Every root is a
linear combination of these (as either it is positive or it is minus a positive
root), so ~v · ~α = 0 for every E~α.

Then
[

~v · ~H, E~α

]

= ~v · ~α = 0 and ~v · ~H commutes with every generator

of the algebra and generates a one-dimensional abelian invariant subalgebra.
But this is impossible because the whole algebra is semisimple.

Thus a compact semisimple finite dimensional Lie algebra has its structure
determined by the dimensionality m of its Cartan subalgebra and the integers
pαβ for each pair of the m simple roots, ~α and ~β. These determine the ~α · ~β,
and thus the root vectors which exist. The procedure for determining which
positive linear combinations of simple roots is described in Georgi page 107.
Instead of repeating it, I will work out an example.

Let us classify all the simisimple Lie algebras of rank 2. There are only
two simple roots, say ~α and ~β, and we may as well choose them such that
|α| ≤ |β|.

We know that −2
~α · ~β

α2
= p, −2

~α · ~β

β2
= p′, where p and p′ are nonnegative

integers. If ~α · ~β = 0, both p = p′ = 0, otherwise cos2 θ = pp′/4, so pp′ = 1,
2, or 3. As we took |α| ≤ |β|, p ≥ p′, so the four posibilities are

(a) p = p′ = 0
(b) p = p′ = 1
(c) p = 2, p′ = 1
(d) p = 3, p′ = 1

The first three posibilities are to be considered by you for homework. I
will do case (d) now.

We have −2
~α · ~β

α2
= 3, −2

~α · ~β

β2
= 1, so β2 = 3α2 and cos θ = −

√
3/2,
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θ = 150◦. To choose our root vectors, we note that the requirements
1) the killing form is a multiple of the identity
2) the subspace H is abelian, and left invariant by overall scale changes and
rotations of the Hi’s.
This means that we can change the scale and rotate the whole root diagram.
The only proviso is that what had been positive may cease to remain so.

Choose ~α = (0, 1) so ~β =
(√

3/2,−3/2
)

. All roots must be of the form

~γ = m~α+n~β with m ≥ 0 and n ≥ 0, or the negative of such a root. As p = 3,
we are assured that E~α can be applied three times to E~β

before vanishing,
giving

E
~α+~β

, E
2~α+~β

, E
3~α+~β

,

but guaranteeing that E
4~α+~β does not exist. As p′ = 1, E~β can be applied

only once to E~α, so E
~α+2~β

does not exist.

We still need to ask if E~β
can be ap-

plied to E
2~α+~β

or E
3~α+~β

and give a new
state. In both cases E

−~β
could not, be-

cause this would give a root parallel to E~α,
so we know q = 0. Then as for any ~µ,
~µ · ~β

β2
=

q − p

2
, in this case the appropriate

p is −2

3
~β · (r~α + ~β) = r− 2, so E

2~α+2~β
does

not exist, but just one application of E~β to
E

3~α+~β
is allowed, giving E

3~α+2~β
, but not

E
3~α+3~β

.

Can E~α act on our new E
3~α+2~β? E−~α

cannot, as 2~α + 2~β is not a root, so q = 0,
and ~α · (3~α + 2~β) = 0, so p = 0 and it
can not. So we have found all the positive
roots, and adding their negatives we have
this pretty diagram with two Cartan basis
vectors and 12 roots, giving the 14 dimen-
sional algebra called G2.

α

β

µ

µ

2

1

Roots diagram for G2. The
two generators of the Car-
tan subalgebra are indicated
at the origin. The 12 roots
are shown by dots, and the
weights excluded as being
roots in the argument are
shown as crosses.


