
Chapter 18

Conformal Invariance

At the beginning of the semester we motivated our investigation of symme-
tries by illustrating that, given differential equations which were symmetric,
the solutions had to transform into each other under the symmetries as a rep-
resentation of the symmetry. The first illustrations considered Schrödinger
equations with symmetric potentials, such as the electrons in the spheri-
cally symmetric potential of an atom, having wavefunctions transforming
under the rotation group. The Laplacian is invariant under both rotations
and translations, but the source of the potential may be taken as invariant
rotationally but not translationally. Under translations, we might make a
connection of the wave function at ~x for an atom with a nucleus at ~y with
the wave function at ~x+~a for an atom with a nucleus at ~y+~a, as the physics
is translationally invariant if we translate both the point of evaluation and
the boundary conditions, or sources.

Thus the way symmetries act on solutions depend on both the differen-
tial operator having the symmetry and the boundary conditions or sources
having the symmetry. The electric field of a point charge at the center of a
conducting cube would not have a full rotational symmetry, but would be-
have as a representation of the symmetry group of the cube. It is obvious

that the differential operator ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
is symmetric under

x ↔ −x, under x ↔ y, and under x ↔ z, which generate the group. For a
spherical conductor with a charge at the center, we should have O(3) sym-
metry, but how do we know ∇2 is rotationally invariant, when it seems to
depend on a choice of three axes? One way is to perform a change of vari-
ables (x, y, z) −→

R
(u, v, w) where R is an orthogonal matrix. Then the chain
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rule shows that ∇2 =
∂2

∂u2
+

∂2

∂v2
+

∂2

∂w2
, of the same form as in terms of

(x, y, z). Of course it might be even better to make a change of variables
to spherical coordinates, where we would see that the r dependence factors
out, and actually gives us the differential equations in θ and φ which would
in general provide the decomposition of Φ into spherical harmonics, and for
a conducting sphere would tell us Φ is independent of the angles.

The solution of a linear partial differential equation with sources in some
region, with boundary conditions, for example the Poisson equation, can
be found with a Green’s function G(~x, ~y) suitable to the region, Φ(~x) =
∫

d3yG(~x, ~y)ρ(~y). The invariance under symmetries is reflected in the Green’s
function. For example, invariance under translations tells us G(~x, ~y) = G(~x−
~y), and invariance under the full rotation group tells us that is actually a
function only of (~x− ~y)2.

To argue that ∇2 was rotationally invariant, we showed that the form
did not change under the rotation of coordinates (x, y, z) −→

R
(u, v, w), but

the form does change under (x, y, z) → (r, θ, φ). This change is to be con-
sidered a change of variables rather than a symmetry of the physics, and
we may still write Φ(r, θ, φ) =

∫

µ(r′, θ′, φ′)G ((r, θ, φ), (r′, θ′, φ′)) ρ(r′, θ′, φ′)
with the correct measure µ = r2dr sin(θ) dθ dφ and a suitably modified G.
This would be true, though probably not useful, even if there is no symmetry
in the physics. This kind of transformation is considered a passive one, cor-
responding only to a change of description rather than an actual change of
the physical situation under which the physics is invariant, that is, an active
symmetry transformation.

This kind of coordinate independence plays a crucial role in general rel-
ativity, where we make a big point of quantities such as ∇2 and ∇Φ having
physical meaning independent of the coordinates used to express them. This
leads to the ideas of co- and contra-variant tensors, and in particular of the
metric tensor, which expresses the distance ds between two positions xµ and
xµ + dxµ as

(ds)2 = gµνdx
µdxν

where xµ can be any set of generalized coordinates, and ds might refer to the
Minkowski rather than the Euclidean length. Under a change of coordinates,
xµ → x′ ν , the relation of dxµ to dx′ ν is given by the partial derivative
matrix, so the metric tensor g′ transforms on each index with that matrix,
and gµν dx

µ dxν is an invariant object.
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If we define gµν to be the inverse matrix to gµν , i.e. gµνgνρ = δµ
ρ , and if we

define g := det gµν , (or det(−gµν) for Minkowski space), then we can show
that the invariant volume element is given by

√
g

∏

dxµ and the laplacian
(or d’Alembertian) by

∇2 =
1√
g

∂

∂xµ
gµν√g ∂

∂xν
.

