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Note: This is being typed piecemeal in 2012 from handwritten notes in a
red looseleaf marked 617 (1983) but may have originated in 1979

0.1 Introduction

I am, myself, an elementary particle physicist, and my interest in general
relativity has come from the growth of a field of quantum gravity. Because the
gravitational inderactions of reasonably small objects are so weak, quantum
gravity is a field almost entirely divorced from contact with reality in the
form of direct confrontation with experiment.

There are three areas of contact

1. In relativistic quantum mechanics, one usually formulates the physical
quantities in terms of fields. A field is a physical degree of freedom,
or variable, definded at each point of space and time. Classically we
are used to thinking of the electromagnetic fields that way. Quantum
mechanics associates particles with fields, so that E&M becomes the
mechanics of photons, and gravity the mechanics of gravitons. These
particles are then exchanged between other particles. The virtual par-
ticles may have any momentum and energy, and if one then sums up
the contribution of all the low energy virtual particles one can repro-
duce Maxwell’s and Einstein’s laws. But the high energy contributions
formally give divergent integrals, that is, they make the answers infin-
ity times some function of the charge or the gravitational coupling con-
stant. For Maxwell’s theory, one can show that this infinity is unphyical
in the sense that it arises only when writing the effect of interchanging
photons in terms of the charge an electron would have had there been
no photon interchange. Wehn on compares physical observables, there
is no infinite constant. Now this is not true if one asks, for example,
what the gravitational attraction between two electrons is. One finds,
formally, that the force between two electrons nearly at rest is

F ∼ Gm2

r2

(

1 +
Gm2

h̄c
×∞× f(r) + O(Gm2/h̄c)2

)

so ignoring the second term is what any sensible person would do.
Nonetheless the ∞ is bothersome to the pure of heart, and thus at-
tempts at understanding why it must not really be there has led to
much work on the consistancy of quantum gravity.
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2. An intellectual difficulty exists in discussing the quantum mechanics of
a particle near the Schwarzschild radius of a black hole. As we shall see,
classically there is a distance, called the Schwarzschild radius, about
any point mass, within which the gravitational field is so strong that
nothing can get out. Quantum mechanics introduces in uncertainty
in the position of such a particle, and therefore permits it, with some
small probability, to tunnel out of the hole. Extremely interesting work
of Hawking et all has created interest in this overlap region of quantum
mechanics and general relativity.

3. The most recent advances in elementary particle physics have shown or
at least strongly suggest that two of th fours undamental forces of the
universe, the weak and the strong forces, are to be understood in terms
of a gauge field theory. Another of the four forces, electromagnetism,
has long been known to be a gauge theory. Furthermore, it is now fairly
clear that electromagnetism and the weak interactions are really differ-
ent manifestations of a unified gauge theory. Now the last of the four
forces is gravity, and Einstein’s theory is a sort of gauge theory, no in
the same sense as the others, but partially so. This suggests that there
might be a unified theory in which gravitons, photons, the intermediate
vector boson which carry the weak interactions, and the gluons which
carry the strong interactions, are all united into different states, related
by symmetries, of the same particle. Such a theory is also pointed to by
a form of theory dreamt up by particle theorists which considers par-
ticles called fermions (such as electrons and quarks) to be related by a
symmetry to particles called bosons (such as photons, gravitons, etc..)
It is thus conceivable that all of the particles we consider to be fun-
damental ar but different views of the same underlying object. These
theories, known as supergravity, have one amazing extra attaction. In
the expression

F ∼ Gm2

r2

(

1 +
Gm2

h̄c
×∞× f(r) +

(

Gm2/h̄c
)2
g(r) + O(Gm2/h̄c)3

)

,

one finds f(r) = g(r) = 0, eliminating at least the first two ∞’s which
any other field theory of gravity with electrons gives. Needless to say,
supergravity theories have been a subject of a great deal of effort. It is
also how I got seriously interested in gravity.
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We will not be discussing any of these topics in this course, at least not
seriously. We will be developing only the classical theory and we will treat
things other than gravity aas being completely different from gravity. We
will not slight the geometrical interpretation of Einstein’s equation. We will
also discuss the observable tests, both the classical three tests (bending of
light, presession of the perihelion of Mercury, and the gravitational red shift
of light) and others. These tests all involve very small effects in the weak
gravitational fields which we have available in our vacinity, the solar system.
But there are important consequences of the theory where fields are strong.
We shall find that solutions of the equations lead to fantastic predictions,
namely

1. that the universe began with an explosion from an instance when its
dimensions were zero.

2. that it may, depending on how much mass there is in it, collapse again
to a point, burning everything in the universe to an elemental fireball.

3. that there most likely exist smaller objects, black holes, which have
collapsed to a point. Anything getting sufficiently close to such an
object is irrevokably drawn in to the singularity, and no message from
within this radius can ever get out.

4. there may be multiple universes, connected only by such black holes,
where an observer in one universe can find out about events in the
other only after he has fallen into the black hole.

A very different introduction to general relativity is given in the opening
chapters of each of the texts. Please read Chapter 1 on MTW, but not
terribly carefully. If you find that he hasn’t really defined things so you
have a firm grasp on it, don’t worry. This is a general flaw in the book but
especially in the first chapter — we will come bakc to the material of 1.6–1.7
and make sure tho define things. Another brief introduction to history is in
Weinberg Chapter 1 sections 2-3.
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0.2 Special Relativity

I am assuming that you have all learned special relativity in a previous course,
so that this is review.

Physics transpires in spacetime. We may describe an event in spacetime
by a set of coordinates x1, x2, x3, t, but it is the point of spacetime and not
the coordinates which has real physical meaning. A point in spacetime is
called an event, whether or not anything interesting happens there.

An observer is essentially a coordinate system for describing events. Con-
sider a particle (that is, an object of negligile spatial extension). It is asso-
ciated with a locus of events, of the form “particle was at spatial point
~r = (x1, x2, x3) at time t. [Notice the indices upstairs — this will be ex-
plained later). The locus of points is the world line of the particle ~r(t), a
curve through 4 dimensional spacetime.

In special relativity we consider inertial observers in the absence of grav-
ity. They find that free particles, which have no forces acting on them, move
with constant velocity ~v = d~r/dt. That this is possible is a law of physics,
as well as a constraint on permitted coordinate systems.

Another observer, say O′, will
cover spacetime with another coor-
dinate system. The same points, or
events, in spacetime are described
by O as (x1, x2, x3, t) and by O′ as
(x′ 1, x′ 2, x′ 3, t′), and as, at least in
some region of spacetime, the co-
ordinate quadripulates are in 1–1
correspondence with the events, we
have ~x ′ = ~x ′(~x, t), t′ = t′(~x, t).

Pevent

x’

t’
t

x 1

1

Given one inertial observer O, and another inertial observer O′, the re-
quirement that one can have free particles anywhere and that both O and
O′ agree they are free particles means that we may write O′ ’s coordinates
as inhomogeneous linear functions of O’s coordinates. Let us call x0 = ct,
where c is the speed of light. then let greek indices range from 0 to 3.

x′ µ = Λµ
νx

ν + aµ. (1)

Note the summation convention: indices occurring once upstairs and once
downstairs are implicitly summed over. If greek,

∑3
0; if latin,

∑3
1. Einstein

said this was the “greatest contribution of my life”.
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The fundamental postulates which led Einstein to special relativity were

A) The laws of physics are the same in all inertial frames. All frames moving
with uniform velocity (without rotation) with respect to an inertial
frame are inertial.

B) The speed of light is a finite constant, c, with respect to an inertial
observer.

I assume you have gone through the arguments which then lead to the
Lorentz transformation. The usual sequence is

1. Lengths perpendicular to the relative motion are unchanged.

2. clocks appear to run slow by a factor of γ = (1 − v2/c2)
−1/2

for ob-
servers with respect to whom the clock is in motion with velocity v.
The time interval between two events measured by an inertial clock
present at both events is called the proper time

3. The length of measuring rods observed by someone moving with veloc-
ity v parallel to the rod is contracted by γ. the length of a rod in itw
own rest frame (i.e. by an observer at rest with respect to the rod) is
called the proper length.

What emerges from these considerations is that inertial reference frames
are interrelated by Poincaré transformations (1) where

ηµνΛµ
ρΛν

σ = ηρσ, η =








−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







.

η is called the Lorentz metric, and we talk about the lengths of intervals as

(∆τ)2 = ηµν∆xµ∆xν ,

despite the fact that it is not positive definite.
The Poincaré tranformations form a group1 . That is, if g1 : xµ → x′ µ =

Λ µ
1 νx

ν + bµ1 and g2 : x′µ → x′′ µ = Λ µ
2 νx

′ ν + bµ2 , then

g2g1 = g2 ⊙ g1 : x→ x′′

1Define a group: a set G of elements with product rule such that
∀g1 ∈ G, g2 ∈ G, g1g2 ∈ G
∃e ∈ G ∋ ∀g ∈ G, eg = g
∀g1 ∈ G, ∃g2 ∈ G ∋ g2g1 = e.



617: Last Latexed: November 19, 2015 at 11:03 9

is also a Poincaré tranformation. Also every Poincaré transformation has its
inverse.

The Poincaré transformations be thought of as consisting of two types.
One is translations: x′µ = xµ + aµ, which correspond to simply moving
the origin of the coordinate system (in both ~x and t) by −bµ. The second
ingredient is the Lorentz transformation x′µ = Λµ

νx
ν , which leaves the origin

unchanged but “rotates” the xν . We see that

x′µηµνx
′ ν = Λµ

ρx
ρ ηµν Λν

σx
σ = xρηρσx

σ,

so Λ is a transformation which preserves the lengths of xµ. For intervals ∆xµ,
the a terms cancel, so the entire Poincaré group leaves invariant the lengths
of intervals

(∆τ)2 = ηµν∆xµ∆xν . (2)

The Lorentz transformations themselves can be thought of three-dimensionally
in terms of two types:

• rotations in 3 dimensional space, (~x ′)i = Ri
j(~x)j, t′ = t, and

• Boosts with a velocity ~v. In particular for ~v ‖ x, Λ =







γ γv/c 0 0
γv/c γ 0 0

0 0 1 0
0 0 0 1







.

Example: Let O have a coo-coo clock. The n’th coo-cooing is an event
which occurs at ~x = 0, t = n hours. O′ sees the coo-cooing at

t′ = γn

x′ = cγβn = vγn

The successive coo-coo’s occur γ > 1 hours apart and the coo-coo appears
slow. It is also moving at a velocity vγ/γ = v which defines v.

This time dilation of moving clocks is not to be confused with another
effect, the apparent change of freuency of coo-coos due to the time it takes
the light to get to the observer. Let the coo-coo wear a miners cap, pointed
back at O′. The coo=coo pops out at t′ = γn at x′ = vγn, but O′ does
not see this popping out until the light finally reaches him, after travelling a
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time x′/c = βγn back to the origin. Thus the n’th coo-coo becomes visible
at time

t′vis = γn+ βγn =
1 + β√
1 − β2

n =

√

1 + β

1 − β
n

and the frequency of coo-cooing in dimished to

f ′ =
1

∆t′vis
=

√

1 − β

1 + β
f.

This is called the relativistic Doppler shift or red shift, because for visible
light lowering the frequency means shifting the color of the light towards the
red. If β < 0, we have a blue shift. These words are used to describe lowering
and raising the frequency regardless of what type of frequency in involved
(redshifted ultraviolet light may be made blue!)

In nonrelativistic mechanics ~F = md2~x
dt2

. This relation should still be true
in the limit that velocities are small, ~v → 0. We parameterize the world line
of the particle xµ(τ) with the parameter (dτ)2 = −ηµνdx

µdxν = c2dt2 − d~x 2

for massive particles moving slower than the speed of light. Then in the rest
frame of the particle τ = ct, so we may extend the definition of the force to

F µ = mc2
d2xµ

dτ 2
= mc

d

dτ
uµ uµ = c

dxµ

dτ
.

this F will therefore transform under Poincaré transformations exactly like
∆xµ, which makes it a “contravariant vector”

F ′µ = Λµ
νF

ν.

[Better: The 4 velocity is defined by mµ = cdxµ

dτ
. If v ≪ c, ∆τ ≈ cdt, so

uj = vj, u0 ≈ c. In any case, uµηµνu
ν = c2 (−c2dt2 + dx2) /dτ 2 = c2. So

d

dτ
muµηµνu

ν = 0 = uµηµνF
ν .]

Notice in nonrelativistic mechanics there is no analogue of F 0, so when
u = (1, 0, 0, 0), F = (0, ~F ). that is, in the rest frame u · Fuµηµνu

ν = 0, and
the dot product of two vectors is invariant, so it must be true in all frames.

Let P α = mcdxα

dτ
= muα. Then in the absence of a force, P α is a con-

stant. That makes it seem to be the momentum. In fact, for small v,
~P = m~v, P 0 = mc + 1

2
mv2/c = E/c, where E includes not only the

kinetic energy ≈ 1
2
mv2 but also the rest energy mc2.
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Notice that our m is an invariant. It is what is called the “rest mass” as
opposed to the “relativistic mass”, a concept which we will avoid, although
it is often used in freshman courses.

Notice u2 = uµηµνu
ν =

(

c
dxα

dτ

)2

−−c2 (dτ)2

(dτ)2
= −c2.

P 2 = P µηµνP
ν = m2u2 = −m2c2 = −E

2

c2
+ ~p 2.

These c’s are becoming very tedious, and we shall do as all realtivists do, set
c = 1 by appropriate choice of units (measure distance in light-seconds or
time in centimeters). Then E2 = ~p 2 +m2.

Charge currents and densities:
Consider a collection of charged point particles of charges qn and positions

xµ
n(t). The charge density is clearly

ρ(~x, t) =
∑

n

qnδ
3(~x− ~xn(t))

Current is a rate of flow of charge past a given plane, and can be seen to be
the density times velocity for a uniformly moving body, in an argument you
have probably seen several times before in E&M or thermal. Thus

~J(~x, t) =
∑

n

qnδ
3(~x− ~xn(t))~vn.

To make four dimensional, let xµ
n(λ) be the world line in terms of an

arbitray parameter λ. Define

Jµ(xν) =
∫

dλ
∑

n

qnδ
4(xν − xν

n(λ))
dxµ

dλ
.

If λ = t for each world line, clearly this reduces to the previous defini-
tions. Furthermore the definition is independent of the parameterization, for
if x̃(λ̃) = x(λ),

∫

dλ̃ δ4(xν − x̃ν
n(λ̃)) =

∫

dλ δ4(xν − xν
n(λ)).

The Dirac delta δ4 is unchanged under xµ → Λµ
νx

ν , xµ
n → Λµ

νx
ν
n, so J is

a contravariant vector.



12. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

In nonrelativistic physics, we learn the conservation equation in the form

~∇ · ~J +
∂ρ

∂t
= 0, or

∑

µ

∂Jµ

∂xµ
= 0. To verify that,

∂

∂xν
Jµ(xν) =

∫

dλ
∑

n

qn

[

∂

∂xν
δ4(x− xn(λ))

]

dxµ
n

dλ
.

Now
d

dλ
δ4(x− xn(λ)) =

dxµ
n(λ)

dλ

∂

∂xµ
n
δ4(x− xn(λ))

= −dx
µ
n(λ)

dλ

∂

∂xµ
δ4(x− xn(λ))

so

∂

∂xµ
Jµ =

∫

dλ
d

dλ

(
∑

n

qnδ
4(x− xn(λ))

)

=
∑

n

qn δ
4(x− xn(λ))

∣
∣
∣

λ=+∞

λ=−∞
= 0

if we assume that particles start in the infinite past and end in the infinite
future, not now.

In general conserved quantities are equivalent to a divergenceless 4-current,
which is therefore often called a conserved current. The total charge for such
a quantity

Q(t) =
∫

d3x
∣
∣
∣
t=constant

J0(~x, t) satisfies

dQ

dt
=
∫

d3x
∂

∂x0
J0 = −

∫

d3x ~∇ · ~J = −
∫

dS n̂ · ~J

where S is a surface (at infinity) surrounding the volume over which we are
calculating the charge. If it is the total charge, the volume is all of space and
the surface is at infinity. We may assume, usually, that all physical events
are happening with some bounded region, (at least events which affect our

experiments) so we may assume ~J is zero as we go infinitely far away, and
then dQ

dt
= 0, or Q doesn’t change (is conserved).
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0.3 Electromagnetism

Classically and in three dimensions, electromagnetism is described by electric
and magnetic fields interacting with charged particles. The laws of physics
are Maxwell’s equations:

~∇ · ~E = ρ

~∇× ~B =
∂ ~E

∂t
+ ~J

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

and the Lorentz force on a charge:

~F =
d~p

dt
= q

(

~E + ~v × ~B
)

.

Let us frist consider the latter equation acting on a particle with velocity ~v
in the x direction. The rate of change of energy E is just the work done by
the electric field

dE

dt
=
dP 0

dt
= q ~E · ~v = qExv.

The 4-force fµ =
dP µ

dτ
=
dt

dτ

dP µ

dt
= γ

dP µ

dt
, so

f 0 = qExvγ

f 1 = qExγ

f 2 = qEyγ − qBzvγ

f 3 = qEzγ + qByvγ

Let us now view the same situation from the point of view of observer O′

travelling with the particle. Then

Λµ
ν =








γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1
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and

f ′ 1 = qExγ
2 − qExγ

2v2 = qEx(1 − v)γ2 = qEx

f ′ 2 = qEyγ − qBzvγ

f ′ 3 = qEzγ + qByvγ

But the Lorentz law is also valid for O′, who sees the particle as not having
any velocity, so f ′ 1 = qE ′

x, f ′ 2 = qE ′
y, f ′ 3 = qE ′

z, so we conclude that

E ′
x = Ex

E ′
y = Eyγ − Bzvγ

E ′
z = Ezγ +Byvγ

We see that E does not transform like a 4-vector, and in fact that E and B
are mixed up by the Lorentz transformation.

What sort of object could it be? A hint lies in thinking about the cross
product ~v× ~B. In three dimensions we may write (~v× ~B)i = ǫijkvjBk, where
ǫijk is defined as the totally antisymmetric object with ǫi23 = 1, ǫijk = −ǫjik =
−ǫkji. But in four dimensions a cross product in impossible because the
corresponding2 ǫ has 4 indices. So it might be better to define the magnetic
field as having two indices

Bij = ǫijkBk, Bij = −Bji,

and write (~v × ~B)i = Bijvj . B is now an antisymmetric tensor, and

E ′
y = Eyγ − Bxyvγ

E ′
z = Ezγ +Bxzvγ.

