Physics 618Homework #7Due: Thursday, March 30, 2017 at 4:00 PM

1 [5 pts] [Note: this is Georgi's problem 9.A] If $|\mu\rangle$ is the state of the highest weight ($\mu = \mu^1 + \mu^2$) of the adjoint representation of SU(3), show that the states

and
$$|A\rangle = E_{-\alpha^1} E_{-\alpha^2} |\mu\rangle$$

 $|B\rangle = E_{-\alpha^2} E_{-\alpha^1} |\mu\rangle$

are linearly independent.

Hint: Calculate the matrix elements $\langle A|A\rangle$, $\langle A|B\rangle$, $\langle B|A\rangle$ and $\langle B|B\rangle$. Show that $|A\rangle$ and $|B\rangle$ are linearly dependent if and only if

$$\langle A|A\rangle\langle B|B\rangle = \langle A|B\rangle\langle B|A\rangle.$$

2 [10 pts] Construct P_{τ} and Q_{τ} for the two standard tableaux of the Young Graph \square . Construct $Q_i s_{ij} P_j$, where $s_{12} = s_{21} = (23)$, $s_{11} = s_{22} = \mathbb{1}$. Show that this generates a four-dimensional subspace of the group algebra which is the same as that generated by e_{ij}^{η} , using my solution to Problem 1, Assignment 3.

3 [5 pts] For the \square representation of S_4 , the characters are $\chi(\mathbb{I}) = 2$, $\chi((123)) = -1$, $\chi((12)(34)) = 2$, $\chi((12)) = 0$, $\chi((1234)) = 0$. Find the dimension of the corresponding SU(N) representation by counting independent tensors, and then verify this answer by using the magic counting formula (*i.e.* putting numbers in boxes).