Now if we start with ordinary Euclidean or Minkowski space with carte-
sian coordinates, gµν = δµν or ηµν respectively, there are changes of coor-
dinates which leave the form of gµν invariant, which include the transla-
tions, rotations in space, and Lorentz transformations, which suggest physics
is invariant as well. The postulates of special relativity suggest that for
physics to be invariant, these are the correct set of symmetry transforma-
tions. Leaving the form invariant means η is a fixed specified matrix, and
the Poincaré transformations leave (ds)2 = ηµνdx

µdxν invariant. But the
only physical law Einstein’s postulate about the invariant speed of light re-
quires is that for light in vacuum, ds2 = 0. Thus a change in coordinates
for which g′µν(x

′ ρ) = h(xρ)gµν(x
ρ) would still have that piece of physics un-

changed, though different observers would not agree on the mean ds2 lifetimes
of muons.

If we consider, in flat Minkowski space, an infinitesimal transformation
xµ → x′µ = fµ(x), and ask that two infinitesimally separated points with
ds2 = 0 also have (ds′)2 = 0, we need

ηµν
∂fµ

∂xρ

∂f ν

∂xσ
dxρ dxσ = 0 whenever ηρσdx

ρ dxσ = 0.

Writing ∂fµ

∂xρ = Λµ
ρ this is

ηρσdx
ρ dxσ = 0 implies ηµνΛ

µ
ρΛ

ν
σ dx

ρ dxσ = 0.

When we were looking for Poincaré invariance, we insisted that the two
sides be equal even if they were not zero, and that gave rise to the pseudo-
orthogonality of Λ, but here the requirement is less restrictive and harder
to interpret. But if we consider only an infinitesimal transformation Λµ

ρ =
δµ
ρ + L ρ

µ , the right hand side is

(

ηρσ + ηµσL
ρ

µ + ηρνL
σ

ν

)

dxρ dxσ = 0 = (Lσρ + Lρσ) dxρ dxσ = 0
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whenever ηρσdx
ρ dxσ = 0. An antisymmetric Lσρ clearly satisfies that, and

gives a Lorentz transformation, but also clearly Lσρ = ησρ or Lµ
ν = δµ

ν sat-
isfies this condition as well. Choosing lightlike dxρ’s with opposite spacelike
components shows a symmetric Lσρ must have L0j = 0, and then we are
left with L00|~a|2 + Lija

iaj = 0 for any ~a, so the only symmetric Lµν which
survives is η.

Notice that this is precisely a change in the scale of the metric, gµν →
h gµν . As a differential operator, this is D = ixµ ∂

∂xµ , which commutes with
the Lorentz transformations Λµ

ν = xµL ν
µ

∂
∂xν , but not with the momenta

Pµ = i ∂
∂xµ , as [D,Pµ] = ∂

∂xµ = iPµ.
Thus we may add D to the Poincaré algebra to get an 11 dimensional

Lie algebra, with Lorentz generators Mµν , translations Pµ, and dilatations
D, and commutation relations

[Mµν ,Mρσ] = iηµρMνσ − iηνρMµσ − iηµσMνρ + iηνσMµρ (18.1)

[Mµν , Pρ] = iηµρPν − iηνρPµ (18.2)

[Pµ, Pν ] = 0 (18.3)

[Pµ, D] = iPµ (18.4)

[Mµν , D] = 0 (18.5)

As differential operators these may be represented by

Mµν = −iηµαx
α ∂

∂xν
(18.6)

Pµ = i
∂

∂xµ
(18.7)

D = ixµ ∂

∂xµ
(18.8)

There is, however, another transformation which preserves the null di-
rections. Consider the inversion I : xµ 7→ yµ = xµ

x2 , for which the Jacobian

matrix
∂yµ

∂xν
= Λµ

ν =
δµ
ν

x2
− 2

xν x
µ

(x2)2
, so

ηµνΛ
µ
ρΛ

ν
σ =

1

(x2)4
ηµν

(

δµ
ρx

2 − 2xµ xρ

) (

δν
σx

2 − 2xν xσ

)

=
1

(x2)4

(

ηρσ(x2)2 − 4xσxρx
2 + 4x2xρ xσ

)

=
ηρσ

(x2)2
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so ηµνΛ
µ
ρΛ

ν
σdx

ρdxσ vanishes whenever ηµνdx
ρ dxσ does.

As D gives an infinitesimal scale change and I inverts, IDI = −D. Note
I acts as a Lorentz scalar, so [I,Mµν ] = 0. But I does not commute with
Pµ, and in fact gives us something new and exciting.