Consider a tensor F µν . It transforms the same way Aµ ⊗ Cν does,
i.e. A′µ = Λµ

ρA
ρ, f ′µν = Λµ

ρΛν
σF

ρσ. Then

F ′ 00 ∼ A′ 0 ⊗ C ′ 0 =
(

γA0 − vγA1
)

⊗
(

γC0 − vγC1
)

2Note added 1/31/12: The epsilon with three spatial indices transforms suitably as
a tensor with three indices under rotations, and is yet unchanged. The one with four
space-time indices transforms properly as a contravariant four-index tensor under Lorentz
transformations, yet is unchanged. But the three index epsilon is not invariant under
Lorentz transformations.
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∼ γ2F 00 − vγ2F 01 − vγ2F 10 + v2γ2F 11

F ′ 01 ∼ A′ 0 ⊗ C ′ 1 =
(

γA0 − vγA1
)

⊗
(

γC1 − vγC0
)

∼ γ2F 01 − vγ2
(

F 00 + F 11
)

+ v2γ2F 10

F ′ 02 ∼ A′ 0 ⊗ C ′ 2 =
(

γA0 − vγA1
)

⊗ γC2 ∼ γF 02 − vγF 12

F ′ 03 ∼ A′ 0 ⊗ C ′ 3 =
(

γA0 − vγA1
)

⊗ γC3 ∼ γF 03 − vγF 13

Similarly

F ′10 = γ2F 10 − vγ2
(

F 00 + F 11
)

+ v2γ2F 01

F ′11 = γ2F 11 − vγ2
(

F 01 + F 10
)

+ v2γ2F 00

F ′ 12 = γF 12 − vγF 02

F ′ ij = F ij for i = 2, 3, j = 2, 3

If the tensor is antisymmetric, this simplifies considerably:

F ′ 01 = γ2(1 − v2)F 01 = F 01

F ′ 02 = γF 02 − vγF 12

F ′ 12 = γF 12 − vγF 02

F ′ 23 = F 23

which suggests

F 01 = Ex, F 02 = Ey, F 03 = Ez

F 12 = B12 = Bz, F 13 = B13 = −By F 23 = B23 = Bx

Let us go back to the Lorentz force of general ~v,

f i =
d~p

dτ
= γq

(

~E + ~v × ~B
)i

= q
(

F i0η00u
0 + F ijηjku

k
)

= qF iµηµνu
ν

f 0 =
dP 0

dτ
= γ

dEnergy

dt
= qγ ~E · ~v = qF 0iui = qF 0µηµνu

ν ,

so in general

fµ :=
dP µ

dτ
= qF µνηνρu

ρ.
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These η’s are becoming a nuisance. We will define tensors with lower
indices. First, to make what we say now about special relativity relevant
later as well, call ηµν = gµν sometimes.

Aµ = gµνA
ν for any vector

F ν
µ = gµρF

ρν

F µ
ν = gνρF

µρ

Fµν = gµρgνσF
ρσ

The notation implies the existance of a gµν, with

gαβ = gαµg
µνgνβ =⇒ gµνgνβ = δµ

β, ηµν =








−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







.

Notice AµB
µ = AµBµ, which we could write as a · B.

We can now write fµ =
dP µ

dτ
= qF µνuν .

Remember that u · f = 0? Let’s check:

u · f = q F µν
︸︷︷︸

antisymmetric

on interchange

µ ↔ ν

uµuν
︸ ︷︷ ︸

symmetric

on interchange

µ↔ ν

= 0

where the (anti-) symmetry under µ ↔ ν means it vanishes under the sym-
metric sum on µ and ν.

More notation: ∂µ =
∂

∂xµ
. The index is down because ∂µx

ν = δν
µ.

Well, that’s pretty nice: what about Maxwell’s laws? They involve deriva-
tives of F , so we first evaluate

∂µF
µ0 = −~∇ · ~E = −ρ

∂µF
µi = ∂0E

i + ∂jB
ji =

∂ei

∂t
− ǫijk∂jB

k = −J i

so ∂µF
µν = −Jν

constitutes two of Maxwell’s equations. There remain

~∇ · ~B = 0, ~∇× ~E = −∂
~B

∂t
.
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The first equation involves ∂xBx = ∂xB
yz , so it appears to be totally anti-

symmetric in three indices. We have already discussed that in 4 dimensions
there is no fixed totally antisymmetric tensor in 3 indices but there is one
with 4,

ǫo123 = 1, ǫµνρσ = −ǫνµρσ = −ǫρνµσ = −ǫσνρµ.

[ Note: don’t we want the opposite choice of sign? Maybe not, this agrees
with MTW (3.50e)]

We can then form the object

Zµ = ǫµνρσ∂
νF ρσ where ∂ν = gνβ∂β = ηνβ ∂

∂xβ

The zeroth component is ǫ0ijk∂iF
jk = ǫijk∂iB

jk. Recall Bjk = ǫℓjkBℓ so

ǫijkB
jk = ǫℓjkǫijk

︸ ︷︷ ︸

2δℓ
i

Bℓ = 2Bi, so Z0 = 2∂iBi = 2~∇ · ~B = 0.

The spatial components are

Zi = ǫiµρσ∂
µF ρσ = ǫi0jk∂

0F jk + 2ǫij0k∂jF
0k

= − ∂0
︸︷︷︸

−∂0

ǫijkB
jk

︸ ︷︷ ︸

2Bi

+2ǫijk∂jEk = 2




∂ ~B

∂t
+ ~∇× ~E





i

= 0.

Thus the last two of Maxwell’s equations are

ǫµνρσ∂
νF ρσ.

This is sometimes written in an equivalent way:

∂αF βγ + ∂βF γα + ∂γF αβ = 0.

Summary:

F µν = −F νµ, F 0i = Ei, F ij = ǫijkBk,

Lorentz force: fµ =
dP µ

dτ
= qF µνuν,

Maxwell: ǫµνρσ∂
νF ρσ = 0

∂µF
µν = −Jν

We will return to these equations when we learn to use differential forms.
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0.4 Stress-Energy Tensor

Recall that if a “charge” qn is associated with each particle n, we may define
a current

Jν(x) =
∫

dλ
∑

n

qnδ
4 (x− xn(λ))

dxν
n(λ)

dλ
.

such currents may be written for any property of the particles, not just the
electric charge. In particular, each particle has momentum pµ, so we may
write

T µν(x) =
∫

dλ
∑

n

pµ
nδ

4 (x− xn(λ))
dxν

n(λ)

dλ
.

This object is called the stress-energy tensor. It is independent of the choice
of parameter λ. Two special choices are

1. λ = t, T µν(~x, t) =
∑

n p
µ
nδ

3 (~x− ~xn(t)) dxν

dt
as
∫

dt′δ(t − t′) = 1. Thus
T µj is the flux of momentum pµ across a surface perpendicular to the j
direction, just as ~J is the curent per unit area across a boundary. The
components T µ0 are the density of the µ component of momentum.

2. λ = τ , T µν(x) =
∫

dτ
∑

n δ
4(x − xn(τ))mn

dxµ
n

dτ
dxν

n

dτ
. In this form we see

that T µν is symmetric under µ ↔ ν. We also see that it is a tensor,
transforming like dxµ ⊗ dxν .

Conservation:

∂νT
µν(x) =

∑

n

∫

dλ pµ
n(λ)

dxν
n

dλ

∂

∂xν
δ4 (x− xn(λ))

︸ ︷︷ ︸

− ∂

∂xν
n

δ4 (x− xn(λ))

︸ ︷︷ ︸

− d

dλ
δ4 (x− xn(λ))

= −
∑

n

pµ
n(λ) δ4 (x− xn(λ))

∣
∣
∣

λ=+∞

λ=−∞
+
∑

n

∫

dλδ4 (x− xn(λ))
dpµ

n

dλ
.

The first term is zero for any finite x assuming the particle go off to infinite
x, at least for x0, as λ → ±∞. In the second term we can take λ = t, so it
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reduces to
∑

n

δ3 (~x− ~xn(t))
dpµ

n

dt
︸︷︷︸

dτ
dt

fµ
n

. Thus

∂νT
µν(x) = G(x) =

∑

n

δ3 (~x− ~xn(t))
dτn
dt
fµ

n .

If the particles are free, f = 0. Even if they interact at a point,

∂νT
µν(x) ≃

∑

x=xn

dτn
dt
fµ

n
︸ ︷︷ ︸

F µ= dPµ

dt

=
d

dt

∑

tinyrmparticles
involved

P µ
n .

We expect the total momentum of the colliding particles to be conserved, so
d
dt

∑
P µ

n = 0, and
∂νT

µν(x) = 0.

When is it not zero?

1. If theres is an external field influencing pn

2. if the particles interact at a distance.

Action at a distance would not conserve T µν because momentum is then
transferred out of a region without any physical flow of momentum through
the walls of the region. While this is allowed by Newton’s laws and required
by his formulation of gravity (the forces act instantanteously) this notion vi-
olates relativity. Consider two masses at rest. Move #1 up.
Newton’s law of gravity, or Coulomb’s law, would tell you #1 #2

that particle #2 immediately feels a change in the direction of the force,
hence carrying a signal faster than light can travel. We know that this is
not true. In electromagnetism, other forces, due to the moving charges and
radiating fields, cancel the effect of the change from Coulomb’s law. In fact,
we know it is better to think of one charge as producing the field, changes
in which can propageat only at the velocity of light, and the other charge
sensing the force locally through the field.

We will assume there are no actiona at a distance mechanisms in physics,
and all forces apparently such are in fact conveyed by a field. We have sofar
discussed the energy momentum only of the particles, no including the energy
and momentum of the field.
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To see how to add this in, consider electromagnetism,

∂νT
µν

particles(x) =
∑

x=xn

δ3 (~x− ~xn(t))
dτn
dt

(

fµ
n = qnF

µρ(xn)
dxn ρ

dτ

)

=
∑

n

qnδ
3 (~x− ~xn(t))F µ

ρ(xn)
dxn ρ

dτ
= F µ

ρ(x)Jρ(x).

[Note the order of indices is important, F µ
ρ 6= F µ

ρ .]
What should the stress-energy tensor of teh electromagnetic field itself

be? The energy density is3

T 00 =
1

2

(

E2 +B2
)

=
1

2
F 0iF 0i +

1

4
F ijF ij ,

and the energy flux is

T 0i = Si =
(

~E × ~B
)i

= F 0jF i
j.

This hints that T should be quadratic in F , and depend on nothing else
(except, of course, the constant matrices η and ǫ. Considering Lorentz co-
variance and symmetries, the only possibilities are

T µν = aF µρF ν
ρ + bηµνF ρσFρσ,

but then T 00 = aF 0iF 0i + 2bF 0iF 0i − bF ijFij , so we must have b = −1/4, a+
2b = 1/2, so a = 1,

T µν
Maxwell

= F µρF ν
ρ −

1

4
ηµνF ρσFρσ.

We see that

∂νT
µν
Maxwell = (∂νF

µρ)F ν
ρ − F µρJρ −

1

2
ηµνF ρσ∂νFρσ

= −F µρJρ + Fαβ

[

∂αF µβ − 1

2
∂µF αβ

]

.

Note that only the part of the bracket antisymmetric under α ↔ β survives
contracting with Fαβ , so

[] → 1

2
∂αF βµ − 1

2
∂βF µα − 1

2
∂µF αβ =

1

2

{

∂αF βµ + ∂βF µα + ∂µF αβ
}

= 0

3We are using units with µ0 = ǫ0 = 1.
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by the first Maxwell equation, ǫµνρσ∂
νF ρσ = 0.

Therefore

∂νT
µν
Maxwell

= −F µρJρ, and, if T µν = T µν
particles

+ T µν
Maxwell

, ∂νT
µν = 0 !

Another property carried by a particle is its angular momentum about a
given poin. Ignoring any contributions from intrinsic spin, ~L = ~xn × ~pn. The
3-current of such an object might then be expected to be

Mijk(x) =
∑

n

(

xi
np

j
n − xj

np
i
n

)

δ3 (x− xn)
dxk

n

dt
= xiT jk(x) − xjT ik(x).

To make 4-dimensional we simply define

Mµνρ(x) = xµT νρ(x) − xνT µρ(x),

and

∂ρMµνρ = δµ
ρT

νρ + xµ ∂ρT
νρ

︸ ︷︷ ︸

0

−δν
ρT

µρ − xν ∂ρT
µρ

︸ ︷︷ ︸

0

= T νµ − T µν = 0

as T is symmetric. Thus Mµνρ corresponds to a conserved quantity, assuming
T falls off sufficiently fast at ∞. We have already implied that

J ij(t) =
∫

d3xMij0 = angular momentum.

We also have

J0k(t) =
∫

d3x
(

tT k0 − xkT 00
)

= tpk −
∫

xkT 00d3x.

Note the energy-weighted center of mass: x̄k =

∫

xkT 00d3x

E
, so

Jok = tpk − x̄kE = e
(

x̄k − vkt
)

,

where vk = pk/E. Thus the conservation of J0k, along with ~p and E, indicates
that

x̄k(t) = const + vkt,
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or the center of energy moves with a velocity given by the usual formula in
terms of the total momentum and energy.

M is not truly a tensor because it varies under translations, as does J .
A translation-invariant object may be formed from J , M2 = −pαpα:

Wα := MSα :=
1

2
ǫαβγδJ

βγpδ,

which is the spin. As J and p are conserved if there are no external forces,
so are M and Sα. M is the total mass of the system, which we can see, is
just the integrated energy density in the inertial coordinate system in which
~p = 0. S is the spin. It is invariant under a translation x→ x+ a,

Jµν = sin(x + a)µT ν0 − (x+ a)νT µ0 = Jmuν + aµpν − aνpµ,

MSα → 1

2
ǫαβγδ

(

Jβγpδ + aβpγ + aγpβ
)

pδ = MSα

because ǫαβγδp
γpδ = 0.

Thus S transforms like a vector. It corresponds to the spin of the system,
that is, the angular momentum in the rest frame. We would expect it to
have only three components, and indeed it satisfies te constraint pαSα =
1
2
M−1ǫαβγδJ

βγpαpδ = 0.
Any isolated system has a definite value of the two scalar quantities M2

and W 2 (and, if M2 6= 0, S2 = W 2/M2) which are invariants under Lorentz
transformations. These play a fundamental role in classifying the possible
forms of quantum fields. Because spin is quantized, S2 = n(n + 1)h̄2 after
quantization, and fields must transform as some representation of the Lorentz
group.

We will return to the ideal gas after we discuss T µν as a form. I do
not think we will discuss imperfect fluids and the rest of Chapter 1. (of
Weinberg?)
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0.5 Equivalence Principle

I am anxious to get into general relativity. We will follow the motivation
of Einstein, who was clearly led to his conception of general relativity by
analogy with his success in special relativity. Let us examine the beginning
of his first paper on relativity:

On the Electrodynamics of Moving Bodies
by A. Einstein

It is known that Maxwell’s electrodynamics—as usually under-
stood at the present time—when applied to moving bodies, leads to
asymmetries which do not appear to be inherent in the phenomena.
Take, for example, the reciprocal electrodynamic action of a magnet
and a conductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, whereas the
customary view draws a sharp distinction between the two cases in
which either the one or the other of these bodies is in motion. For if
the magnet is in motion and the con- ductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain definite
energy, producing a current at the places where parts of the conduc-
tor are situated. But if the magnet is stationary and the conductor in
motion, no electric field arises in the neigbbourhood of the magnet.
In the conductor, however, we find an electromotive force, to which in
itself there is no corresponding energy, but which gives rise—assuming
equality of relative motion in the two cases discussed—to electric cur-
rents of the same path and intensity as those produced by the electric
forces in the former case.

Examples of this sort, together with the unsuccessful attempts
to discover any motion of the earth relatively to the “light medium,”
suggest that the phenomena of electrodynamics as well as of mechanics
possess no properties corresponding to the idea of absolute rest.

Now in special relativity we restrict our attention to inertial frames. Con-
sider the mechanics of a physicist in a closed room, which is accelerating at
a constant acceleration a. From the special relativity approach we situate
ourselves, O in an inertial frame with reapect to which he (O′) has velocity
v at a given instant. If we restrict ourselves to an interval over shich v is
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small, we find every object in his room obeys ~Fi = m
d2~xi

dt2
= m~ai. Using his

coordinates we find ~a ′
i = ~ai − ~a, so

m~a ′
i = “~F ′

i
′′ = m~ai −m~a = ~Fi −m~a.

If the observer in the box tries to use Newton’s laws, he looks for the physical
origin of the force ~F ′

i. But the objects which are interacting with the observed

object generate only the force ~Fi, and he must postualte a pseudoforce −m~a
due to no definable other object. If he wishes to consclude that he must
be accelerating, he must exclude the possibility that this force is due to
some other object from outside. Perhaps he reasons: all other forces depend
on positions, charges, and other variables of the material. But this excess
force is always proportional to the mass, exactly as it would be if I were
accelerating. Therefore I conclude that there are no outside influences, but
I am accelerating with respect to an inertial frame.

But would he not observe exactly the same physics within his box if
it was simply sitting on the surface of a large planet? Each object within
the box would experience an extra force mg downwards, so that the situation
wouldbe indestinguiishable from a box accelerating with a = g in the opposite
direction.

Now you should argue that the way real forces are distinguished from
pseudoforces is that they depend on some property of the object, such as
charge, rather than being proportional to the inertial mass. Perhaps the
gravitational mass in W = mgg is not exactly the same as the inertial mass
mI . Any relativity book will tell you of the ingeneous experiments which
attempt to find a variation in mg/mI = 1 + δ and show that |δ| < 10−12. So
the masses appear to be equal. This equaltiy is so accurately known that it
rules out possibilities like leaving out from mg

• the binding energy of an atom, ≈ 10−8 in hydrogen

• the Lamb shift energy, 4 × 10−12 in hydrogen, more in otehr atoms.

So once again we have a situation with two different explanations of the
same observations depending on coordinate system. Once again Einstein
reaise the equivalence under certain conditions to a fundamental postulate,
called the principle of equivalence.

Before we get too carried away, we must examin more carefully waht this
equivalence is. In the box on the surface of the Earth, the objects do not
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really all accelerate the same, because different points are different distances
away from the enter of the Earth, and the accelerations are all pointing
towards the center of the Earth, and are therefore not exactly parallel to
each other. If the coordinates are xi, we will find

d2xi

dτ 2
= ai(xj) = ai(0) + xj ∂ja

i
∣
∣
∣
0

+ . . .

where 0 is within the box, and we will think of the box’s extent (range of ~x ) as
small compared to the variation scale of a (that is, a/∂ja). The ai(0) term is
the same for all particles in the box, and can be considered a pseudoforce due
to accelteration of the box. But the second term, which gives the variation of
the accelerations, is a detectale effect, driving objects towards the floor and
foof and in from the sides of a satellite in free fall. These are called tidal
forces. So we cannot say that all gravitational forces are pseudoforces, but
only that the gravitational force at any particular point may be considered
a pseudoforce.

In the absence of gravity, the equations of motion are fiven by the laws of
special relativity, together with whatever the relevant mechanics of the mat-
ter is. By the equivalence principle, if we can set up a coordinate system in
which there are no gravitational forces, then physics obeys special relativistic
laws in that coordinate system. In other coordinate systems, we must expect
physics to be wierd.

We all knw that if you try to describe mechanics from an accelerating
frame there are strange forces. For example, in a rotating system there are
centrifugal and Coriolus forces. But there is worse.

Consider4 a rotating table, and let observers moving with the table at-

4Reference: Feynman, Lectures in Physics II, chapter 42.
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tempt to draw a triangle. They draw
straight lines from A to B, etc.. What
does straight line mean? The shortest dis-
tance between two points. So they draw
tow paths as shown. The red line looks
straight to us, but when they go to com-
pare the lengths, they find it is longer.
Why? According to us, not rotating, their
metersticks shrink increasingly as they go
away from the center, especially when held
tangentially, so they are measuring the red
line with shrunken metersticks, and more

A

B

C

of them fit along that line than along the one that appears curved to us. If
they do the same between B and C, and between C and A, and measure
the angles, they will find the sum of the angles of their triangle is less than
180◦! Geometry is not Euclidian or Lorentz when observed in an accelerating
coordinate system.

Let us return to our box which may be accelerating through empty space
or may be sitting on the surface of a large planet, with no way for us to tell
which. A photon comes through a one-way window anc crosses the box. If
we are an accelerating spaceship, in an inertial observer looking in sees the
photon moving in a straight line, as would any other free particle, while our
box accelerates upwards with acceleration g. Therefore to an observer with
coordinates fixed in teh box, the photon falls with the same accelertation g
as all other particles. This requires that light is bent in a gravitational field,
so that, for example, star light passign the sun should be bent inwards, and
stars observed on opposite sides of the sun during a solar eclipse appeart to
be further appart than usual. We will return to this later, as if we did the
calculation no we would get the wrong answer by a factor of two.

