
Chapter 8

Dynkin Diagrams

We now describe how to use the constraints

~α · ~β

α2
=

q − p

2

where p is the number of times E~α can hit
∣

∣

∣

~β
〉

without annihilating, and q

is the number of times E−~α can. This is encoded in the Cartan matrix for
the simple roots,

Aji =
2~αj · ~αi

α2

i

= q − p.

We will draw a Dynkin diagram for each semisimple compact finite-dimensional
Lie group in which each simple root will be represented by a dot or small
circle, and they will be connected by bonds according to the p values. As we
saw, these p values are quite limited, but we will also find constraints on the
way even these limited number of bonds can be put together. We shall see
that many conceivable diagrams are forbidden, and therefore that the set of
all such groups is quite limited.

For each simple root draw a small open circle.

If α and β are two simple roots, and −2
~α · ~β

α2
= 2 or 3, draw 2 or 3 lines,

respectively, between their corresponding circles, with an arrow from α to β.

That is, from the shorter root to the longer. If −2
~α · ~β

α2
= −2

~α · ~β

β2
= 1, draw

a single line without an arrow between the two roots. If ~α · ~β = 0, do not
connect the two circles corresponding to α and β.
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With these rules we can draw diagrams such as
these, and investigate if there is a group corresponding
to that diagram. We will see, however, that there are
restrictions on what is possible. It will turn out that
the diagrams on the right do correspond to Lie groups,
while those below do not.
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8.1 Classification of Simple Lie Algebras

We have seen that given any algebra, there exist m simple roots, where m is
the rank of the algebra, with relations that can be represented by a Dynkin
diagram.

Let us first show any algebra with a disconnected diagrams cannot be
simple. Suppose that the simple roots can be divided into two sets, A and
B, with the vertices of A disconnected from B. Then, for α ∈ A and β ∈ B,
E−α |Eβ〉 = 0, which is always true for simple roots, so q = 0. As there is no

connection of α and β, ~α · ~β = 0, and p = 0, so Eα |Eβ〉 = 0. Each simple
root in A commutes with each in B and with its conjugate. The other roots
in A are commutators of simple ones, and similarly for B, so all roots in A
commute with all roots in B. The group is therefore the direct product of
that generated by A and that generated by B. Each of these is a nontrivial
invariant subalgebra, so the whole group is not simple. Of course the direct
product of simple groups is semisimple, but not simple.

Next, we rule out diagrams with three simple roots connected as shown,
whether or not there are additional connections to other roots.
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γ
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β
γ α
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The angles between these roots are as given
in the table, with the angles even bigger if
any additional lines are added. Each is a
vector with its tail at the origin. As the
sum of three angles between three such vec-
tors must be ≤ 360◦, and equal to 360◦

only if the three vectors lie in a plane, we
see the three roots must lie in a plane, and
therefore cannot be linearly independent,
which is impossible.

(1) (2) (3)
θαβ 120◦ 120◦ 135◦

θβγ 120◦ 150◦ 135◦

θγα 120◦ 90◦ 90◦
∑

θ 360◦ 360◦ 360◦

Thus the only diagram with a “triple bond” is the diagram for G2.
A set of vectors which corresponds to the Dynkin diagram rules, having

the magnitudes and angles as indicated by the diagram, is called a Π system,
without worrying about whether each Π system corresponds to an algebra.

Now consider a Π system containing two simple
roots α and β connected to each other with a sin-
gle line, with unspecified connections to the rest
of the system. Then the Π system which results
from contracting the line, collapsing α and β to
a single root ~σ = ~α + ~β. is also a Π system. For
σ2 = α2 = β2 because they were connected by
a single line, so are of equal magnitude with an
angle of 120◦ between them. For each γ in the
unknown, γ cannot be connected to both α and
β, because diagram (1) above is excluded, and is
not part of any Π system. If γ was disconnected
from β, ~γ · ~β = 0, so

~γ · ~σ = ~γ · (~α + ~β) = ~γ · ~α,

so γ is connected to σ with the same connection
that it had been to α.

α β

unspecified

σ

unspecified

Corrollaries:

• No Π system contains more than 1 double bond (or else collapsing
whatever connected them would produce diagram (3) above).

• No Π system contains contains a closed loop, for if so it could be col-
lapsed to diagram (1).
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No Π system contains a root linked to four
others with single links. For then
α2 = β2 = γ2 = δ2 = µ2,
and ~µ · ~α = −µ2/2 = ~µ · ~β = ~µ · ~γ = ~µ · ~δ,
~α · ~β = ~α · ~γ = ~α · ~δ = ~β · ~γ = ~β · ~δ = ~γ · ~δ = 0,
so (~α + ~β + ~γ + ~δ + 2~µ)2 = µ2(4 + 4− 8) = 0, and
the five roots are not all independent.