Of course I is highly singular on the light cone, and is certainly not an
infinitesimal transformation, but I2 = 1I, so I times an infinitesimal generator
times I is an infinitesimal generator. Let

Kµ := IPµI. (18.9)

Then e−ibµKµ = Ie−ibµPµI maps

xµ → xµ

x2
→

(

xµ

x2
+ bµ =

xµ + x2bµ

x2

)

→ (xµ + x2bµ) x2

(xµ + x2bµ)2

=
(xµ + x2bµ)

1 + 2bνxν + x2b2
≈ xµ + bν(x2δµ

ν − 2xµxν)

so as a differential operator,

Kν = i(x2δµ
ν − 2xµxν)

∂

∂xµ
. (18.10)

From the definition, we see that

[Kµ, Kν ] = I[Pµ, Pν]I = 0 (18.11)

[Mµν , Kρ] = [Mµν , IPρI] = I[Mµν , Pρ]I = iηµρI Pν I − iηνρI Pµ I

= iηµρKν − iηνρKµ (18.12)

[Kµ, D] = [I Pµ I,D] = I Pµ I D −D I Pµ I = −I PµD I + I D Pµ I

= −I [Pµ, D] I = −iI Pµ I = −iKµ (18.13)

[Kµ, Pν] = 2iηµνD − 2iMµν (18.14)

So we see that by adding in the special conformal transformations we have a
15 dimensional Lie algebra called the conformal symmetry group.

18.1 Maxwell’s Equations

Electromagnetic fields are described by the 4-vector Aµ(xρ) and the field
strength Fµν(x

ρ) which is its antisymmetrized derivative. Under a scale trans-
formation xρ → x′ ρ = λxρ, new fields A′

µ(xρ) = λdAµ(x′ ρ) and F ′

µν(x
ρ) =
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λd+1Fµν(x
′ ρ) satisfy the same Maxwell’s equations with the modified source

term jµ(x
ρ) = λd+2jµ(x′ ρ). Thus we may say that electromagnetism is scale

invariant.
That electromagnetism should be scale invariant should be expected be-

cause the theory does not have any parameters with dimensions of length.
But a hint of a more surprising symmetry is familiar from the method of

images. In electrostatics, if Φ(~x) is a solution of Poisson’s equation ∇2Φ(~x) =
ρ(~x), might we find a solution with Ψ(~x) = (x2)pΦ(~y) where ~y = ~x

x2 ?

∂ψ

∂xi
= 2pxi (x

2)
p−1

Φ(~y) + (x2)
p∂yj

∂xi

∂Φ

∂yj

= 2pxi(x
2)

p−1
Φ(~y) + (x2)

p
(

δij
x2

− 2xixj

x4

)

∂Φ

∂yj

∇2ψ =
(

6p(x2)
p−1

+ 4p(p− 1)x2

i (x
2)

p−2
)

Φ(~y)

+4pxi(x
2)

p−1

(

δij
x2

− 2xixj

x4

)

∂Φ

∂yj

+(x2)
p
(−2xiδij

x4
− 6xj + 2δijxi

x4
+

(2xixj)(4xi)

x6

)

∂Φ

∂yj

+(x2)
p
(

δij
x2

− 2xixj

x4

) (

δik
x2

− 2xixk

x4

)

∂2Φ

∂yj ∂yk

= 2p(2p+ 1)(x2)
p−1

Φ(~y) − 4p(x2)
p−2

xj
∂Φ

∂yj
− 2(x2)

p−2
xj
∂Φ

∂yj

+(x2)
p−2

δjk
∂2Φ

∂yj ∂yk

−→
p=−1/2

(x2)−5/2 ∇2

y Φ(~y).

So we see that a solution to the Laplace equation, transformed by inversion,
is also a solution, and in fact even the Poisson equation with a source ρ is
a solution for a new ρ which transforms as a density ought (with fixed total
charge).

If we consider an arbitrary coordinate transformation

rµ → r′µ(rν), g′µνdr
′µdr′ ν = gµνdr

µdrν

the metric tensor in the new coordinates is

g′µν =
∂xρ

∂x′ µ
∂xσ

∂x′ ν
gρσ.
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If the new g′µν(r
′) has the same form, up to a symmetry of the theory, as

gµν , we can view r → r′ not as a change of variables of a fixed physical system,
but as a map from one system to another under a symmetry transformation.

Now in general gµν , as a symmetric D×D matrix hasD(D+1)/2 indepen-
dent elements, and it is unlikely that an arbitrary transformation will produce
such a change. But in two dimensions, if we treat r = (x, y) ∼ z = x + iy
and r′ = (u, v) ∼ w = u + iv, something very special happens if the map
(x, y) → (u, v) is a complex analytic function z → w, for which the Cauchy-
Riemann conditions

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, and also the inverse

∂x

∂u
=
∂y

∂v
,

∂y

∂u
= −∂x

∂v

hold. Then

g′µν =
∂xρ

∂x′ µ
∂xσ

∂x′ ν
gρσ = A ρ

µ A
σ

ν gρσ,

where A ρ
µ =

∂xρ

∂x′ µ
=

(

a b
−b a

)

with a =
∂x

∂u
, b =

∂x

∂v
. Now if we started off

in Euclidean space, with gµν = δµν , we have g′ = AgAT = AAT = (a2 − b2)1I,
and we see that we have just a dilation, so if our physics is scale invariant,
an arbitrary analytic transformation is a symmetry.