Another conclusion we may reach is even more startling, though not quite
so simple. Suppose we have two clocks, one at the top of the spaceship-box
and one at the bottom, a distance h apart. Let us observe with an inertial
observer O, at a time when the velocity of the ship is small. If the bottom
clock emits a flash of light when v = 0, it will not be received by the top
clock until time h/c = h, at which time the clock will be moving away from
the source at v = ah. The light will therefore be red-shifted by

ftop = fbottom

√

1 − ah

1 + ah
≈ fbottom (1 − ah) .
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Similarly if the clock on top emits a flash when v = 0, the bottom one
will receive it at time h, at which time it is moving twoards the source at
velocity ah, and the light is blue-shifted

fbottom = ftop

√

1 + ah

1 − ah
≈ ftop (1 + ah) .

This agrees with the previous equation, and both observrs wagree that the
frequency of ticks of the bottom clock is lower than that of the top, or the
higher clock is running faster!

Now suppose our box is not a spaceship but the Empire State Building.
Einstein says physics is the same, and the executives at the top are ageing
faster than the receptionist on the first floor, at a rate 1 + gh = 1 + gh/c2

faster, which makes them about 1 µs older for each year they worked.

Although this effect is probably not the correct ex-
planation of their gray hair, it does lead us to an
interesting conclusion: spacetime as measured on
a planet’s surface is not Minkowskian!. If the re-
ceptionist emits light rays one second apart, each
travels up the Minkowski diagram at 45◦, forming
a parallelogram, but TE > TR.

t

h

E

T
R

T

This was presaged by our discussion of the turntable: accelerated ob-
servers do not see Minkowskian geometry. Any hope for Minkowskian ge-
ometry can only be for an inertial observer who feels no gravity. Given any
particular evernt we can alsways find such an observer by letting hime free-
fall, but in his coordinate system gvarity vanishes only in the neighborhood of
the chosen event. There is no way to set up a global coordinate system which
in inertial, so there is no way to treat the global geometry as Minkowskian.
We are goint to have to learn how to talk about curved spacetime.
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0.6 Manifolds

We have seen that the spacetime in which physics acts is a curved space
which can be considered flat (Minkowskian) in a small neighborhood at each
point but cannot be considered flat globally5. In each region, I can find a
coordinate system xµ which is in 1 − 1 correspondence witht he spacetime
in that region. Such a 1 − 1 map from a region of spacetimes to an open
subset of R

4 is called a chart. There is not necessarily a single chart which
can cover the whole spacetime.

Example: The surface of a sphere. About any point, say Piscataway, I
can erect a two-dimensional coordinate system and plot the corresponding
point on my chart. Charts prepared by AAA and the like are usually called
maps, but in math a map is a more general concept, so we revert to the
older word chart. No chart can be prepared to cover the whole surface of
the Earth.

Two coordinate systems set up to cover overlapping regions in spacetime
produce a 1 − 1 map between the two charts in R

4. If these maps are con-
tinuous with continuous n’th derivatives it is called a C(n). If it is C(n) for
every n,m it is called C(∞).

A set M, in our case spacetime, together with a set of charts, called an
atlas is called a C(n) manifold it

• every point of M is included in an open set in some chart.

• For every pair of charts with overlapping domains, the map induced
between the images of teh overlapping region is a C(n) map.

Sometimes the set M itslef is called the manifold, but the existance of the
atlas is necessary.

Example: The surface of the world and the Rand McNally World Atlas.
A simpler atlas would consist of a chart of everything above 10◦ S latitude to-
gether with a chart of everythin in the southern hemisphere. [I am assuming
there are no overhanging cliffs in the world].

To do physics, of course, one needs more than spacetime. One also needs
physical quantities defined over spacetime (fields).

5Refs: more formal— Chapter 2 of Hawking and Ellis, Large Scale Structure of Space-

Time. Less formal— Misner Thorne and Wheeler, chapter 2.



617: Last Latexed: November 19, 2015 at 11:03 29

A map from spacetime into the reals, for
example, the temperature in a continuous
medium, induces a map from the charts
(actually the range of the charts) into the
reals. The physics is in the function f , but
that is hard to write down. fC is a function
R

4 → R, easy to work with, but chart de-
pendent. A different chart will correspond
to a different fC′, even though the physics,
f is the same

C−1

C−1

timespace−

C

R

f

f
c

(x  )µ

f
c

= f

chart

We now want to include vectors. We are used to thinking of a vector as
an object unchanged by translations, and being a vector in a mathematical
sense, that is, taking linear combinations, etc..

In special relativity the difference of two points is a vector. But what
does the difference of two points in a curved spacetime mean? I can subtract
in R

n, but not in M.

Consider three points, A, B, and D, in M,
which map into three points in in R

n. If
∆x = B′ − A′ and D′ − A′ = 2∆x, does
that mean D − A is twice B − A? Not at
all, for such a statement depends on the
chart C as well as any physical properties
of the events A, B, and D. and D′ −A′ =
2(B′ − A′) will not be true for some other
chart, or choice of coordinates.

A
B

D

A’
B’

D’

C

Thus we cannot define vectors as finite differences of positions on a mani-
fold. But if we consider infinitesimal neighborhoods this problem disappears.
At a given point X, we may associate a vector with a direction and a mag-
nitude which relate to a curve passing through the point at a given rate in
terms of some parameter. The way to formalize this is to treat f vector as an
operator on all differentiable functions, which maps the function into its di-
rectional derivative. Thus if the curve is charted as xµ(λ), the corresponding

vector v(f) =
∂xµ

∂λ

∂fC

∂xµ
, with summation over µ understood. Notice that

a) The action of v is independent of the chart.

b) v is a simple mathematical entity written without indices (though we
have evaluated it with coordinates).
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c) Given a particular chart C, ∂/∂xµ = eµ is a set of four different vectors
(not four components of one vector) which form a basis of the vector
space at the point X. Any other vector u = uµeµ, where uµ = ∂xµ/∂λ
are th compenents of the vector u in the basis eµ. u is independent of
the chart chosen, but the uµ are not.

It is important to keep in mind that in our definition, so far at least, the
vector is defined at a particular point X of the manifold. Its tail is tied down,
and there is no way (yet) to compare vectors defined at different points. The
(possibly four-dimensional) vector space is called the tangent space at the
point X.

Example: Consider a particle sensing a scalar field, for example temper-
ature. As the particle passes the point X, at what rate does its ambient
temperature change? Consider a chart. Then xµ(τ) is the image of its posi-
tion as a function of its proper time τ , and

dT

dτ
=
∂xµ

∂τ

∂TC

∂xµ
=
∂xµ

∂τ
eµ(T )

is the rate of change of temperature. This is true for any other scalar field
as well, so we have an operator

u: scalar field → proper time derivative of the field felt by a particle.

u is the 4-velocity of the particle! Its four components on a given chart is
what we used to call a 4-vector.

Mathematicians tell us, given two vector spaces, how to define the tensor
product, so there is nothing new in things like u⊗v. Such objects are called
contravariant tensors. Physically it will only be useful to consider such tensor
products of vectors defined at the same point.

Another mathematical concept which is straightforward is illustrated by
the metric tensor. How do we generalize the concept

(∆τ)2 = (∆x1)2 + (∆x2)2 + (∆x3)2 − (∆t)2?

As we have already understood the velocity, we reconsider the equation in
the form uαuβηαβ = 1. This must be generalized, for if η always represents
the numerical matrix diag(−1, 1, 1, 1), uαuβηαβ has a value which depends
on the chart. We need some machine which maps two vectors into the reals.
Such a machine is called a covariant rank two tensor

g : u⊗ v → R.



617: Last Latexed: November 19, 2015 at 11:03 31

Suppose we have a Minkowskian chart, that is, a coordinate system in which
uαuβηαβ = 1. Then in this chart I can define g acting on any two vectors
v = vµeµ and w = wµeµ by

g(v,w) = vµwνηµν .

this defines a map from any two vectors in the tangent space at X into the
reals. Given any other chart C ′, we will still find g(v,w) to be bilinear, but
with changed coefficients,

g(v,w) = v′µw′ νg′µν ,

with the new metric g′µν in general not the fixed η′µν .
If u is a vector defined at X, and f is a function on M (at least in a

neighborhood of X), then u(f) is a real number which depends on

• u

• the rate of change of the function f at the point X.

We may view u(f) as a map, determined by f and X, from the tangent
space Tx of all vectors at X into the reals. Obviously not all of f is used in
determining this map — it is independent of the actual value of f(X) and
of the values of f at other positions except insofar as they affect th rate of
change at X. The map is clearly linear on Tx. Let us abstract from this the
concept of a 1-form at X: a linear map from TX into the reals.

The space of 1-forms is made into a vector space in the obvious way,
(p1 + p2)(u) = p1(u) + p2(u). It is not terribly big, for any 1-form p(u) =
p(uµ(eµ) = uµp(eµ) =: uµpµ, so the form is determined by the four numbers
pµ in the particular chart we used to define (eµ). The space of 1-forms at X
is therefore four dimensional. To write out a basis of this space, define ωµ

to be a set of four distinct 1-forms with ωµ(eν) = δµ
ν . Then p = pµω

µ for an
arbitrary 1-form p, where pµ are the coefficients and ωµ the basis 1-forms.
The basis {ωµ} is said to be dual to the basis eµ of Tx.

Example: Define the 1-form df by df(u) = u(f) = uµ∂µf . Then using
df = (df)µω

µ, df(u) = (df)νω
ν(uµeµ) = (df)νu

ν , so (df)ν = ∂νf . In this
chart we are therefore encouraged to call our basis 1-forms ωµ = dxµ, so
df = (∂µf)dxµ, which is the usual expression for the differential.

We sometimes write a 1-form q action on a vector v as

〈q,v〉 := q(v).
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Vectors have been defined in terms of linear maps from the set of functions
on M into the reals, defined at a point P . 1-forms have been defined as maps
from the space TP of these vectors into the reals. The vectors and the forms
are not dependent on the chart, but the bases we used to describe the set
of these vectors and forms are. Suppose we have charts C and C ′ with
xµ = C(P ), x′µ = C ′(P ). For an arbitrary scalar function on the manifold
f(P ), we have fC(xµ) = fC′(x′ µ). Let u = uµeµ = u′µe′

µ be an arbitray
vector at P . Then u(f) = uµeµ(f) = uµ∂µfC |x = u′µe′

µ(f) = u′µ∂′µf(C
′)|x′.

But ∂µfC(x) =
∂x′ ν

∂xµ

∣
∣
∣
∣
∣
x

∂fC′

∂x′ ν

∣
∣
∣
∣
∣
x′

by the chain rule, so

u(f) = uµ ∂x
′ ν

∂xµ

∣
∣
∣
∣
∣
x

∂′νfC′ |x′ = u′ ν ∂′νfC′|x′

from which we conclude

u′ ν =
∂x′ ν

∂xµ
uµ.

We say that the components of a vector transform as a contravariant vector.
Example: if x′µ = Λµ

νx
ν + aµ, u′ ν = Λν

µu
µ, so a vector has components

which are also contravariant vectors in our old language.
Let q be a 1-form. Then

q(u) = qµω
µ(uνeν) = qνu

ν

= q′µω
′µ(u′ νe′

ν) = q′νu
′ ν = q′ν

∂x′ µ

∂xν
uν .

This must be true for any uν so qν = q′µ
∂x′ µ

∂xν
.

Note that the chain rule guarantees
∂x′ µ

∂xν

∂xν

∂x′ ρ
= δµ

ρ , so we may invert

this relation to get

q′µ =
∂xν

∂x′ ρ
qν .

Example. The inverse Lorentz transformation for x in terms of x′xµ =
(

Λ−1
)µ

ν
(x′ ν − aν), so q′ν =

(

Λ−1
)ν

µ
qν .

From ηµνΛµ
ρΛν

σ = ηρσ, ηµνΛµ
ρ = ηρσ (Λ−1)

σ
ν , or (Λ−1)

σ
ν = ηµνΛµ

ρη
ρσ =:

Λ σ
ν , q′µ = Λ ν

µ′ qν , as expected for a covariant vector.
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Thus the compenents of a 1-form transform under change of basis, as a
covariant vector.

A physical example: The vave function for a particle of 4-momentum
p is f(x) ∝ eipµxµ

, whether the particle is a quantum mechanical marble,
an electron, ore a photon. Let u be the 4-velocity of an observer. Then the
vave funtion at the observer’s position varies with an angular frequency 〈p, u〉
which is therefore the energy of the particle.

An example from Misner, Thorne and Wheeler: To find the red shift of
a photon emitted from point E

on the rim of a turntable, and absorbed at A.

2πfE = p · uE , 2πfA = p · uA

In the inertial of the center, p · uA = −p0u0
A +

|~p||vecuA| sin θ, p · uE = −p0u0
E + |~p||vecuE| sin θ,

and |~uE| = ωrγ = |~uA|, u0
E = u0

A, so p·uE = p·uA

and
fA = fE =⇒ there is no red shift!

E

A θθ

uA

A hidden assumption: The one form p at the event of emission E is not,
a priori, related to the one form at A. Without defining it, we have made
use of the idea that p is constant throughout the relevant part of spacetime.

A collection of 1-forms defined at each point in spacetime is called a 1-
form field. A collection of of tangent vectors ∈ TP for each P is called a
vector field.

In special relativity we know that there is not a real diffeerence between
co- and contra-variant vectors — we must simply change some signs. Thus
we expect a 1-form and a vector to be similarly related. The relator is g, the
metric. Recall that g is a machine that maps two tangent vectors at P into
the reals,

g : TP × TP → R, u× v 7→ g(u,v).

Given a tangent vector u, the map

U : TP → R, v 7→ U(v) := g(u,v)

is a linear map from TP → R, so it is a 1-form. If we have a Minkowskian
chart, g = ηαβdx

α ⊗ dxβ, U(v) = ηαβu
αvβ, and U = ηαβu

αdxβ , or Uβ =
ηαβu

α, which is the expected relation in a Minkowski coordinate system. But
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we may relate the 1-form U to the vector u in any other chart as well. There,
as g = gαβdx

α ⊗ dxβ , we have

Uβ = gαβu
α. (arbitrary frame)

Recall that we first made a 1-form by considering the differential of a
scalar field. Let us see what happens if we take the differential of a 1-form.
Let f = fµdx

µ be a 1-form field defined over spacetime. Let us attempt to
define an object

Df = Dµνdx
ν ⊗ dxµ with Dµν :=

∂fµ

∂xν
.

Let us evaluate Df using another chart with coordinates x′µ. Recall f ′
µ =

∂xν

∂x′ ν
, so

(

Df
)

C′

= D
′
µνdx

′ ν ⊗ dx′ µ with

D
′
µν =

∂

∂x′ ν
f ′

µ =
∂

∂x′ ν
∂xρ

∂x′ µ
fρ =

∂2xρ

∂x′ ν∂x′ µ
fρ +

∂xσ

∂x′ ν
∂xρ

∂x′ µ
Dρσ

dx′µ ⊗ dx′ ν =
∂x′ µ

∂xρ

∂x′ ν

∂xσ
dxρ ⊗ dxσ, so

(

Df
)

C′

=
(

Df
)

C
+

∂2xρ

∂x′ ν∂x′ µ
fρdx

′ µ ⊗ dx′ ν .

The last term is not zero, so we see that we have not obtained an object
which is chart invariant — it is not physical.

We could eliminate this miserable form if we defined our rank two tensor
Df to be antisymmetric. We then call it df and write

df = (df)µν dxν ⊗ dxµ,

where (df)µν =
∂fµ

∂xν
− ∂fν

∂xµ
.

Our chart change then gives

(df)C′ = (df)C +

(

∂2xρ

∂x′ ν∂x′ µ
− ∂2xρ

∂x′ µ∂x′ ν

)

︸ ︷︷ ︸

=0 by antisymmetry

fρdx
′ µ ⊗ dx′ ν ,
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so df is a chart-independent real physical object.
We may also write df = ∂νfµ (dxν ⊗ dxµ − dxµ ⊗ dxν) and introduce

the wedge product notation

α ∧ β := α ⊗ β − β ⊗ α

for 1-forms α and β, so

df = ∂νfµdx
ν ∧ dxµ.

These objects are called 2-forms.
We can keep going: An n form can be made from n 1-forms αi by taking

the antisymmetric product

α1 ∧ α2 ∧ . . . ∧ αn =
∑

σ∈Sn

(−1)σασ(1) ⊗ ασ(2) ⊗ . . .⊗ ασ(n),

where Sn is the set of permutations on n elements (here 1, 2, . . . n), and the
sign (−1)σ is +1 if σ is built of an even number of transpositions and −1 if
from an odd number. .

But remember that there are really only four independent 1-forms at a
point in spacetime, so antisymmetrizing in more than 4 indices gives 0.

Another description of an n form is with coefficients

ω =
1

n!
ωµ1µ2...µndx

µ1 ∧ dxµ2 ∧ . . . ∧ dxµn

where the coefficient ωµ1µ2...µn is antisymmetric in all its indices, and the 1/n!
cancels the fact that each dxµ1 ⊗ . . .⊗dxµn occurs n! times in the sum. Thus
it can’t have more indices than there are dimensions. So for M spacetime, a
4-form is the highest we can go.

We have already defined the d operator on a scalar function (a 0-form)
and on a 1-form F = fνdx

ν :

df = (∂µf)dxµ

dF = (∂µfν) dxµ ∧ dxν = (dfν) ∧ dxν

More generally if φ =
1

n!
φµ1···µndx

µ1 ∧ · · · ∧ dxµn ,

dφ =
1

n!
(∂νφµ1···µn)dxν ∧ dxµ1 ∧ · · · ∧ dxµn .
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An example: Suppose we have a two form F = Fµνdx
µ ⊗dxν with Fµν =

−Fνµ,

dF = d
(

1

2
Fµνdx

µ ∧ dxν
)

=
1

2
∂ρFµνdx

ρ ∧ dxµ ∧ dxν

=
1

2
(∂αFβγ + ∂βFγα + ∂γFαβ)dxρ ⊗ dxµ ⊗ dxν .

What would dF = 0 say? ∂αFβγ + ∂βFγα + ∂γFαβ = 0, which is just the way
we wrote two of Maxwell’s equations! Thus we see that the field strengths of
Maxwell is naturally implemented by a 2-form

F =
1

2
Fµν dxµ ∧ dxν

which is why Fµν is antisymmetric. And it is a closed two form

dF = 0.

An n-form ω is defined to be closed if dω = 0.
Consider an n form ω for n = 0, 1, . . .:

ω =
1

n!
ωµ1µ2...µndx

µ1 ∧ dxµ2 ∧ . . . ∧ dxµn

dω =
1

n!
(∂ν1ωµ1µ2...µn) dxν1 ∧ dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn

ddω =
1

n!









∂ν2∂ν1
︸ ︷︷ ︸

symmetric
ν1↔ν2

ωµ1µ2...µn









dxν2 ∧ dxν1

︸ ︷︷ ︸

antisymmetric
ν1↔ν2

∧dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn = 0.

so ddω = 0 for any n-form ω, and dω is always a closed (n+ 1)-form.
An n-form which can be written as df for some (n − 1)-form f is called

exact. So every exact n-form is closed.
Theorem (Poincaré): Every closed n-form defined on a simply connected
convex region is exact.

Consequence 1: If F is the electromagnetic field strength 2-form, there
exists a 1-form A = Aµdx

µ such that F = dA,

or
1

2
Fµνdx

µ ∧ dxν = ∂µAνdx
µ ∧ dxν

or Fµνdx
µ ⊗ dxν = (∂µAν − ∂νAµ)dxµ ⊗ dxν

or Fµν = ∂µAν − ∂νAµ.
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Thus the existence of the electromagnetic “vector potential” is a consequence
of an extremely general theorem.

Consequence 2: A is not unique. For another A′ = A + dΛ, with Λ an
arbitrary function, gives the same F:

F′ = dA′ = dA+ ddΛ = dA = F.

Written in terms of components,

A′
µ = Aµ + ∂µΛ.

This is known as a local gauge transformation.