µ

β

δ

α

γ
No Π system contains a root connected to three

others, including one double bond, regardless of di-
rection. For α2 = β2 = γ2, ~α · ~β = ~β · ~γ = −1

2
β2,

~α · ~γ = ~α · ~δ = ~γ · ~δ = 0. The angle between ~β and
~δ is 135◦. Let δ̂ be in the direction of ~δ but with the
length of ~β (changing it by

√
2 or its inverse). Then

~β · δ̂ = β2 cos 135◦ = −β2/
√

2, and
γ

α

β
δ

(~α + ~γ + 2~β +
√

2δ̂)2 = α2 + γ2 + 4β2 + 2(δ̂)2 + 4~α · ~β + 4~γ · ~β + 4
√

2~β · δ̂
= β2(1 + 1 + 4 + 2 − 2 − 2 − 4) = 0,

so again the roots are not linearly independent, which is impossible 1.

Corrolaries:

• No root is linked directly to four others. We have already shown that
for four single bonds, but if one is double, contracting one of the others
reduces to the case just excluded.

• No Π system contains both a branch point and a double bond, because
contracting what is between them gives what we just excluded, and no
Π system contains more than one branch point, because contracting
what connects them leaves a root linked to four others.

So thus far we see that all Π systems are either
(a) G2

(b) a linear chain with at most one double bond
(c) a chain with one branch point and only single bonds.

1How does one find combinations like that to prove dependence? If we suspect that ~vi

might be linearly dependent, so ∃ki ∋ ∑

ki~vi = 0, and if we know all the dot products,

~vi · ~vj , we can ask for the minimum of the square (
∑

ki~vi)
2 ≥ 0. As that is a quadratic

expression in the ki, the equations for minimizing it are linear homogeneous equations in
the ki, and finding a nonzero solution provides a test for linear dependence of the ~vi.
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Now we will limit choices (b) and (c). First consider (b).

No diagram contains α β γ δ ε
α2 = β2 = 2γ2 = 2δ2 = 2ǫ2, ~α · ~β = −1

2
β2 = −γ2, ~β · ~γ = −γ2,

~γ · ~δ = ~δ · ~ǫ = −1

2
γ2, the other dot products vanish, and

(~α + 2~β + 3~γ + 2~δ + ~ǫ)2 = γ2(2 + 8 + 9 + 4 + 1 − 4 − 12 − 6 − 2) = 0,

and again the five roots are not linearly independent.

If we reverse the arrow 2α2 = 2β2 =
γ2 = δ2 = ǫ2, ~α · ~β = −1

2
α2, ~β · ~γ =

−β2, ~γ · ~δ = ~δ · ~ǫ = 1

2
γ2 = −α2

α β γ δ ε

(2~α + 4~β + 3~γ + 2~δ + ~ǫ)2 = α2(4 + 16 + 18 + 8 + 2 − 8 − 24 − 12 − 4) = 0,

so once again the five roots are not linearly independent, and this is forbidden.
Thus the only double bond appears at the end of the chain or else we

have only the group F4:

Now consider branches. Here all the simple roots have the same magni-
tudes, say 1, and if connected have a dot product of −1

2
.

If we add the roots αi with weights
wi and square, (

∑

wiαi)
2 =

∑

w2

i −
∑

nn
wiwj , where

∑

nn
means sum

over nearest neighbors (each pair
once). First consider seven roots
connected as shown, with weights
wi as indicated.

1 2

3

2 1

2 1
(

∑

wiαi

)2

= 1 + 4 + 9 + 4 + 1 + 4 + 1 − (2 + 6 + 6 + 6 + 2 + 2) = 0.

So again this cannot be part of the Dynkin diagram of a group, and the

shortest branch can have only
one attached root. Now consider
whether both of the other branches
can have three or more.

1 2 3

4

1

2

23

(

∑

wiαi

)2

= (1+4+9+16+4+9+4+1)−(2+6+12+8+12+6+2) = 48−48 = 0,

so the next shortest branch has at most 2 attached roots.
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Next, if the two shortest are
as long as possible, is there
a limit to the third branch?
(1+4+9+16+25+36+9+16+4)
−(2+6+12+20+30+18+24+8)
= 120 − 120 = 0.

1 2 3 4

3

25 4

6

So the longest branch has at most 4 roots attached, if the second longest has
two. Thus we have the complete list of simple finite dimensional compact
Lie groups

An 1 2 nα α α SU(n + 1)

Bn 1 2 nα α α SO(2n + 1)

Cn 1 2 nα α α Sp(2n)

Dn

α α
α

α

α n

n

n

−1

−2

1 2

SO(2n)

E6

E7

E8

F4

G2

All of these Π systems are allowed and do correspond to a simple Lie algebra.