Consider an electrostatics problem of finding the electric potential inside
a container with specified potentials at each point of the wall. Let us consider
this problem in two dimensions, which is physical if we really have a long
cylinder with our 2-D space as cross section and we are looking for solutions
uniform in the third dimension. Then inside the container we have Laplace’s
equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0 = ∇2Φ =

1√
gw

∂

∂wµ
gµν

w

√
gw

∂Φ

∂wν
,

where the first expression assumes cartesian coordinates (x, y), but the second
is good in any coordinates. If gµν

w is proportional to δµν , it is δµν/
√
gw, as

gw := det gw µν . But then we see that, even though gw is a function of ~r, the

term between the derivatives is not, and ∇2Φ = 0 ⇔ ∂2φ
∂u2 + ∂2φ

∂v2 = 0.
So if we solve the electrostatic problem in any region with any boundary

potential specified, and if we can map this region with an analytic function
into another region, we have solved the problem for this new region as well.

This has an application to fluid flow as well. Consider the motion of a
fluid in two dimensions, with a velocity ~V (~r) at each point. An important
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class of flows is that of irrotational flow, for which ~∇× ~V = 0, and so if the
region is simply connected, we may define a velocity potential Φ for which
~V = ~∇Φ. Then if the fluid is also incompressible, so that dρ/dt = 0 and

by continuity ~∇ · ρ~V = 0, we have that Φ again satisfies Laplace’s equation.
So the same tool, finding analytic maps, is useful for fluid flow, at least for
nonviscous irrotational incompressible fluids in two dimensions.

The idea of conformal equivalence has many applications, one dear to me
in particular is in string theory. The states of string theory are described
not as in field theory, with particle paths (Feynman diagrams) in space-
times, but as mappings of the world-sheet, that is the world-surface of a
one-dimensional string traveling through time, into to full (possibly 10 or
26 dimensional) full space-time. Just as the length of a path embedding
in space is independent of the parameterization of that path, the area of
the world sheet may be expressed as an integral over two parameters, but
it is independent of coordinate transformations of those parameters, and
hence conformally invariant. As a particular case, the analogue of a one-loop
Feynman diagram for a closed string is a mapping of a torus into the full
space-time. A torus is a two-dimensional surface so can be parameterized
by two variables wj, but, at least if embedded in 3-D Euclidean space, it is
not a flat surface, so gjk

w 6= δij . A two-dimensional surface may have several
curvatures when considered as embedded in three dimensions, for example,
on the inside of the torus, a path circling the hole is curved outside the
dough of the donut but the circle of each cut you make if you slice it into
three portions is curved around the dough. But these curvatures are not
intrinsic to the surface. For example, a cylindrical surface is flat, in the sense
that you can make it from a flat piece of paper, but a sphere or donut is not.
So the intrinsic curvature of a cylinder is zero, of a sphere is positive, and of
a donut is positive in some places (further from the center) and negative in
others.

But as a two dimensional surface has only one curvature degree of free-
dom, and that can be modified by a position-dependent scale transformation,
any two dimensional surface is conformally equivalent, locally, to a flat sur-
face. Of course globally there may be problems. For the torus, we have
periodic conditions in both parameters, so the conformal mapping is to a
parallelogram with opposite sides identified. A rectangle will not work in
general, because the näıve map from the rectangle into the torus might not
preserve the angles given by the torus’ metric (Note that conformal maps
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keep angles unchanged, being locally just a scale transformation).

So all (simple) toruses are conformally equivalent to some parallelogram,
with some ratio of one side to the other and some specific angle. Considering
the edges as complex numbers, this may be restated as one complex param-
eter τ which is the ratio of one edge to the other. But notice that changing
which edge is in the denominator is equivalent to mapping τ → −1/τ , and
also, because the parallelogram represents periodic boundary conditions, we
may consider this a period lattice, and note that replacing the numerator
edge by the numerator edge plus the denominator edge, (or τ → τ + 1)
simply changes to an equivalent unit cell on the lattice. So our theory is
invariant under the modular group (see homework 4, problem 1).

In field theory we sum over Feynman graphs integrating over positions of
all vertices, using the functional integral interpretation of quantum mechan-
ics. In string theory we should integrate over all conformally inequivalent
toruses, or roughly speaking, over the two dimensional parameter τ . But we
should not be integrating over the equivalent configurations described by the
Modular group, so we need to factor out the modular equivalent configura-
tions. Thus the correct integration over loop parameters for the closed string
is to integrate over one “fundamental region” of the modular group.
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