A 2-form is designed to have vectors plugged in. If a particle of charge q
has 4-velocity u, what is

qF( ,u) = qFµν (dxµ ⊗ dxν) ( ,u) = qFµνdx
µ (dxν(u)) = qFµνu

νdxµ = fµdx
µ

where fµ is the Lorentz force. Thus the 1-form
f = fµdx

µ = F( ,u) is the Lorentz force law.
We have now discussed, as forms or tangent vectors, all of the objects

we were concerned with in special relativity, (uµ, fµ, Fµν , ηµν), except for
Jµ and ǫµνρσ. If we have a Minkowskian chart, we know that defining

ǫµνρσ =sign
(

0 1 2 3
µ ν ρ σ

)

is a rank four tensor under proper Lorentz trans-

formations, even though its components do not change. That is to say,

ǫ := ǫµνρσ dxµ ⊗ dxν ⊗ dxρ ⊗ dxσ

is a 4-form, and in a Minkowskian chart, ǫ0123 = 1, but this statement is not
chart independent. Recall from homework that

ǫ′µνρσ = det

(

∂xα

∂x′ β

)

ǫµνρσ,

so that if xµ are Minkowskian coordinates, ǫ′0123 = det

(

∂xα

∂x′ β

)

. This is not 1

in general, and ǫ′µνρσ may no longer be considered a numerical tensor. This,
of course, is also true of gµν . For g we have

g′µν =
∂xα

∂x′ µ
∂xβ

∂x′ ν
ηαβ
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with xµ Minkowskian. Notice that, considered as a matrix,

g′ := det
(

−g′µν

)

=

[

det

(

∂xα

∂x′ β

)]2

det (ηαβ) =

[

det

(

∂xα

∂x′ β

)]2

,

so ǫ′0123 =
√
g′ in any coordinate system.

Duality: We have already seen that the metric g permits making a 1-form
out of a vector. We will insist always that gαβ be invertible (g 6= 0) so we
can do the reverse — make a vector out of a 1-form. One need only raise the
indices of the components by using gµν which is the inverse matrix to gµν ,
i.e. gµνgνρ = δµ

ρ .
One can also raise the indices on an n form to make an n-vector, that

is, a totally antisymmetric rank n contravariant tensor. This can then be
plugged into some of the slots of the ǫ 4-form to generate a (4 − n)-form.
This process is called Hodge duality, duality in a different sense than the
word was used before to relate 1-forms and vectors.

It is easier to discuss in terms of components. First consider a 1-form
J = Jµdx

µ. Its dual is

∗J =
1

3!
ǫµαβγJ

µdxα ∧ dxβ ∧ dxγ

which is clearly a 3-form.

From the two form F =
1

2
Fµνdx

µ ∧ dxν we find the dual

∗F =
1

2!

1

2
ǫµναβF

µνdxα ∧ dxβ .

From the 3-form K =
1

3!
Kµνρdx

µ ∧ dxν ∧ dxρ we find the dual

∗K =
1

3!1!
ǫµνραK

µνρdxα.

From the 4-form G =
1

4!
Gµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ we find the dual

∗G =
1

4!
ǫµνρσGµνρσ

which is a 0-form or ordinary function.



617: Last Latexed: November 19, 2015 at 11:03 39

Finally, from a 0-form or ordinary function f , we have

∗f = fǫ =
1

4!
ǫµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ.

Note that ∗ ∗ ω = (−1)nω if ω is an n-form. 6

If F is the electromagnetic field strength tensor (Faraday according to
MTW) then

∗F =
1

4
ǫ γδ
αβ Fγδdx

α ∧ dxβ =
1

2
(∗F )αβ dxα ∧ dxβ ,

(∗F )αβ =








0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0







.

∗F is called Maxwell in MTW, but I don’t believe this (or Faraday is com-
monly accepted notation.

What is d ∗F?

1

2
∂ρ (∗F )µν dxρ ∧ dxµ ∧ dxν =

1

4
ǫ αβ
µν ∂ρFαβ dxρ ∧ dxµ ∧ dxν .

That doesn’t seem too familiar, so let us take its Hodge dual,

∗ (d ∗F) = ǫµνρσ
1

4
ǫµναβ

︸ ︷︷ ︸

− 1
2(δα

ρ δβ
σ−δα

σ δβ
ρ )

∂ρFαβ dxσ

= −
(

1

2
∂αFασ − 1

2
∂βFσβ

)

dxσ

= −∂αFασ dxσ = +Jσdx
σ.

This, together with dF = 0, are Maxwell’s equations. Define J = Jσdx
σ to

be the current density 1-form. then ∗ (d ∗F) = J, so d ∗F = d∗J. So we have

6In n dimensions,

∗ (dxµ1 ∧ . . . ∧ dxµp) =
1

(n − p)!
ǫµ1µ2...µp

µp+1...µn
dxµp+1 ∧ . . . ∧ dxµm .

Applying the dual twice to a p form, ∗ ∗ ω = (−1)p(n−p)ω.
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now rewritten the equations of electromagnetism as

dF = 0

d ∗F = ∗J

f = F(·,u)

The scalar field φ(x):

dφ = (∂µφ)dxµ. To make a second derivative, we can’t just take ddφ,
because that is identically zero. But we can take d ∗dφ, which should be a
4-form, as ∗dφ is a 3-form

∗dφ =
1

3!
ǫµαβγ∂

µφdxα ∧ dxβ ∧ dxγ , so

d ∗dφ =
1

3!
ǫµαβγ ∂ν∂

µφdxν ∧ dxα ∧ dxβ ∧ dxγ

Note: doesn’t this assume ǫµαβγ is a constant?

It is easier to understand the dual of this 4-form,

∗d ∗dφ =
1

3!
ǫναβγǫµαβγ
︸ ︷︷ ︸

3!δν
µ

∂ν∂
µφ = −∂2φ.
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0.7 Integration of Forms

Suppose we have a k-dimensional smooth “surface” S in M, parameterized
by coordinates (u1, · · · , uk). We define the integral of a k-form

ω(k) =
∑

i1<...<ik

ωi1...ikdxi1 ∧ · · · ∧ dxik (3)

over S by

∫

S
ω(k) =

∫
∑

i1,i2,...,ik

ωi1...ik(x(u))

(
k∏

ℓ=1

∂xiℓ

∂uℓ

)

du1 du2 · · · duk. (4)

We had better give some examples. For k = 1, the “surface” is actually
a path Γ : u 7→ x(u), and

∫

Γ

∑

ωidxi =
∫ umax

umin

∑

ωi(x(u))
∂xi

∂u
du,

which seems obvious. In vector notation this is
∫

Γ
~A · d~r, the path integral of

the vector ~A.
For k = 2,

∫

S
ω(2) =

∫

Bij
∂xi

∂u

∂xj

∂v
du dv.

In three dimensions, the parallelogram
which is the image of the rectangle
[u, u+du]× [v, v+dv] has edges (∂~x/∂u)du
and (∂~x/∂v)dv, which has an area equal to
the magnitude of

“d~S” =

(

∂~x

∂u
× ∂~x

∂v

)

du dv

u

v

and a normal in the direction of “d~S”. Writing Bij in terms of the corre-

sponding vector ~B, Bij = ǫijkBk, so

∫

S
ω(2) =

∫

S
ǫijkBk

(

∂~x

∂u

)

i

(

∂~x

∂v

)

j

du dv

=
∫

S
Bk

(

∂~x

∂u
× ∂~x

∂v

)

k

du dv =
∫

S

~B · d~S,
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so
∫

ω(2) gives the flux of ~B through the surface.
Similarly for k = 3 in three dimensions,

∑

ǫijk

(

∂~x

∂u

)

i

(

∂~x

∂v

)

j

(

∂~x

∂w

)

k

du dv dw

is the volume of the parallelopiped which is the image of [u, u+ du]× [v, v+
dv] × [w,w + dw]. As ωijk = ω123 ǫijk, this is exactly what appears:

∫

ω(3) =
∫
∑

ǫijk ω123
∂xi

∂u

∂xj

∂v

∂xk

∂w
dudvdw =

∫

ω123(x) dV.

Notice that we have only defined the integration of k-forms over sub-
manifolds of dimension k, not over other-dimensional submanifolds. These
are the only integrals which have coordinate invariant meanings. Because
the k-form is chart dependent (including that the coefficients are covariant)
the expression (4) is independent of the chart C (with coordinates xµ). But
it is also independent of the parameters used to parameterize the surface.
Suppose ρj({u}), j = 1, . . . k is an alternate parameterization of S, with
x̃µ(ρ(u)) = xµ(u). Using it to define the integral,

∫

S(ρ)
ω(k) =

∫
∑

i1,i2,...,ik

ωi1...ik(x̃(ρ))

[
k∏

ℓ=1

∂xiℓ

∂ρℓ

]

dρ1 dρ2 · · · dρk

=
∫

∑

i1,i2,...,ik

ωi1...ik(x̃(ρ))





k∏

ℓ=1




∑

jℓ

∂xiℓ

∂ujℓ

∂ujℓ

∂ρℓ







 dρ1 dρ2 · · · dρk

=
∫

∑

i1,i2,...,ik

ωi1...ik(x̃(ρ))

(
k∏

ℓ=1

∂xiℓ

∂uℓ

)

du1 du2 · · · duk.

where the antisymmetry of ω insures that the ∂u
∂ρ

’s combine, as a Jacobian,
with the

∏
dρ to form

∏
du.

Thus the integral of a k-form over a k dimensional surface does not depend
on how the surface is coordinatized.

Notice that we have defined this integration even on a Manifold that has
no metric g. But this only permits integration of k-forms over k-dimensional
surfaces, so in particular a function f can only be evaluated at points, not
integrated. If we do have a metric, however, we can define on a n dimensional
manifold the Levi-Civita n-form ǫ, and then integrate the Hodge dual ∗f of
f over the full manifold,

∫

M
∗f =

∫

f(xµ) 1
n!
ǫµ1µ2···µndx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµn .
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We state7 a marvelous theorem, special cases of which you have seen often
before, known as Stokes’ Theorem. Let C be a k-dimensional submanifold
of M, with ∂C its boundary. Let ω be a (k−1)-form. Then Stokes’ theorem
says

∫

C
dω =

∫

∂C
ω. (5)

This elegant jewel is actually familiar in several contexts in three dimen-
sions.

If k = 2, C is a surface, usually called S, bounded by a closed path
Γ = ∂S. If ω is a 1-form associated with ~A, then

∫

Γ ω =
∫

Γ
~A · d~ℓ. Now dω is

the 2-form ∼ ~∇× ~A, and
∫

S dω =
∫

S

(

~∇× ~A
)

·d~S, so we see that this Stokes’
theorem includes the one we first learned by that name. But it also includes
other possibilities. We can try k = 3, where C = V is a volume with surface
S = ∂V . Then if ω ∼ ~B is a two form,

∫

S ω =
∫

S
~B · d~S, while dω ∼ ~∇· ~B, so

∫

V dω =
∫ ~∇ · ~BdV , so here Stokes’ general theorem gives Gauss’s theorem.

Finally, we could consider k = 1, C = Γ, which has a boundary ∂C consisting
of two points, say A and B. Our 0-form ω = f is a function, and Stokes’
theorem gives8

∫

Γ df = f(B)− f(A), the “fundamental theorem of calculus”.

7For a proof and for a more precise explanation of its meaning, we refer the reader to
the mathematical literature. In particular Rudin, Principles of Mathematical Analysis and
Buck, Advanced Calculus are advanced calculus texts which give elementary discussions
in Euclidean 3-dimensional space. A more general treatment is (possibly???) given in
Spivak, Differential Geometry.

8Note that there is a direction associated with the boundary, which is induced by a
direction associated with C itself. This gives an ambiguity in what we have stated, for
example how the direction of an open surface induces a direction on the closed loop which
bounds it. Changing this direction would clearly reverse the sign of

∫
~A · d~ℓ. We have not

worried about this ambiguity, but we cannot avoid noticing the appearence of the sign in
this last example.
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0.8 Vierbeins, Connections

[Ref: Weinberg Part 2 Chapter 3]
Physics is described locally by fields, forms, and the metric tensor. At

any point, the principle of equivalence tells us it is possible to choose a
Minkowskian coordinate system with g = η. Let us set up a chart with
coordinates ξα near the point P which is Minkowskian in the following sense:

• A free object at P has no acceleration in terms of the ξ coordinates,
d2ξα/dτ 2 = 0

• g = dξα ⊗ dξβηαβ at P.

[Note: the coordinates ξα are specially chosen to match the point P, and
more properly should be called ξα

P .] Einstein assures us that we can write
down physics locally, at P , in the coordinate system ξ, and it is the same
as it would be were their no gravity.

The coordinates ξα
P(P ′) of the point P ′ have no decent properties except

for P ′ at or near P. In fact, we could have chosen a new chart ξα
P ′ centered at

P ′ to have things look Minkowskian there. Let us simultaneously use another
chart C = {xµ}. Then

dξα = V α
µdx

µ, where V α
µ =

∂ξα

∂xµ

∣
∣
∣
∣
∣
P
.

The object V α
µ(P) is called the Vierbein.

The components of g in C are

g = gµνdx
µ ⊗ dxν = ηαβdξ

α ⊗ dξβ = ηαβV
α
µV

β
νdξ

α ⊗ dξβ

so gµν = ηαβV
α
µV

β
ν .

The vierbein therefore determines the metric tensor.
What is the equation of motion?

d

dτ

dξα

dτ
= 0 =

d

dτ

(

V α
µ

dxµ

dτ

)

= V α
µ,ν

dxν

dτ

dxµ

dτ
+ V α

µ

d2xµ

dτ 2
= 0

V is the Jacobian of a nonsingular change of variables. Its inverse is therefore

(

V −1
) α

µ
=
∂xµ

∂ξα
, as

(

V −1
) α

µ
V α

ν =
∂xµ

∂ξα
.
∂ξα

∂xν
= δµ

ν .
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Thus
d2xµ

dτ 2
+
(

V −1
)ρ

α
V α

µ,ν
︸ ︷︷ ︸

Γρ
µν

dxν

dτ

dxµ

dτ
= 0

where we have defined the affine connection

Γρ
µν :=

(

V −1
)ρ

α
V α

µ,ν =
∂xρ

∂ξα

∂2ξα

∂xµ∂xν
(6)

Thus we have the equation of motion

d2xµ

dτ 2
+ Γρ

µν

dxν

dτ

dxµ

dτ
= 0 (7)

This is also known as the geodesic equation, not only in general relativity
but also on a Riemannian manifold.

Let us examine the relation of the affine connection to the metric. Note
that as Γρ

µν :=
(

V −1
)ρ

α
V α

µ,ν , V α
µ,ν = V α

ρΓρ
µν , so

gµν,ρ =
∂

∂xρ

(

V α
µV

β
νηαβ

)

=
(

V α
µ,ρV

β
ν + V α

µV
β
ν,ρ

)

ηαβ

=
(

Γσ
µρV

α
σV

β
ν + Γσ

νρV
α
σµV

β
σ

)

ηαβ = Γσ
µρgσν + Γσ

νρgσµ

Note we have assumed ηαβ,ρ = 0 ! So ξ is more than just an orthonormal set
of coordinates at P, it is also one with no acceleration without forces.

The vierbein is not a tensor, because it refers to two different charts. Γ
has only indices which refer to the chart C, but nonetheless it is not a tensor.
We shall see later how it changes under chart change. Nonetheless, let us
raise and lower its indices with g, so

gµν,ρ = Γνµρ + Γµνρ, but also Γσµν = Γσνµ.

Add the same with µ↔ ρ and subtract ν ↔ ρ,

gρν,µ = Γνρµ + Γρνµ = Γνµρ + Γρνµ

−gµρ,ν = −Γρµν − Γµρν = −Γρνµ − Γµνρ

so, adding and dividing by two,

1

2
(gµν,ρ + gρν,µ − gµρ,ν) = Γνµρ
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and Γσ
µρ = gσν Γνµρ =

1

2
gσν (gµν,ρ + gρν,µ − gµρ,ν).

In flat space, the path of a free particle is the path which maximizes
proper time (twin paradox). That means we maximize

∫ B
A dτ , holding the

endpoints fixed. τ is an invariant, so we expect

S =
∫ B

A
dτ =

∫ B

A

√

−dx
µ

dλ

dxν

dλ
gµν(x(λ)) dλ

to be maximized along the actual classical path of the particle. We can
calculate the path by varying xµ(λ) → xµ(λ) + δxµ(λ), and insist that

0 = δS =
∫ B

A

−gµν
dxµ

dλ

d

dλ
δxν − 1

2

dxµ

dλ

dxµ

dλ

∂gµν

∂xρ
δxρ

√
= dτ/dλ

dλ

=
∫
(

−gµν
dxµ

dτ

d

dτ
δxν − 1

2

dxµ

dτ

dxµ

dτ

∂gµν

∂xρ
δxρ

)

(dτ/dλ)2

dτ/dλ
dλ

= −gµν
dxµ

dτ
δxν |BA
︸ ︷︷ ︸

0 at A and B

+
∫
{

gµν
d2xµ

dτ 2
+
dxµ

dτ
gµν,ρ

dxρ

dτ
− 1

2

dxµ

dτ

dxρ

dτ
gµρ,ν

}

δxν dτ,

so

gµν
d2xµ

dτ 2
+
(

gµν,ρ −
1

2
gµρ,ν

)
dxµ

dτ

dxρ

dτ
︸ ︷︷ ︸

symmetric in
µ↔ρ

= 0

Thus
d2xµ

dτ 2
+

1

2
gµν (gσν,ρ + gρν,σ − gσρ,ν)

dxσ

dτ

dxρ

dτ
= 0,

d2xµ

dτ 2
+ Γµ

σρ

dxσ

dτ

dxρ

dτ
= 0 Geodesic Equation.

It appears that we have derived four equations of motion from stationarity
under the four variations δxµ(λ). This is not really true. Consider the
variation

xµ(λ) → xµ(λ) + δxµ(λ) = xµ(λ+ δλ) = xµ(λ′).

The change in parameterization of th path does not affect
∫

dτ , which is
geometrical, for any xµ(λ), physical or not. Thus δS = 0 in an identity, not



617: Last Latexed: November 19, 2015 at 11:03 47

an equation of motion, for δxµ(λ) ∝ dxµ/dλ. This can be verified directly by
multiplying the equation of motion by gνµdx

ν/dτ :

gνµ
dxν

dτ

d2xµ

dτ 2
+ Γµνρ

dxµ

dτ

dxσ

dτ

dxρ

dτ

=
1

2

d

dτ







dxν

dτ

dxµ

dτ
gµν

︸ ︷︷ ︸

1







+
(

Γµνρ −
1

2
gµν,ρ

)

︸ ︷︷ ︸

1
2
gµρ,ν− 1

2
gνρ,µ

dxµ

dτ

dxν

dτ

dxρ

dτ
= 0,

as 1 is a constant and by symmetry under µ ↔ ν.
Why are we only getting 3 equations from our four unknowns? Why is the

action refusing to tell us equations which determine from initial conditions
the subsequent motion xµ(λ)? Because there is a real arbitrariness. The path
Γ = {xµ(λ)} is physical, but the parameterization has no physical meaning,
so the physics cannot tell you how far to go along the path Γ for a given
∆λ. This is an example of a local gauge invariance — not all of the variables
used in writing the possible motions are physical. One way of handling
such problems is to choose the undetermined parameter by a supplementary
condition, called a choice of gauge. For example, we might require λ = τ . In
electromagnetism there is a similar problem with Aµ. The gauge invariant
action cannot determine Aµ because A′

µ = Aµ +∂µΛ(~x, t) is just as good, and
Λ can be chosen to give no contribution at the initial time but make changes
later. In electromagnetism we sometimes impose the Lorenz gauge condition
∂µA

µ = 0. This provides the necessary fourth equation to determine Aµ in
the future from initial conditions.

There is another approach, which is to screw up the action so that it
is no longer gauge invariant. For example, adding a term (∂µA

µ)2 to the
lagrangian density. This will produce the usual equations plus the equation
∂µA

µ = 0, so it is equivalent to imposing a supplementary condition from
the start. Similarly, if we write

S ′ =
∫

−gµν
dxµ

dλ

dxν

dλ
dλ,

leaving out the square root, we find the geodesic equation with d/dλ instead
of d/dτ . Multiplying by gνµdx

ν/dλ tells us λ ∝ τ .
It should be said, however, that all of these approaches “fix a gauge” in

an arbitrary fashion and therefore remove some of the symmetry inherent in
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the physics. One must not treat an equation like ∂µA
µ as a fundamental law

of physics, as one can the equation d∗F = ∗J, for example.
Having derived the equation which determines how otherwise free parti-

cles move in a gravitational field, let us compare with Newton’s laws for a
test particle in the field of a single heavy body at rest. We must limit our at-
tention to slow particles and weak gravitational fields, for otherwise Newton
can’t be right. Furthermore, it should be possible to choose our coordinates
so that gµν = ηµν + hµν where hµν ≪ 1, so Γ ≪ 1. Then to first order in h,

Γ and v, t = τ , uµ = (1, ~v), and the geodesic equation and ~F = m~a = −~∇φ
give

d2xj

dt2
= −Γj

00 = −∂jφ,

where φ is Newton’s gravitional potential φ = −GM/r. Assume gµν is inde-
pendent of time. Then

Γj
00 ≈

1

2
(gj0,0 + g0j,0 − g00,j) = −1

2
g00,j

so g00 = 1 − 2φ. This is the Newtonian approximation.
Consider now a stationary metric, gµν(~x) independent of t, not necessarily

weak. Consider two clocks at rest in this field. Each clock is guaranteed
by the manufacturer to tick once each second of proper time regardless of
acceleration (no grandfather clocks allowed). In terms of our coordinate
system

(∆τ)2 = −gµν∆xµ ∆xν = −g00(~x) (∆t)2

so the coordiante interval between ticks is

(∆t)A = [−g00(xA)]−1/2 , (∆t)B = [−g00(xB)]−1/2 .

If A sends light signals to B each time his clock ticks, the time differences
treceived − temitted will be the same for each pulse, so B can measure on his own
clock the period between ticks of A’s clock. The answer is

T ′ =
∆tA
∆tB

=

[

g00(xB)

g00(xA)

]1/2

and the frequency of the light emitted is therefore shifted by

f ′ = f

[

g00(xA)

g00(xB)

]1/2

.
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We have derived this for an arbitrary stationary metric. In the Newtonian
limit

f ′

f
=

[

1 + 2φA

1 + 2φB

] 1
2

≈ 1 + (φA − φB) = 1 +GM
[

1

rB
− 1

rA

]

.

At the surface of the Sun φ = −2.12 × 10−6, so for an observer at ∞, the
Sun’s light is red shifted by

∆f/f = +φsurface = −2.12 × 10−6.

Note that f ′/f = 1+φA−φB agrees with our calculation based on equivalence
to a rocket ship.

This gravitational red shift is best tested by dropping photons down a
shaft at Harvard. General relativity has been tested thereby to an accuracy
of about 1%.

Read chapter 3 of Weinberg, which we have just finished.
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0.9 Parallel Transport

Consider a manifold with a vector or a 1-form defined at each point. such an
object might be a physical field, which would have field equations involving
derivatives of this vector quantity. How can we tell on a curved manifold
whether a vector V = V µ(xA)∂µ at the point A is the same or different from
V at B, V µ(xB)∂µ? The näıve thing would be if V µ(xA) = V µ(xB), But the
V µ’s are chart dependent and such a statement of equality of components
at different points can be true for one chart and not another, and has no
real meaning for the manifold. It is also the wrong requirement even for the
simple example of a two dimensional Euclidean space in polar coordinates,
for a vector in the ρ direction for φ = 0 is completely different from one of
the same magnitude in the ρ direction at φ = π/2.

This is true even for A and B very near each other. By definition, all
charts agree on whether two directions differ by a finite angle as A→ B, but
not on the rate. Thus lim

xB→xA
V µ(xB) is well defined, but not ∂µV

µ(xB), in

the sense that it is chart-dependent.

Thus an arbitrary manifold has no means of comparing vectors at different
points, unless there is an extra structure placed on the manifold telling how
to move a coordinate system from point A to a nearby point B.

Let the equivalence principle help us out, by giving us a chart C ′ = {ξµ}
of a neighborhood of the event A which is cartesian and inertial at A.
Then g′αβ(xA) = ηαβ and g′αβ,γ(xA) = 0. A vector V = V µ∂µ = V ′µ∂′µ
defined at A is parallel transported an infinitesimal distance from A by
holding its coordinates fixed, because that’s how one parallel transports
in flat space cartesian coordinates. Thus if we have a vector field V and
we ask what the “physical change” in V is along the ∂′α direction, it is

V(B)−V(A)transported ≈ ∆ξα
(

∂′αV
′β
)

∂′β. Let us define that to be ∆ξα times
the covariant derivative Dα′ in the ∆ξα direction. With ∆xµ the corre-
sponding change in chart C’s coordinates, we have

∆xµDµV = ∆ξα
(

∂′αV
′β
)

∂′β

= ∆xµ ∂ξ
α

∂xµ
∂′α

(

V ν ∂ξ
β

∂xν

)

∂xρ

∂ξβ
∂ρ

or DµV = ∂µ

(

V ν ∂ξ
β

∂xν

)

∂xρ

∂ξβ
∂ρ
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=










∂µV
ρ +

∂2ξβ

∂xµ∂xν

∂xρ

∂ξβ
︸ ︷︷ ︸

Γρ
νµ

V ν










∂ρ

Thus the components of the vector DµV = (Dµv)ρ ∂ρ are

(DµV )ρ = ∂µV
ρ + Γρ

νµV
ν .

Again, Dµ is known as the covariant dervivative.
The chart C was an arbitrary chart. In some other chart with coordinates

x′µ, would we have (DµV)ρ behave like a suitable tensor, with one covariant
and one contravariant index? That is, is

(

D′
µV

)ρ′ ?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
(DνV)σ

The left hand side is

(Dµ′V)ρ′ = ∂′µV
′ ρ + Γ′ ρ

µκV
′κ

=
∂xν

∂x′ µ
∂ν

(

∂x′ ρ

∂xσ
V σ

)

︸ ︷︷ ︸

∂xν

∂x′µ
∂x′ ρ

∂xσ ∂νV σ+( ∂
∂x′ µ

∂x′ ρ

∂xλ V λ)

+Γ′ ρ
µκ

∂x′ κ

∂xλ
V λ

The right hand side is

∂x′ ρ

∂xσ

∂xν

∂x′ µ

(

∂νV
σ + Γσ

νλV
λ
)

.

We find covariance if it is true that

Γ′ ρ
µκ

?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
∂xλ

∂x′ κ
Γσ

νλ −
∂xλ

∂x′ κ
∂

∂x′ µ
∂x′ ρ

∂xλ
.

Note
∂

∂x′ µ

(

∂xλ

∂x′ κ
∂x′ ρ

∂xλ

)

=
∂

∂x′ µ
δρ
κ = 0

=
∂2xλ

∂x′ µ∂x′ κ
∂x′ ρ

∂xλ
+
∂xλ

∂x′ ρ
∂

∂x′ µ
∂x′ ρ

∂xλ



52. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

The second term matches our above questionable identity, which becomes

Γ′ ρ
µκ

?
=
∂x′ ρ

∂xσ

∂xν

∂x′ µ
∂xλ

∂x′ κ
Γσ

νλ +
∂x′ κ

∂xλ

∂2xλ

∂x′ µ∂x′ κ
.

But this is true, as verified from the definition

Γλ
µν =

∂xλ

∂ξα

∂2ξα

∂xµ∂xν

in Weinberg 4.5.2.
We have gone to great lengths to define the covariant derivative of a

vector, which is nontrivial because the basis vectors may change from point
to point. There were no such difficulties for a scalar, as the scalar did not
require basis vectors. Thus Dµf = ∂µf . For forms we must again worry
about a basis, but we can take a shortcut if we use Leibniz product rule,
Dµ(AB) = Dµ(A)B + ADµ(B) which must hold for any derivative (and in
particular it holds for ∂/∂ξα). Let A = Aµdx

µ be a 1-form which we wish
to covariantly differentiate. With V and arbitrary vector,

Dµ〈A||V〉 = ∂µ〈A||V〉 = 〈DµA||V〉 + 〈A||DµV〉
= ∂µ (AνV

ν) = = (DµA)ν V
ν + Aρ

(

∂µV
ρ + Γρ

νµV
ν
)

.

Thus
(DµA)ν = ∂µAν − Γρ

νµAρ.

The rules for an arbitrary tensor can be found by considering tensor
products of vectors and 1-forms. We find

(DµT )ν1...νr

ρ1...ρs
= ∂µT

ν1...νr
ρ1...ρs

+
r∑

i=1

Γνi
αµT

ν1...νi−1ανi+1...νr
ρ1...ρs

−
s∑

i=1

Γα
ρiµ
T ν1...νr

ρ1...ρi−1αρi+1...ρs
.

The relationship between forms and vectors we just preserved in our defi-
nition of D on a form has nothing to do with the metric. But another connec-
tion we would like to have is that parallel transport of a pair of vectors should
not change their inner product g(u,v). Thus ∂µg(u,v) = Dµg(u,v) = 0 if
Dµu = 0 and Dµv = 0. But

Dµg(u,v) = (Dµg) (u, v) + g (Dµu, v) + g (u,Dµv) ,
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and the last two terms are zero, so we must have

Dµg = 0.

To check this, evaluate

(Dµg)ρσ = gρσ,µ − Γλ
ρµgλσ − Γλ

σµgλρ

by our general relation for a tensor, so

(Dµg)ρσ = gρσ,µ − Γσρµ − Γρσµ = 0,

which is true (see notes p 46), so all is well.
Note: As Dg = 0, D commutes with raising and lowering indices! That

is important, e.g.

gµν




Dρ A

︸︷︷︸

1−form






ν

=




Dρ A

︸︷︷︸

vector






µ

.

Our definition of covariant derivative assumed the vector or scalar or 1-
form was a field defined in the neighborhood of the event. Sometimes there
are quantities only defined on, for example, a path. The velocity of a particle
as it moves along its world-line is an example. u is simply not defined except
along the path, and neither is, say, the spin of the particle S. But we can
define a convariant derivative along the path as it would be were S defined
everywhere
(
D

Dλ
S
)ν

= “

(

dxµ

dλ
DµS

)ν

” = “
dxµ

dλ

(

∂Sν

∂xµ
+ Γν

ρµS
ρ

)

” =
dSν

dλ
+Γν

ρµS
ρdx

µ

dλ
.

The last expression is well-defned entirely along the path of the particle, even
though the expressions in quotes are not.

Recall from homework ~∇f ∼ df and doesn’t require any knowledge of
g. Similarly ~∇ × ~A ∼ dA doesn’t depend on g or Γ. But ~∇ · ~A = ∗d ∗ A,
and the ∗ requires the use of ǫµνρσ =

√
g [µνρσ], where it is [µνρσ], not ǫµνρσ,

which is a constant (±1 or 0). Thus if A = Aµdx
µ,,

∗ A =
1

3!
Aµ√g[µρσκ]dxρ ∧ dxσ ∧ dxκ

d ∗ A =
1

3!
∂ν (Aµ√g) [µρσκ]dxν ∧ dxρ ∧ dxσ ∧ dxκ

and ∗ d ∗ A =
1

3!
∂ν (Aµ√g) g−1/2[νρσκ][µρσκ] = g−1/2∂ν (Aµ√g)
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That is perhaps not what you expected (∂µA
µ ?). But it is the covariant

derivative of the vector A, contracted to form a divergence,

DµA
µ = ∂µA

µ + Γµ
νµA

ν ,

as Γµ
νµ =

1

2
gµρ (gνρ,µ + gµρ,ν − gνµ,ρ) =

1

2
gµρgµρ,ν =

1

2
TrG−1∂νG

=
1

2
Tr ∂ν ln detG = ∂ν ln

(

g1/2
)

= g−1/2∂ν g
1/2

(where the matrix G = g·· .)
Thus DµA

µ = g−1/2∂ν (Aµ√g).
If we used Dµ for the divergence, why not for the curl? We did, but it

made no difference,

~∇× ~A ∼ DµAν −DνAµ = ∂µAν − ∂νAµ −




Γρ

νµ − Γρ
µν

︸ ︷︷ ︸

0




Aρ,

so the Γ dependence falls out of the antisymmetric part of the covariant
derivative of a 1-form. Define the tensor product of two 1-forms and therein
lies (if A is a 1-form)

dxµ ⊗DµA = dxµ ⊗ dxν
(

∂µAν − Γρ
νµAρ

)

.

The antisymmetric part is just dA, but the symmetric part is dependent on
the connection coefficients. Similarly dF ∼ D[µFnuρ], and the Γ drops out.

Restatement:
Let us suppose we have a physical system involving a field ψ which takes

values in a vector space, so that in some particular basis we have ψa, a =
1, · · · , N . Let us also suppose that the phuysics is invariant under a group of
transformations o fthe basis, or under

ψ′ a =
(

e−iθL
)a

b
ψb (8)

made independently at each spacetime point. then if any derivatives are
to enter the theory at all, there must be some additional structure. Let us
assume a kind of equivalence principle: at any one point P of spacetime it is
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possible to find a set of bases ea(x) such that, at P, the physics is described
by a Lagrangian L(ψ, ∂µψ) with no other fields (analogous to the laws of
special relativity with no gravitational fields). Then in any other basis, the
Lagrangian must be described by

L(ψ′, D′
µψ

′)

where the relationship between the bases (8) also holds for

D′
µψ

′ =
(

(e−iθL
)a

b
∂µψ

b =
(

e−iθL
)a

b
∂µ

(

eiθLψ′
)b

= ∂µψ
′ a +

(

e−iθL
)a

b
∂µ

(

eiθL
)b

c
ψ′ c,

or Dµ = 1I∂µ + e−iθL∂µe
iθL is a matrix acting on the vector space of the ψ’s.

Define
Aa

c µ = e−iθL ∂µ e
iθL = Aµ.

Note that although eiθL connects two bases at the same point, the one for
which the “inertial” frame has no A, one bases that inertial frame’s and the
other an arbitrary, general basis, the A refers only to the general basis, but
in a sense at neighboring points. It defines parallel transport in the vector
space of the ψ’s.
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0.10 Electromagnetism in Flat Space

In quantum field theory, a charged particle is described by a complex field
ψ(x). Only the magnitude of the field has direct physical interpretation, so
therei is no inherent meaning to what is the “real direction” for ψ. It might be
easier to think of ψ as a two component real vector ψ = ψ1 +iψ2. All objects,
e.g. L, Jµ, etc., which one could write in therms of ψ∗ψ can be rewritten as

contractions of 2-vectors, (ψ1, ψ2)
(
ψ1

ψ2

)

. There is no physics to which is the 1

and whcih is the 2 direction, and under a rotation Ψ =
(
ψ1

ψ2

)

→ Ψ′ = eiφσy Ψ,

such dot products don’t change and the physics is invariant under this global
gauge transformation.

Suppose, however, we require physics to be expressible in terms which
permit a rotation in the (1, 2) coordinate system independently at each point
in space-time. Then we have the same trouble defining the derivative that
we had in gravity. ψ1(A) − ψ1(B) has no intrinsic meaning, and we must
define a parallel transport of the basis vectors on (1, 2) space.

Suppose it is possible, at a point, to choose a coordinate system such

that DµΨa = ∂µΨa, a = 1, 2. In some other basis Ψ′ a =
(

e−iφ(x)σy

)a

b
Ψb,

and, because DµΨ should rotate like Ψ,

(DµΨ)′ a =
(

e−iφ(x)σy

)a

b
(DµΨ)b

=
(

e−iφ(x)σy

)a

b
∂µ

[(

eiφ(x)σy

)b

c
Ψ′ c

]

= ∂µΨ′a + (∂µφ) (iσy)a
c Ψ′ c

=: ∂µΨ′a + Aa
c µΨ′ c.

The A field is seen to be analogous to the connection coefficient Γ. In our
simple E-M system A is always proportional to (iσy)a

c, wo we generally write

Aa
c µ =: q(iσy)a

cAµ

where q is the electric charge of the particle.
Start with a Lagrangian L1(Ψ, ∂µΨ) which does not have this “local gauge

invariance”, but is invariant under a global transformation Ψ → e−icσyΨ, for
c a constant. Then let

L = L1(Ψ, DµΨ)
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be a different (A field dependent) lagrangian. It will describe the interactions
of the charges with the electromagnetic field via the “principle of minimal
substitution”

∂µ → ∂µ + q(iσy)Aµ.

Another way to write this is to define the matrix Aµ := g(iσy)Aµ, and
then the covariant derivative is a matrix operator Dµ = 1I∂µ + Aµ. This is
usually written in the complex form,

∂µ → Dµ = ∂µ − iqAµ.

The new L is invariant under Ψ → e−iσyφ(x)Ψ provided we simultaneously
make the gauge transform

Aµ → Aµ − i

q
σy ∂µφ.

Consider as an example

L1 =
1

2
Φ∗

,µΦ,µ − m2

2
Φ∗Φ =

∑

a

{

1

2
φa

,µφ
a ,µ − m2

2
ΦaΦa

}

.

The Euler-Lagrange equations
∂L1

∂φa
= ∂µ

∂L1

∂φa
,µ

gives

∂µ∂
µφa +m2φa = 0

which is the Klein-Gordon equation for a scalar field. The lagrangian L1 is
invariant under δφa = (iσy)a

b φ
b and the corresponding Noether conserved

current is

Jµ =
∂L1

∂φa
,µ

δφa = φa ,µ(−iσy)a
bφ

b,

which is conserved as ∂µJ
µ = −m2φ(−iσy)φ + φa ,µ(−iσy)a

bφ
b
,µ = 0 by the

antisymmetry9 of σy.
Now consider the modified lagrangian

L(φ,A) =
1

2
(Dµφ)a (Dµφ)a − m2

2
ΦaΦa

9Note moving the a index up or down makes no difference.
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which gives the equation of motion DµD
µΦ +m2Φ = 0 and the current Jµ =

(Dµφ)a (−iσy)a
bφ

b. Jµ is now unchanged by a local gauge transformation, so
it is a scalar with respect to the gauge group. (i.e. independent of the two
dimensional rotations). Thus

∂µJ
µ = DµJ

µ = (DµD
µφ) (−iσy)φ+Dµφ(−iσy)Dµφ

= −m2φ(−iσy)φ+Dµφ(−iσy)Dµφ = 0,

just as before. But we now have the electromagnetic field included.

Consider a little rectangle and an electromag-
netic field Aµ throughout the region, as well as a
two component field Φ. Suppose I parallel trans-
port Φ from A to B to C to D and then back to A.
Will I get the same Φ that I started with? Let’s
try.

∆xµDµΦ ∼ ∆xµ (∂µΦ + Aµ(E)Φ) = 0

so ∂µΦ = −AµΦ.

∆x ∆x

∆x

∆xA B

CD

E

FH

µ

ν ν

µ

Now ΦB − ΦA = −∆xµAµ(E)Φ(E) + O
(

(∆x)3
)

.

Similarly ΦC − ΦB = −∆xνAν(F )Φ(F ),

ΦD − ΦC = ∆xµAν(G)Φ(G),

Φ′
A − ΦD = ∆xνAν(H)Φ(H).

Let’s evaluate this to second order in ∆’s:

Φ′
A − ΦA = ∆xµ AµΦ|GE − ∆xν AνΦ|FH

≈ ∆xµ ∆xν [∂ν (AµΦ) − ∂µ (AνΦ)]

= −∆xµ ∆xν {(∂µAν − ∂νAµ) Φ + AµAνΦ − AνAµΦ}
= −∆xµ ∆xν FµνΦ,

where
Fµν := ∂µAν − ∂νAµ + AµAν − AνAµ.

We do not come back to what we started. This is true in the (1, 2) gauge
space for Φ in electromagnetism, and it is true for a 4-vector in curved space
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as well. I have actually been more careful than you might have expected,
because the A’s are matrices so one should be careful to keep their orders
intact. For electromagnetism it doesn’t matter, as all the A’s are propor-
tional to σy and so they commute, and Fµν = ∂µAν − ∂νAµ. But we might
think of a more general cse, where we would have the A’s a nontrivial set of
matrices, and F too, with

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ] = [Dµ, Dν ] .

This is Yang-Mills field theory, also known as non-Abelian gauge field theory.
Special cases include

(a) the Salam-Weinberg unified model of the weak and electromagnetic in-
teractions, for which they got the Nobel Prize in 1979. Here the A’s
are 2×2 unitary matrices representing the photon, the W± and the Z0

particles.

(b) Quantum chromodynamics (QCD) the generally accepted theory of the
strong interactions. The Φ’s have three components called colors (red,
green and blue quarks), and the A’s are unitary 3 × 3 matrices with
determinant 1 acting on these three component vectors. This group is
SU(3)color, and the A’s ar gluons.

(c) Grand unified gauge field theories postulate that the A’s are bigger ma-
trices forming a Lie algebra. Various possibilities considered have been
SU(5), O(10), O(14), O(18), O(22). Each contains the SU(3)color ×
U(2)SW. some of the A’s are “baseballs”, some cause the proton to
decay. These theories are still very speculative.

(d) Although it is not quite a Yang-Mills theory because of features we have
not yet discussed, gravity has the same property. If Φ is a vector, Aµ

is a 4 × 4 matrix with components (Aµ)ρ
σ = Γρ

σµ. It is not usually
called A, of course. The Fµν in this case is called Rµν , which in terms
of Γ becomes

(Rµν)α
β = ∂µΓα

βν − ∂νΓα
βµ + Γα

γµΓγ
βν − Γα

γνΓγ
βµ.

Standard notation for this is Rα
βµν in MTW, or −Rα

βµν in Weinberg.
R is actually a tensor, unlike Γ. Γ is not a tensor because the matrix

indices (the first two) refer, in a sense, to different points. Its change under
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change of chart therefore depends not only on the way the coordinates change
at the point in question but also on their derivatives. the matrix indices of
R, however, refer to the same point, for the vector has been brought back
to the starting point. This is the reason, but the proof of the pudding is to
use the rules for changes of chart for Γ and discover that the inhomogeneous
terms cancel.

Weinberg shows R is the only tensor which

1. depends only on g and its first and second derivatives, and

2. is linear in the second derivatives.

It is called the curvature tensor, or in MTW, “Riemann”.
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0.11 Geodesic Deviation
Consider a set of trajectories
through spacetime, parameterized
by ρ, each of which is a curve pa-
rameterized by a parameter λ, sep-
arated by a small distance. At
each fixed λ, we may consider

n = ∆P|λ as a vector ∆ρ
∂P
∂ρ

=

∆ρ
∂xµ

∂ρ

∂P
∂xµ

= ∆ρ
∂xµ

∂ρ
∂µ, where xµ

is some chart. Then MTW p219

calls nµ = ∆ρ
∂xµ

∂ρ
.

=0
=1 =2λ λλ ρ

ρ ρ+∆

Let us ask how n develops as we move along the trajectories, assuming
each of the trajectories obeys the law of geodesic transport:

Duν

Dλ
=
duν

dλ

∣
∣
∣
∣
∣
ρ

+ Γν
ρσu

ρuσ = 0 with uν =
∂xν

∂λ

∣
∣
∣
∣
∣
ρ

.

ow
∂nµ

∂λ

∣
∣
∣
∣
∣
ρ

= ∆ρ
∂2xµ

∂λ ∂ρ
= δρ

∂uµ

∂ρ

∣
∣
∣
∣
∣
λ

.

Taking δρ
∂

∂ρ
of the geodesic equation, we have

∂2nµ

∂λ2
+ δρ

∂

∂ρ
Γµ

ρσ

∣
∣
∣
∣
∣
λ

︸ ︷︷ ︸

δρ ∂xα

∂ρ
Γµ

ρσ,αnαΓµ
ρσ,α

uρuσ + 2Γµ
ρσu

ρ∂n
σ

∂λ
= 0 (9)

Let us use this to evaluate the second derivative along the free-falling path
of n,

D

Dλ

Dnµ

Dλ
=

D

Dλ

(

∂nµ

∂λ
+ Γµ

ρσn
ρuσ

)

=
∂

∂λ

(

∂nµ

∂λ
+ Γµ

ρσn
ρuσ

)

+ Γµ
αβu

β

(

∂nα

∂λ
+ Γα

ρσn
ρuσ

)

D2nµ

Dλ2
=

∂2nµ

∂λ2
+ Γµ

ρσ,βn
ρuσuβ + 2Γµ

ρσ

∂nρ

∂λ
uσ + Γµ

ρσn
ρ ∂uσ

∂λ
︸ ︷︷ ︸

−Γσ
βα

uβuα
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+Γµ
αβΓα

ρσn
ρuβuσ

0 =
∂2nµ

∂λ2
+ Γµ

σβ,ρn
ρuσuβ + 2Γµ

ρσ

∂nρ

∂λ
uσ

so
D2nµ

Dλ2
=

[

Γµ
ρσ,β − Γµ

σβ,ρ + Γµ
βαΓα

ρσ − Γµ
ραΓα

βσ

]

nρuβuσ

and
D2nµ

Dλ2
+Rµ

σρβn
ρuβuσ = 0.

This gives an interesting piece of information.
In the freely falling inertial chart D

Dλ
= d

dt
if we take λ = τ , the spatial

components give the rule for the acceleration of a particle at separation ~n at
rest

(

d2~n

dt2

)i

= −Ri
0j0n

j.

Symmetries of R

We have seen that Rα
βµν = 〈ωα||[Dµ, Dν ] eβ〉, so R is antisymmetric in the

last two indices. Are there other symmetries? If so, because R is a tensor,
they must be true in any frame, so we will work in the local inertial frame.
Recall that in that frame, gµν,ρ and Γ vanish, while gµν = ηµν , so

Rα
βµν = ∂µΓα

βν − (µ↔ ν)

=
1

2
∂µ [gαρ (gνρ,β + gβρ,ν − gβν,ρ)] − (µ ↔ ν)

= gαρ
[

gνρ,βµ + gβρ,νµ
︸ ︷︷ ︸

→ 0 under µ↔ν

−gβν,ρµ

]

− (µ↔ ν)

so Rρβµν =
1

2
[gνρ,βµ − gβν,ρµ] − (µ↔ ν)

=
1

2

[

gνρ,βµ − (β ↔ ρ)
]

− (µ↔ ν).

So R is also antisymmetric on the first two indices when the first is lowered.

If we interchange µ↔ ρ and ν ↔ β we get
1

2

[

gβµ,νρ − (µ↔ ν)
]

− (β ↔ ρ) =

1

2

[

gρν,µβ − (µ↔ ν)
]

− (β ↔ ρ), which is the same, so

Rαβµν = −Rαβνµ = −Rβαµν = +Rµναβ .
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This is then true in any chart.
Now consider

Rα
[µνρ] =

1

3

(

Rα
µνρ +Rα

νρµ +Rα
ρµν

]

=⇒
inertial chart

1

6
gασ

[

{(gσρ,µν − (µ↔ σ)) − (ν ↔ ρ)}

+(µ→ ν → ρ→ µ) + (µ→ ρ→ ν → µ)
]

.

There are 12 terms in the bracket. In obvious shorthand, they are

σρ, µν
︸ ︷︷ ︸

(3)

−µρ, σν
︸ ︷︷ ︸

(4)

−σν, µρ
︸ ︷︷ ︸

(2)

+µν, σρ
︸ ︷︷ ︸

(1)

+ σµ, νρ
︸ ︷︷ ︸

(5)

− νµ, σρ
︸ ︷︷ ︸

(1)

−σρ, νµ
︸ ︷︷ ︸

(3)

+ νρ, σµ
︸ ︷︷ ︸

(6)

+ σν, ρµ
︸ ︷︷ ︸

(2)

−σν, ρµ
︸ ︷︷ ︸

(6)

−σµ, ρν
︸ ︷︷ ︸

(5)

+ ρµ, σν
︸ ︷︷ ︸

(4)

= 0,

by cancellation in pairs as shown. Thus Rα
[µνρ] = 0 in any chart.

Bianchi Identity

Rα
βµν = 〈ωα||[Dµ, Dν ] eβ〉.

Let us parallel transport ω and e so Dρeα = 0 and Dρω
α = 0. Then

(DρR)α
βµν = 〈ωα||Dρ [Dµ, Dν ] eβ〉 = 〈ωα||[Dρ, [Dµ, Dν ]] eβ〉.

Defining Rα
βµν;ρ := DρR

α
βµν [we will use ; as the covariant derivative for any

tensor], we have

Rα
βµν;ρ +Rα

βνρ;µ +Rα
βρµ;ν = 〈ωα| O |eβ〉 ,

the matrix element of

O = [Dρ, [Dµ, Dν ]] + [Dµ, [Dν , Dρ]] + [Dν , [Dρ, Dµ]] .

But the D’s are associative operators so the Jacobi identity assures us this
operator is zero, which gives the

Bianchi Identity: Rα
β[µν;ρ] = 0.

[The corresponding statement in Yang-Mills in flat spacetime is D[ρFµν] = 0,
which for an Abelian theory (E&M) reduces to ∂[ρFµν] = 0, the homogeneous
pair of Maxwell’s equations.
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More on the Equivalence Principle

Let T µν be the stress-energy tensor of matter (that is, no gravitational con-
tribution to energy density, etc.), given by special relativity as a function of
the fields, for example, of photons, charged particles, etc.. We know if we
include all such matter and if there is no gravity, ∂µT

µν = 0. This must
still be true in the local inertial frame even if there is gravity. To make it a
statement independent of chart, note that in the inertial frame Dµ = ∂µ, so
DµT

µν = 0. Similarly for the electromagnetic current

DµJ
µ = 0 = ∂µJ

µ + Γµ
νµJ

ν = g−1/2∂µ

(

g1/2Jµ
)

.

This changed form for the divergence raises the question of whether charge is

conserved! In special relativity we write Q =
∫

J0d3V and use ∂0J
0 = ~∇ · ~J

and
int~∇ · ~Jd3V =

∫

S → 0 to show dQ/dt = 0. We can write this expression in
a suitable chart independent way

Q =
∫

V
J0dx1 ∧ dx2 ∧ dx3 =

∫

V
ǫ(J, , , )

The last expression is entirely geometrical. in an arbitrary frame it reduces
to

Q =
1

3!

∫

V
ǫµνρσJ

µdxν ∧ dxρ ∧ dxσ =
1

3!

∫

V

√
g [µνρσ] Jµdxν ∧ dxρ ∧ dxσ.

Let us choose V (which can be an arbitrary spacelike hypersurface) to be t =
constant, so

Q =
∫ √

g J0 dx1 ∧ dx2 ∧ dx3.

dQ

dt
=

∫

V
∂0

(√
gJ0

)

d3V = −
∫

~∇ ·
(√

g ~J
)

d3V → 0,

so Q is indeed conserved.
What about energy and momentum?

DµT
µν = ∂µT

µν + Γµ
ρµT

ρν + Γν
ρµT

µρ = g−1/2∂µ (T µν√g) + Γν
ρµT

µρ.

The first term is just what’s needed to make

P µ =
∫ √

g T 0µ d3V
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conserved, but the second term breaks the conservation. This is because the
gravitational force changes the momentum of the matter.

We have already discussed the form of Maxwell’s laws in a geometrical
form d∗F = ∗J, which can be written

d (
√
gF µν) ∧ dxα ∧ dxβ [µναβ] = [µναβ]

√
g Jµ dxν ∧ dxα ∧ dxβ

or (
√
gF µν),ν =

√
gJµ.

But DνF
µν = ∂νF

µν + Γµ
ρνF

ρν

︸ ︷︷ ︸

0

+Γν
ρνF

µρ

= g−1/2∂ν (
√
gF µν) = Jµ.

Could we have started with an equation for A in special relativity and
used the equivalence principle? We start with

Jµ = F µν
,ν = −Aµ,ν

,ν + Aν,µ
,ν .

I can write this covariantly as

Jµ = −Aµ;ν
;ν + Aν;µ

;ν = −DνD
νAµ +DνD

µAν ,

but I could also write it in flat space as

Jµ = −Aµ,ν
,ν + Aν ,ν

,µ =⇒ Jµ ?
= −DνD

νAµ +DνD
µAν .

Are they both correct? The difference is 0
?
= [Dν , D

µ]Aν = Rν µ
ρν Aρ. We

define, in general, the

Ricci tensor: Rµν := Rα
µαν

and the
Scalar curvature: R := R µ

µ : gµνRµν

and the

Einstein curvature tensor: Gµν := Rµν −
1

2
gµνR.

We have found that the two proposed laws are consistent only if Rρµ = 0,
and not in general.
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Thus the equivalence principle shouldn’t be used with too much blind
faith, as it never answers 2nd degree derivative questions. We should not be
surprised at its failure here, because we have had to use second derivatives,
which will not be the same even in the local inertial frame as they are in flat
space.

The correct rule is, of course, the first, which is DνF
µνj = Jµ. The

second can be ruled out because it is not covariant under electromagnetic

gauge transformations.
Bianchi identities involving Ricci and Scalar curvatures:

B : Rα
βµν;ρ +Rα

βνρ;µ +Rα
βρµ;ν = 0

δµ
αB : Rβν;ρ +Rα

βνρ;α −Rβρ;ν = 0

1

3
ǫ β
κλα Bǫµνρλ : ǫ β

κλα Rα
βµν;ρǫ

µνρλ = 0

= −δµνρ
καβR

αβ
µν;ρ = −Rαβ

κα;β −Rαβ
αβ;κ −Rαβ

βκ;α

= 2Rβ
κ;β − R;κ = 0

Define ∼G to be the double dual of R, that is,

∼Gαβ
µν =

1

4
ǫαβγδR ρσ

γδ ǫρσµν .

Define “Einstein”

Gβ
ν := ∼Gαβ

αν = −1

4
δβγδ
ρσνR

ρσ
γδ = −1

2
R βν

γν − 1

2
R ρβ

γρ = R ρσ
ρσ

= R β
ν − 1

2
Rδβ

ν ,

so Gµν = Rµν −
1

2
gµνR, and the last Bianchi identity is Gµ

ν;µ = 0.

Note Gµ
µ = Rµ

µ − 1
2
δµ
µR = −R.
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0.12 Equations Determining Geometry

Mass is the source of gravity in Newtonian mechanics. Matter must affect
the metric in some way in general relativity. Let us return to the Sun.

∇2φ = 4πGρ, g00 = −1 − 2φ, gµν,0 = 0, all Γ ∝ φ,

so to first order in φ, Rα
βµν = 2Γα

β[ν,µ], and Rα
0µ0 = Γα

00,µ. Thus R00 =

Γi
00,i − Γ0

00,0
︸ ︷︷ ︸

0

= −1
2
∇2g00 = ∇2φ = 4πGρ.

ρ is the mass density, or energy density, or T00, which suggests a connec-
tion between Rµν and Tµν . We have seen that DµT

µν = 0 is an equation of
motion, at least for particles in an electromagnetic field. So any connection
with Tµν ∝ Rµν cannot be right, because DµR

µν 6= 0. But DµGµν ≡ 0,
so perhaps Tµν ∝ Gµν . But for a point particle at rest, Tµν = 0 unless
µ = ν = 0. So R = −Gµ

µ = −G0
0, so G00 = R00 − 1

2
g00R = R00 + 1

2
G00, or

G00 ≈ 2R00 ≈ 8πGT00. [Note: This G is Newton’s gravitational constant,
not G µ

µ .]
Thus we are led to guess Einstein’s equation:

Gµν = 8πGTµν .

This ia a relation between two tensors, so is covariant. Of course there is
another tensor whose divergence vanishes, gµν , and we might have written

Gµν + Λgµν = 8πGTµν .

Λ is called the cosmological constant. It must be small because empty
space (no matter) could not be flat, Gµν − −Λgµν in empty space, and we
therefore have had a limit |Λ| < 10−56cm−2, or |Λ|−1/2 > 1010 lightyears.
For calculations on motions ≪ 1010 lightyears, |Λ|−1/2 might as well be ∞,
Λ = 0.

When it comes to cosmology it matters whether Λ = 0 or not. Einstein
originally did not include this term, but he found he could not find a stable
configuration for the universe. So he postulated the existence of the cos-
mological term to make it possible for the universe to sit still. Of course,
Hubble found that it wasn’t sitting still at all, but blowing up since the big
bang. Einstein called his postulating the cosmological constant “the biggest
blunder of my life. But it wasn’t a mistake — it may be the “dark energy”
that has everyone so excited now.



68. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

0.13 Deriving the Gravitational Field Equa-

tions

Physics begins with an action:

S =
∫

d4x
√
gL.

L is a scalar Lagrangian density, a function of gµν and the matter degrees of
freedom, that is, all other dynamical variables other than space-time. Divide
it into

L = Lgrav + Lmatter.

Here Lgrav depends only on gµν and its derivatives, while Lmatter is specified
by extrapolation, using the equivalence principle, from a world where R = 0.
So we expect Lmatter = Lmatter (gµν , {ψ}) to not depend on derivatives of
g.

What scalar can we take for Lgrav? The only one involving two deriva-
tives of g is R. One could also add a constant Λ.

Euler’s equations need to be reconsidered asR involves second derivatives,
as well as the first derivatives squared that we are used to seeing in ordinary
lagrangian mechanics. We take

Lgrav =
1

16πG
R− 1

8πG
Λ

and vary S with respect to gµν .
The variational pieces are10

δ
√
g =

1

2
g−1/2δ(− det g··) = −1

2
g−1/2δeTr ln g·· = +

1

2
g+1/2δTr ln g··

= +
1

2
g+1/2 Tr((g··)

−1δg·· =
1

2
g+1/2gµνδgµν.

δgµν = gµνgρσδg
σν = gµν




δ (gρσg

σν)
︸ ︷︷ ︸

=0

− (δ(gρσ) gσν




 = −gµρgσνδ(gρσ)

10If the linear algebra used in δ
√

g is foreign to you, here is an alternate
derivation, though you should learn the linear algebra. From “Properties of
Determinants”, we have det g·· = [µνρσ] gµα gνβ gργ gσδ [αβγδ]/4!, so if we vary
g··, δ det g·· = [µνρσ] gνβ gργ gσδ [αβγδ] δgµα/3! = hαµ δgµα/3!, where hαµ =
[µνρσ] gνβ gργ gσδ [αβγδ]/3!, so hαµgµφ = 4 det g··δ

α
φ , or hαµ = 4 det g gαµ. Thus δ det g·· =

4 det g·· g
αµδgµα. The rest follows as on the next line.
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δΓρ
µν = +

1

2
δgρσ (gµσ,ν+gνσ,µ−gµν,σ) +

1

2
gρσ (δgµσ,ν+δgνσ,µ−δgµν,σ)

The first three of the six terms come to

1

2
gρα (δgαβ) gβσ (gµσ,ν + gνσ,µ − gµν,σ) = −gραδgαβΓβ

µν ,

so 2gαρδΓ
ρ
µν = −2δgαβΓβ

µν + δgµα,ν + δgνα,µ − δgµν,α.

Now (δgµα);ν = (δgµα),ν − Γβµνδgβα − Γβανδgµβ

(δgνα);µ = (δgνα),µ − Γβµνδgβα − Γβαµδgνβ

− (δgµν);α = − (δgµν),α + Γβανδgµβ − Γβαµδgνβ

so 2gαρδΓ
ρ
µν = δ (gµα);ν + δ (gνα);µ − δ (gµν);α and is a tensor!

and δΓρ
µν =

1

2
gρα

[

δ (gµα);ν + δ (gνα);µ − δ (gµν);α

]

.

Now for R:

δRα
βµν = δ [Dµ, Dν ]αβ = [Dµ, δDν ]αβ + [δDµ, Dν]αβ ,

but δDν = δ (∂ν + Aν) = δAν, so

[Dµ, δDν]αβ = δAν,µ + [Aµ, δAν ]

=
(

δΓα
βν

)

,µ
+ Γα

ρµδΓ
ρ
βν − Γα

ρνδΓ
ρ
βµ

=
(

δΓα
βν

)

;µ
+ Γρ

νµΓα
βρ.

Subtracting µ ↔ ν gives

δRα
βµν =

(

δΓα
βν

)

;µ
−
(

δΓα
βµ

)

;ν

δRβν =
(

δΓρ
βν

)

;ρ
−
(

δΓα
βα

)

;ν
Palatini Identity

And δR = (δgµν)Rµν + gµνδRµν

= −gµα (δgαβ) gβνRµν + gµνδRµν

= − (δgαβ)Rµν + gµνδRµν .

Now gµνδRµν =
(

gµνδΓρ
µν

)

;ρ
−
(

gµνδΓα
µα

)

;ν
. Each term is a divergence,

(

Aλ
)

;λ
= g−1/2∂λ

(

g1/2Aλ
)

so g1/2gµνδRµν = ∂λ (something ∝ δΓ).
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We are now ready to do the variation.

0 = δS =
∫

d4xδ
[√

g
(

R

16πG
− 1

8πG
Λ + Lmatter

)]

=
∫

d4x
1

2

√
ggµν

[
R

16πG
− 1

8πG
Λ + Lmatter

]

δgµν −
√
g
Rµν

16πG
δgµν

+total divergence +
√
g
δLmatter

δgµν
δgmuν

which gives

−Rµν + 1
2
Rgµν

16πG
− 1

2

Λ

8πG
+

1

2
gµνLmatter +

δLmatter

δgµν
= 0

or

Gµν + Λgµν = 16πG

[

δLmatter

δgµν

+
1

2
gµνLmatter

]

=: 8πGT µν

Here T µν is the stress-energy tensor of the matter. [See Weinberg p 360-363
for justification.]
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0.14 Harmonic Coordinates

[Ref: Weinberg, section 7.4]
Einstein’s equations are 10 equations for Gµν or 10 differential equations

for the 10 gµν ’s. But G ;µ
µν = 0 is an identity, so 4 of the equations tell

us nothing about g. This is because there is a set of four arbitrary gauge
transformations corresponding to x′µ = x′µ(x) arising from a change of chart.
This permits us, without imposing any condition on the space-time manifold
itself, to impose conditions on the chart
Γλ = gµνΓλ

µν = 0 [“harmonic coordinate conditions”]
This can be done, given an arbitrary chart and Γ, but a chart change under
which

Γ′α′

β′γ′ =
∂x′α

′

∂xµ

∂xν

∂x′ β′

∂xρ

∂x′ γ′
Γµ

νρ −
∂xν

∂x′ β′

∂xρ

∂x′ γ′

∂2x′α
′

∂xν∂xρ

so Γ′α′

=
∂x′α

′

∂xµ
Γµ − gνρ ∂

2x′α
′

∂xν∂xρ

which can be set equal zero by solving this second order differential equation
for x′(x).

Note that a scalar has a D’Alembertian

2φ := gλκφ;λ;κ = gλκφ,λκ + Γρ
λκφ,ρ = φ λ

,λ − Γρφ,ρ.

A harmonic function satisfies 2φ = 0. So thinking of xµ as a function of xν ,

2xµ = xµ λ
,λ − Γρxµ

,ρ = −Γµ,

so xµ is harmonic if Γµ = 0.

0.14.1 The linearized Theory

[Note: from now on Λ = 0, and the following is from MTW §35, §18.1]
Suppose there exists a chart such that gµν = ηµν + hµν , where hµν ≪ 1.

We work to first order in h. The quantities which are already first order,
including Γ and R, can have indices raised and lowered with η. Thus

Γµ
αβ =

1

2
ηµν (hβν,α + hαν,β − hαβ,ν)

Rµ
νρσ = Γµ

νσ,ρ − Γµ
νρ,σ, so Ricci is
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Rnuσ = Γµ
νσ,µ − Γµ

νµ,σ

=
1

2






h µ

σ ,νµ + h µ
ν ,σµ − h µ

νσ, µ − h µ
νµ, σ
︸ ︷︷ ︸

cancels

−hµ
µ,νσ − hµ

ν,µσ
︸ ︷︷ ︸

cancels






.

Define h := h µ
µ . Given any symmetric rank 2 tensor (in particular h··

and R··), define T̄µν = Tµν − 1
2
ηµνT , with (T := T µ

µ ). Thus

R̄µν = Rµν −
1

2
ηµνR ≈ G to first order

¯̄T µν = T̄µν −
1

2
ηµν T̄ , but T̄ = T̄ µ

µ = T µ
µ − 1

2
δµ
µ T = −T so

= T̄µν +
1

2
ηµνT = Tµν .

Gνσ =
1

2
(h µ

σ ,νµ + h µ
ν ,σµ − h µ

νσ, µ − h,νσ

−hρµ
,ρµησν +

1

2
h µ

, µηνσ +
1

2
h ν

, µηνσ)

=
1

2
(h̄ µ

σ ,νµ +
1

2
η µ

σ h,νσ

+h̄ µ
ν ,σµ +

1

2
η µ

ν h,σµ

−h̄ µ
νσ, µ − 1

2
ηνσh

µ
, µ − h,νσ

−h̄ρµ
,ρµησν −

1

2
ηρµh,ρµησν + h µ

, µηνσ)

=
1

2
(h̄ µ

σ ,νµ +
1

2
h,νµ

+h̄ µ
ν ,σµ +

1

2
h,σν

−h̄ µ
νσ, µ − 1

2
ηνσh

µ
, µ − h,νσ

−h̄ρµ
,ρµησν −

1

2
h µ

, µησν + h µ
, µηνσ)

=
1

2

(

h̄ µ
σ ,νµ + h̄ µ

ν ,σµ − h̄ µ
νσ, µ − h̄ ,ρµ

ρµ ησν

)

= 8πGTσ/nu

Next, we turn to a particular choice of chart, the harmonic coordinates

Γλ = ηαβΓλ
αβ = hλ ,α

α − 1

2
h,λ = h̄λ ,α

α = 0.
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This is harmonic gauge, also called lorentz gauge. In this gauge,

Gνσ = −1

2
h̄ µ

νσ, µ − 8πGTνσ.

Suppose Tµν = 0 except T00 = Mδ3(~r), a point source. Then h̄00 =
4MG/r, h̄0i = h̄ij = 0, h00 = hxx = hyy = hzz = 2MG/r, and other compo-
nents are zero. Converting to spherical polar spatial coordinates dt, dr, dθ, dφ,

g = −
(

1 − 2GM

r

)

dt⊗dt+
(

1 +
2GM

r

) (

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ
)

.

You may verify that Riemann has components given in MTW 1.14, most
easily using x, y, z coordinates at a point x = y = 0, z = r.

The solution we just found is a solution, but it is not unique. For the
homogeneous equation Gνσ = −1

2
2 h̄νσ = 0 for gravity in “empty” space

has nontrivial plane wave solutions h̄µν(xρ) = h̄µν(z− t), a plane wave which
we have taken, arbitrarily, in the z direction.

Consider a gauge change x′µ = xµ + ξµ(x).

g′µν = ηµν + h′µν =
∂xρ

∂x′ µ
∂xσ

∂x′ ν
(ηρσ + hρσ)

=
(

δρ
µ + ξρ

,µ

) (

δσ
ν + ξσ

,ν

)

(ηρσ + hρσ)

= ηµν + hµν − ξν,µ − ξµ,ν ,

so

h′µν = hµν − ξν,µ − ξµ,ν , h′ = h− 2ξ ,µ
µ

h̄′µ,ν = h̄µ,ν − ξν,µ − ξµ,ν + ξ ,µ
µ ηµ,ν .

This is the same kind of transformation we used to make h′ harmonic.

h̄′ ,ν
µν = h̄ ,ν

µν − ξ ,ν
ν µ
︸ ︷︷ ︸

cancels

−ξ ν
µ,ν + ξ ,ρν

ρ ηµν
︸ ︷︷ ︸

cancels

,

which could be set equal to zero by finding ξ such that 2ξµ = barhold ,ν
µν . If

hold is already harmonic, we can still make a gauge change providing 2ξµ = 0,
and h remains harmonic. For our plane wave, choose ξµ = ξµ(z − t), which
satisfies this equation. Choose ξz =

∫ z−t h̄old
zz(u), ξt = 0, so ξz,z = h̄old

zz and
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h̄new
zz = 0. Also choose ξx,y =

∫

duh̄z,x or y(u) so hnew
xz = 0. Now drop the

new notation. 0 = h̄µν
,ν = h̄µz

,z + h̄µt
,t = h̄µz′ − h̄µt′ so h̄µt = h̄µz for all µ.

Therefore

h̄zt = h̄zz = 0 = h̄tz = h̄tt = h̄xz = h̄yz = h̄xt = h̄yt.

This leaves only h̄xx, h̄xy and h̄yy, so only these three components are left.
Recall that it is the Riemann curvature which is the physically relevant

object. (h is not even a tensor, as it is g − η and η isn’t!) So we calculate

Rµνρσ = Γµνσ,ρ−Γµνρ,σ =
1

2




hνµ,σρ
︸ ︷︷ ︸

cancels

+hσµ,νρ − hνσ,µρ − hνµ,ρσ
︸ ︷︷ ︸

cancels

−hρµ,νσ + hνρ,µσ




 .

But h̄µν,ρσ = 0 unless µ = x or y, ν = x or y, ρ = t or z, σ = t or z, (and
hµν,zz = −hµν,zt = hµν,tt),

hµν,ρσ = h̄µν,ρσ +
1

2
ηµνh,ρσ, so h = −h̄x

x − barhy
y

hxx,tt =
1

2

(

h̄xx − h̄yy

)

,tt
=: 2a

hyy,tt =
1

2

(

h̄yy − h̄xx

)

,tt

hzz,tt = −1

2

(

h̄xx + h̄yy

)

htt,tt = +
1

2

(

h̄xx + h̄yy

)

hxy,tt = h̄xy,tt =: 2b

other hµν,tt = 0, hµν,zz = −hµν,zt = hµν,tt.
Now for R’s. There are cases:

• One index is x or y. By symmetry, it can always be made the first.

Rxνρσ =
1

2
(hxσ,νρ − hxρ,νσ) .

One of the other indices must be x or y. If x, it cannot be ν by
antisymmetry, so take it to be ρ. Then ν and σ must be z or t, and
Rxνx0 = −1

2
hxx,νσ, so Rx0x0 = −a, Rxzx0 = a, Rxzxz = −a.
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The other index could be y, wich still cannot be ν, so Rxνyσ = −1
2
hxy,νσ;

Rx0y0 = −b = −Rxzy0 = Rxzyz = −Rx0yz .

Similarly Ry0y0 = a, Ryzy0 = −a, Ryzyz = a

• Finally, no index might be x or y. But then we have only

Rz0z0 =
1

2




h0z,0z
︸ ︷︷ ︸

cancels

−htt,zz − hzz,tt + h0z,0z
︸ ︷︷ ︸

cancels




 = −1

2
(htt,tt + hzz,tt) = 0.

Consider a ruler in an inertial coordinate system. To first order in the
length of the ruler, coordinates and distances agree as g = η exactly at one
end. Consider two masses, one at the origin and one at position ~r, also in
free fall and approximately at rest. Then

d2ri

dt2
= −Ri

0j0r
j .

thus z is not affected, and

d2

dt2

(
x
y

)

=
(
a b
b −a

)(
x
y

)

where a = 1
4

(

h̄xx − h̄yy

)

,tt
, b = 1

2
h̄xy,tt are the two degrees of freedom in the

gravitational wave.

Consider a ring of such particles
in the xy plane at a fixed z. Pure a
or pure b waves ∝ eiωt will deform
a ring as shown.

b wave:

a wave:

This is a quadripole deformation and indicates a spin 2 object quantum
mechanically. The gravitational wave is clearly propagating at the speed of
light, so we have shown that the graviton (a quantum of gravitational wave)
is a spin 2 massless particle.

If the graviton is a spin two particle, why are there only two possible
polarizations represented by a and b? For massive particles we know that, in
the rest frame, we must have z-components of spin with values (s, s− 1, s−
2, . . . − s)h̄, which would be 5 polarizations for a spin two object. But for
massless particles there is no rest frame. We can discuss helicities, that is,
the component of spin in the direction of motion. But there is no longer an
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angular momentum lowering operator to connect one helicity to another, and
a pure spin 2 massless particle has only helicity ±2, never ±1 or 0. This is
analogous to the polarization of photons, which have helicity ±1, never zero.
Said another way, the polarizations are always transverse, not longitudinal.
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0.15 The Bending of Light

The geodesic equation for a massless particle is

d2xµ

dλ2
= −Γµ

νρ

dxν

dλ

dxρ

dλ
.

φ
θ

r
b

Consider a photon initially travelling on a line with impact parameter b with
respect to the center of the Sun. Then we can take x = t y = b initially, with
z = 0. λ is a arbitrary path parameter, but we can choose it to be roughly
x = t plus some first order corrections, so

dxµ

dλ
= (1, 1, 0, 0) + O(GM/b), and

d

dx

dy

dx
= −Γy

νρ

dxν

dλ

dxρ

dλ
= −Γy

00 − Γy
00 − 2Γy

x0 − Γy
xx

=
1

2
h00,y +

1

2
hxx,y as hxy = hx0 = hy0 = 0 and hµν,0 = 0

=
1

2

∂

∂y

(
2MG

r
+

2MG

r

)

= −2MG
y

r3
= −2MG

b

(x2 + b2)3/2
,

so
dy

dx
=

−2MG

b

∫
d(tan θ)

(1 + tan2 θ)3/2
=

−2MG

b

∫

−π/2
cos θdθ

and
dy

dx

∣
∣
∣
∣
∣
final

=
−2MG

b

∫ π/2

−π/2
cos θdθ = −4MG

b
= −φ, where φ is the bending

angle. So

φ =
4M⊙G

R⊙

R⊙
b

= 1.75′′R⊙
b
.

Of course b > R⊙, the Sun’s radius, so the bending of light is quite small,
less than 1.75 seconds of arc.
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[New topic?]

The general solution to h̄ ,µ
νσ µ = −16πGTνσ is h̄νσ =

∫
4GTνσ(t− |~x−~x ′|,~x ′)

|~x−~x ′| d3x′+

free waves. The proof is for general f . If f ,µ
µ = −4πρ(t, ~x) then

f =
∫
ρ(t− |~x−~x ′|,~x ′)

|~x−~x ′| d3x′,

for then

f ,µ
µ = −

∫
ρ̈(t− |~x−~x ′|,~x ′)

|~x−~x ′| d3x′ +
∫

~∇ 2

(

ρ(t− r, vecpx)

r

)

r=|~x−~x ′|
d3x′.

But ~∇ 2ρ

r
=

1

r
~∇ 2ρ(r)
︸ ︷︷ ︸

∂2ρ

∂r2 + 2
r

∂ρ
∂r

+ 2~∇1

r
· ~∇ρ

︸ ︷︷ ︸

− 2
r2

∂ρ
∂r

−4πρ(0)δ3(~r)

=
1

r
ρ̈−−4πρ(0)δ3(~x−~x ′)

where we are treating ρ as a function of t and r for fixed ~x ′, so it depends
only on the magnitude of r, not its direction. So we see

f ,µ
µ = −4πρ(t,~x ′).

Now suppose nothing about Tµν except that at time t, it is confined to
some compact region of space. Then for ~x far from that region, in which
we place ~x ′ = 0, we might expect that the details of the sources would
be largely lost, and we would get the Newtonian expression, even if the
sources themselves are moving rapidly. MTW assigns as exercise 19.1(a) and
19.3(b,c) the derivation of the form of the metric, in the source’s center of
mass, as

ds2 = −
(

1 − 2M

r
+ Or−3

)

dt2 − 4ǫjkℓfracS
kxℓr3dt⊗ dxj

+
(

1 +
2M

r
+ Or−1 · wave terms + Or−2

)

dxi ⊗ dxj ,

where M +
∫

T00d
3x, Sk =

∫

ǫkℓmx
ℓTm0d3x.

Note that we are working to first order in G, and hence in h, but making
no restrictions on the sources (i.e. they needn’t be nonrelativistic) except for
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being, at a fixed time, in a region which is limited to being much closer to
the origin than ~r.

A nonrelativistic test particle circling the source will feel only g00 and
hence see a Newtonian φ = −GM/r, where the total mass is the integral of
the local mass density T00. This is how one measures the mass.

If one performs a more sensitive test, however, one can measure the an-
gular momentum of the source ~S. We will consider a gyroscope supported
to stay at a fixed coordinate. the gyro is not freely falling. Nonetheless, at
each instant, we can erect a local inertial frame so that we can discuss what
happens to the spin of the gyro ~L as it is accelerated. In the momentary
rest frame, we know d~L/dt = 0, for there is no torque on the gyro. Thus
dSµ/dτ ∝ uµ. Also in this frame d~u/dτ = ~a. From L · u = 0, we find

dL

dτ
· u+ L · du

dτ
= 0,

dL

dτ
= −uL · du

dτ
= a · Lu.

We wish to express these equations in covariant form. Clearly

DL

dτ
= a · Lu, with a :=

Du

dτ
.

We hold our gyro at a fixed point x, y, z, t in the coordinate system of Eq.
19.5. Then u = ∂t, u

µ = (1, 0, 0, 0). In our coordinate system

Duµ

Dτ
=
∂uµ

∂τ
+ γµ

ρσu
ρuσ = 0 + Γµ

00 = aµ,

Γµ
00 = −1

2
g µ
00, =

(

0,
m

r3
xi
)

[Note it is accelerating outward]

DLµ

dτ
= aLuµ = γµ

ρ0L
ρ +

dLµ

dτ

Γ i0
µ = −1

2
g µ

i0, +
1

2
gµ

0,i =⇒ Γ0
i0 = +ai, Γj

i0 =

(

−ǫjkℓ
Skxℓ

r3

)

,i

− (i↔ j)

so
dL0

dτ
= a · L − a · L = 0,

dLi

dτ
= −γi

j0L
j = ǫinrΩ

nLr, where Ωm =
1
2
ǫnkℓΓ

k
ℓ0, ǫkℓnΩn = Γk

ℓ0.
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Ω is a vector which describes the rotation rate of L,

Ωn = ǫnkℓ



−ǫkjm

(

Sjxm

r3

)

,ℓ



 = ǫknℓǫkjmS
j

(

δm
ℓ

r3
− 3

xmxℓ

r5

)

= −S
n

r3
+3

x · Sxn

r5
.

Consider a spherically symmetric, static star. Then gµν can be chose to be
a function of r, and rotationally invariant. One can show that by redefinition
of coordinates one can choose

ds2 = −e2Φdt2 + e2Λdr2 + r2 dΩ2
︸︷︷︸

(dθ)2+sin2 θdφ2

[ or ϕ ?]
where Φ(r) and Λ(r) are two unknown (so far) functions. The choice of
coordinates is called Schwarzschild coordinates. In particular, r is 1

2π

times the proper circumference of a circle at fixed r, θ = π/2, with φ ∈ [0, 2π),
or it is the square root of 1/4π times the area of a sphere at constant r.

Homework due Nov 14:

1. Exercise 23.4 — Find Gµν for the Schwarzschild coordinates 23.7 [An-
swers on page 360]

2. Show that outside the matter distribution, where Tµν = 0, Φ′ = −Λ′,

and if we require Φ −→
r→∞

0, Λ −→
r→∞

0, then Φ = ln

√

1 − K

r
= −Λ, so

comparing at large r with the weak field solution, K = 2M , and Eq.
23.27:

ds2 = −
(

1 − 2M

r

)

dt2 +
dr2

1 − 2M/r
+ r2

(

dθ2 + sin2 θdφ2
)

.

This is known as the Schwarzschild metric.

This is the metric on the outside of the distribution of matter. We will
return to a consideration of this after treating the distribution itself.

The actual physical applications are, of course, stars, and we therefore
can put off no longer a discussion of Tµν for an ideal gas.

Consider a perfect fluid, which means that a small element of fluid has an
average rest frame, in which the surrounding fluid is isotropic, suppoprting
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no shear or heat flow. In the rest frame, the energy density is ρ by definition
[actually in the local inertial frame with respect to which the fluid is momen-
tarily at rest]. So T 00 = ρ. There is no momentum density because we are in
teh rest frame, so T j0 = 0. But there is a momentum flux. Consider a small
area in space d~S, The material on one side exerts a force on the other side
equal to pd~S, where p is the pressure. As we forbid shear forces, the force is
normal to the surface, ~F = pd~S, and momentum is being transferred across
the surface at a rate dP i

dt
= pdSi. But this is just the defining exapression for

Tij , so T ij = pδij in the local inertial rest frame. Thus

T µν =








ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p








= ρuµuν + p (gµν + uµuν)

in the local inertial frame. I claim that ρ and p, being defined in any frame
in terms of the local inertial rest frame, are scalars. Then

T µν = (ρ+ p) uµuν + pgµν

is a tensor equation and must be true in any frame. [But with u the mean
4-velocity of the gas element]

This result has some funny properties quite independent of general rel-
ativity. The energy density in an inertial frame in flat space, in which the
fluid is moving with the velocity ~v is (as u = (γ, γ~v))

T 00 = (ρ + p)γ2 − p = ργ2 + pv2γ2.

The first term is just what you might expect. The
energy in a container, say a cylinder with its axis
along the direction of motion, is, in the rest frame,

A

L

E = T 00V = ρAL
p = 0

In the other coordinate system we might expect
E ′ = Eγ, L′ = L/γ (length contraction)

A′ = A (⊥ lengths unchanged)
so T 00 ′ = E ′/V ′ = T 00γ2 = ργ2,







Not right!

and we don’t see why the pressure should enter at all. What is the origin of
the second term?



82. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

One’s first thought is that the pressure term is natural because if you
compress a gas, you do work on it, and increase its energy. But that is already
in ρ, which is the energy density (in the rest frame) and includes the kinetic
energy of random motion and the potential energy dues to intermolecular
forces. In fact, work done compressing a gas increased the energy in the rest
frame (where one normally discusses this issue nonrelativistically) where the
second term vanishes, as ~v = 0.

The origin of our paradoc lies in what we mean by the energy of a gas.
In fact, our genral impression that the energy-momentum vector is a vector
needs to be better defined.

Suppose we have a system with an energy density ǫ(~x, t). We define the
energy of the system to be

E(t) =
∫

ǫ(~x, t)dV at a fixed time.

Another observer calculates E ′(t′) =
∫

ǫ′(~x ′, t′)dV ′, integrating over a com-
pletely different slice of spacetime.

In the case of an isolated system, this prob-
lem of different hypersurfaces is not cru-
cial. In general one observer calculates
P µ =

∫

V T
µνdSν , while the other calculates

V

V’S’

S

V
ν

ν

4 E

P ′µ =
∫

V ′

T ′µνdS ′
ν

=
∫

V ′

∂x′ µ

∂xρ
T ρνdSν

= Λµ
ρ

∫

V ′

T ρνdSν

︸ ︷︷ ︸
∫

V4
T ρν

,νd4x+
∫

V
T ρνdSν+

∫

E
T ρ/nudSν

Here V and V ′ are the volume integrals for the two observers, E is a 3-
dimensional hypersurface connecting V and V ′, and V4 is the hypervolume
enclosed. Now if T µν is conserved and if it is localized to a finite region of
spacetime not including the “edges” E, we have P ′µ = Λµ

ρP
ν as expected.

But for a fluid element under pressure this isolation is not possible. Either
we are cutting off the volume integral where there is still Tµν , or if by Tµν we
include only that of the gas and not the container, then Tµν is not conserved
because it leaves the gas at the walls.
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How much energy is contained in the fluid in the cylinder? Arrange to
pop the lids of the cylinder simultaneously, so the gas spills out without any
work being done. Afterwards the gas is isolated and the energy of the gas is
just what it was when it was contained.

Now if observer C = x, riding with the cylinder, pops the lids off simulta-
neously, the final escaped gas will have an energy (in his reference frame) of
∫

T 00
CdVC = ρALC , and total momentum ~P = 0. This isolated gas, observed

by the x′ = laboratory observer Olab must therefore have energy

E ′ = γEC + γvPc = γEC = γρAL,

but this is not the energy which was in the gas to begin with, because,
according to Olab, the front lid at A popped at time t′ = γ2v L′ later than
the back lid at B. During that time the fluid was exerting a force on the
front lid, which in the cylinder’s frame had components (F µ = (0, pA), giving
rise to a net transfer of momentum (0, pA∆t) = (0, pAL/v) from the gas to
the walls. This momentum has been included in what Olab considered the
fluid’s 4-momentum before the pop.

So converting to his frame E ′ =
γE + γvP = γvpALv So the to-
tal energy in the fluid before the lid
popped was

E ′ = AL(γρ + γv2p),

and the volume V ′ = AL′ =
AL/gamma, so

T ′ 00 = E ′/V ′ = γ2ρ+ γ2v2p

as required by the tensor argument

t

x

x’

t’

B

A

A = (t = 0, x = L) = (t′ = t′A, x
′
A)

t′ = γt+ γvx, so t′a = γvL = γ2vL′
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0.16 Perfect Fluids

Consider a small volume element of a perfect fluid, with

ρ = energy density in the local inertial rest frame

p = pressure in the local inertial rest frame

n = baryon number density in the local inertial rest frame

uµ = four-velocity of the element

(= (1, 0, 0, 0) in the local inertial rest frame

T µν = (ρ+ p) uµuν + pgµν .

If a star is to be static in the Schwarzschild coordinates, rr = uθ = uφ = 0,

and gtt(u
t)2 = −1, so let ut = e−Φ(r), T 00 = ρe−2Φ, T rr = pe−2Λ(r), T θθ =

p

r2
,

T φφ =
p

r2 sin2 θ
,

T µν
;ν = (ρ+ p),νu

µuν + (ρ + p)uµ
,νu

ν + (ρ+ p)Γµ
ρνu

ρuν

+(ρ+ p)uµ uν
;ν

︸︷︷︸

uν
,ν

︸︷︷︸

0

+Γν
ρνuρ

+p,νg
µν

= (ρ+ p),0(u
0)2δµ

0 + (ρ + p) uµ
,0

︸︷︷︸

0

u0

+(ρ+ p)







Γµ
00(u0)2 +Γν

0ν
︸ ︷︷ ︸

g−1/2∂0g1/2=0

u0uµ







+ p,rg
µr

= (ρ+ p) Γµ
00

︸ ︷︷ ︸

δµ
r Φ′e2(Φ−λ)

(u0)2 + p,rg
µr

= 0,

so we only get an equation fro, µ = r,

(ρ + p)Φ′ + p,r = 0.

The equation Gµν = 8πTµν will determine Φ and Λ in terms of ρ and
p. The equation T µν

;ν = 0 gives differential equations for ρ and p analo-
gous to those one findes in Newtonian physics, but not enough to find ρ
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and p. We also need an equation of state for the fluid, in the form, per-
haps, of p = p(ρ, T ), ρ = ρ(p, T ) or similar equations in terms of entropy,
p(n, S). In practical applications there is some approximation which permits
a simplification. For example, white dwarfs and neutron stars are essentially
degenerate fermi gases, with temperature far below the fermi temperature.
Therefore p and ρ are affectively independent of T and are functions solely
of n, which determines the fermion density.

Let us return to Einstein’s equations. in terms of the orthonormal basis

et̂ = e−Φ∂t, er̂ = e−Λ∂r, eθ̂ =
1

r
∂θ, eφ̂ =

1

r sin θ
∂φ,

you should find

Gt̂t̂ =
1

r2

(

1 − e−2Λ
)

+
2

r
e−2ΛΛ′

=
1

r2

d

dr

{

r
(

1 − e−2Λ
)}

︸ ︷︷ ︸

call this 2m(r)

= 8πTt̂t̂ = 8πρ,

so m(r) =
∫ r

0
4πr2ρ(r)dr, where we require m(0) = 0 so g won’t be singular

there. m(r) is the mass within the radius r. While this might seem obvious
because ρ(r) is the mass density, it isn’t obvious. ρ(r) is the mass per unit
proper volume. The distance between r and r+dr is eΛdr, not dr, so m is not
the sum of rest mass energies. The rest mass energy in the shell is therefore
4πr2ρ(r)(1−2m/r)−1/2dr so the extra term −4πr2ρ(r)[−1+(1−2m/r)−1/2]dr
is the gravitational potential energy, and −→

G→0
4πr2ρGM

r
.

Let’s review:

ds2 = −e2Φdt2 + e2Λdr2 + r2dΩ2

T µν = (ρ+ p)uµuν + pgµν

Gmuν = 8πGT µν

From T µν
;ν = 0, (ρ+ p)Φ′ + p,r = 0. Define m(r) =

∫ r
0 4πr′ 2ρ(r′)dr′.

From Gt̂t̂ = 8πGTt̂t̂,
2Gm(r)

r
= 1 − e−2Λ

From your homework:



86. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

Gr̂r̂ = − 1

r2

(

1 − e−2Λ
)

︸ ︷︷ ︸

− 2m(r)

r3

+
2

r
e−2Λ
︸ ︷︷ ︸

(1− 2m
r )

Φ′ = 8πTr̂r̂ = 8πp

Φ′ =
4πpr + m

r2

1 − 2m
r

=
4πr3p+m

r(r − 2m)

= − 1

ρ + p

dp

dr
.

The last equality is known as the Oppenheimer-Volkov Equation.

Compared to the nonrelativistic form
dp

dr
= −ρm

r2
the Oppenheimer-

Volkov equation

dp

dr
= −(ρ+ p)(m+ 4πr3p)

r(r − 2m)

requires a larger dp/dr at the same r. Thus the pressure must rise faster as
one penetrates the star.

We now have a set of coupled ordinary differential equations for m (equiv-

alently Λ), p, and ρ:
dm

dr
= 4πr2ρ(r),

dp

dr
= Oppenheimer-Volkov,

and the equation of state ρ(p). These can be solved numerically given the
equation of state. The procedure is to start at the origin. Choose a ρ(0),
integrate out until you get to zero pressure, which defines the surface of the
star. You don’t know in advance what mass star you will get, so you adjust
ρ(0), and try again, or run a series of values of ρ(0).

Sometimes it is nice to have an analytic solution to think about. Artificial
equations of state may have analytic solutions. If ρ(p) = ρ0Θ(p), a star of

constant density, then clearly M = mass of star =
4π

3
ρ0R

3. The solution

gives

pc = ρ0

1 −
√

1 − 2M/R

3
√

1 − 2M/R − 1
= central pressure.

Note if R = RLim = (3πρ0)−1/2, MLim =
4

9
RLim, pc Lim = ∞ is the limit to how

much mass one can stabily insert.
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The solution for the metric gives trivially

eΛ =

(

1 − 2m(r)

r

)−1/2

=
(

1 − 8π

3
ρ0r

2
)−1/2

=
ds

dr
,

where s(r) is the proper distance to the origin. This geometry may be pic-
tured if we forget about time and one spatial dimension, as a two dimensional
curved surface which, in our imagination, we may enbed in three dimensions.

The z dimension is physically meaning-
less, used only as room for the two di-
mensional world to curve. As (ds)2 =

dz2 + dr2 =
(dr)2

1 − 8π
3
ρ0r2

for fixed angle,

z =

√

3

8πρ0

√

1 − 8π

3
ρ0r2, which is a piece

of a sphere, of fixed radius. The spherical
arc extends out to the radius of the star.

R
r

z

Thereafter,

eΛ =
(

1 − 2M

r

)−1/2

=
ds

dr
,

or
dz

dr
=

√
2M√

r − 2M
, z =

√
2M

√
r − 2M + const.,

so we have a paraboloid.
We see that the geometry can be weird, and that in particular the proper

distance to the center (call it the radius) may increase faster than r = circum-
ference /2π. In fact, if the spherical piece continued we sould find the surface
of a spherical shell at radius s would approach a maximum and tehn decrease.
The maximum is at ds/dr = eΛ = ∞, or 2m = r. Thus dp/dr = ∞, and in
fact, not integrable, so this is impossible withing the confines of our static
assumption.



88. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

0.17 Particle Orbits in Schwarzschild Metric

Consider a freefalling particle

d2xµ

dλ2
= −Γµ

νρ

dxν

dλ

dxρ

dλ
.

We may choose our spherical coordinates such that, at one instant of time,
θ = π/2 and dθ/dλ = 0.

Then
d2θ

dλ2
= −2Γθ

θr

dθ

dλ
︸︷︷︸

0

dr

dλ
− Γθ

φφ
︸ ︷︷ ︸

− 1
2

sin 2θ=0

(

dφ

dλ

)2

so the orbit remains in the equatorial plane θ = π/2, and dθ/dλ = 0 always.

Let pµ =
dxµ

dλ
, which will be the momentum if λ = τ/m. pµ∂µ is a vector.

pθ = 0. Consider the claim that p0 and pφ are conserved:

d

dλ
p0 =

d

dλ

(

g00 p
0
)

=
g00

dλ
︸︷︷︸

g00,µpµ

p0 − g00 Γ0
µνp

µpν

︸ ︷︷ ︸

2Γ0
0rp0pr

as the rest are zero.
But g00Γ

0
0r = 1

2
g00,r so we get g00,µp

µp0 − g00,rp
0pr = 0, and p0 is con-

served.

Similarly
dpφ

dλ
= gφφ,µ

︸ ︷︷ ︸

0 unless
µ=r or θ

pµ

︸︷︷︸

0 if µ=θ

pφ − Γφµν
︸ ︷︷ ︸

µν=φr,rφ

pµpν ,

and in the second term Γφφr = 1
2
gφφ,r so we get zero. Thus

p0 = −E = constant

pφ = L = constant

If the particle has mass, we choose λ = τ/m. If not, choose λ so that
p is the momentum, and set m = 0. Either way, gµνpµpν + m2 = 0. We
need only consider the geodesic motion outside the star (as within an orbit
is improbably, and not free falling!). So

g00 = − 1

1 − 2M
r

, grr = 1 − 2M

r
, gφφ =

1

r2 sin2 θ
=

1

r2
on the orbit, and
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− E2

1 − 2M
r

+

(

dr

dλ

)2
1

1 − 2M
r

+
L2

r2
+m2 = 0,

or

(

dr

dλ

)2

= E2 − V 2(r), where V 2 :=
(

1 − 2M

r

)(

m2 +
L2

r2

)

.

Case 1: m 6= 0
We now have a classical problem
of a one dimensional motion in a
potential. If E is at the level A,
the particle moves in an orbit which
comes in to rmin, out to rmax, and
back again, repeatedly. In Newto-
nian physics this would be an el-
liptical orbit. If the energy is at
B, we have an unbound orbit, with
the particle coming in to rmax and
then going out to infinity. This
is a hyperbolic orbit in Newtonian
physics. But a particle coming in
with E at C crashes into r = 0 even
though L 6= 0, which Newton would
never have.

V
m 2

2

min maxr r2

1
r/m

B
A

C

A

B

min maxr r
r

Newtonian 
potential with
L = 0

Veff

The stable circular orbit occurs where

dV 2

dr
= 0,

d2V 2

dr2
= 0. Note

1

m2

dV 2

dr
=

2M

r2
− 2L̃2

r3
+
GML̃2

r4

where L̃ = L/m. Then rcircle =
L̃2 +

√

L̃4 − 12M2L̃2

2M
.

If L̃2 < 12M2, there is no stable orbit. The particle will either escape to
∞ or crash into the center. The smallest stable circular orbit is at r = 6M .

The other root of the quadratic equation corresponds to an unstable orbit.
For fixed M , the smallest r corresponds to L̃→ ∞, r → 3M .

The orbit is governed by the equations

dt

dλ
= p0 = g00p0 =

(

1 − 2M

r

)−1

E

dφ

dλ
= pφ = gφφpφ =

L

r2
, θ =

π

2



90. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

(

dr

dλ

)2

= E2 − V 2(r).

Example: suppose a particle is moving in a nearly circular stable orbit.

Let r0 =
L̃2 +

√

L̃4 − 12M2L̃2

2M
, and r ≈ r0. Thus V 2(r) = V 2(r0) + 1

2
(r −

r0)
2 d2V

dr2

∣
∣
∣
r0

. Let k2 =
1

2

d2V

dr2

∣
∣
∣
∣
∣
r0

= m2

[

−2M

r3
0

+
3L̃2

r4
0

− 12ML̃2

r5
0

]

. Now

(

dr

dλ

)2

= E2 − V 2(r) = ǫ2 − k2(r − r0)
2, so r = r0 +

ǫ

k
sin kλ.

Thus one trip out from the smallest radius (periastron or perihelion) to the
next takes ∆λ = 2π/k. During this time φ increases by

∆φ =
∫ 3π/2k

−π/2k

dφ

dλ
dλ =

∫
Ldλ

(r0 + ǫ
k

sin kλ)2
=

2πL

kr2
0

+ O
(
ǫ

r0k

)

= 2π
[

−2Mr0

L̃2
+ 3 − 12M

r0

]−1/2

.

But

(

r0 −
L̃2

2M

)2

=
L̃4

4M2
−3L̃2, or L̃2 =

Mr2
0

r0 − 3M
, and ∆φ = 2π

[

1 − 6M

r0

]−1/2

.

For the Sun, M⊙ = 1.99 × 1030kg, G = 6.673 × 10−11m3/kg s2 = 7.4248 ×
10−28c2m/kg, so M⊙ = GM⊙ = 1, 477.5 m.

For Mercury, r0 = 5.79× 1010 m, so ∆φ = 2π(1 + 3M⊙/r0) = 2π+ 4.81×
10−7 rad. The perihelion shift ignores the 2π, so the shift is ∆φ = 4.81×10−7

rad/rev. Mercury revolves with a period of 7.60 × 106 s, so in a century it
makes 415.2 revolutions, and

∆φ = 1.997 × 10−4 rad/century = 41.2 seconds of arc/century.
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Case 2: m = 0

(

dr

dλ

)2

= E2 − V 2(r),

V 2 =
L2

r2

(

1 − 2M

r

)

For a photon coming from infinity,
with impact parameter b,

L = pφ = rpφ̂ = r|~p| sinφ = bE,

2

V 2

b2E2

r/M3

27M
1

2
b~6M

blarge

φ b

p
p

φ̂
so

(

dr

dλ

)2

= E2

{

1
b2

r2

(

1 − 2M

r

)}

dφ

dλ
= gφφpφ = gφφL = r2bE

dt

dλ
= −g00E =

E

1 − 2M/r

Note under Λ∗ = Eλ, all equations lose dependence on E — the motion
is independent of the energy of the massless particle.

Does a photon coming in get out again? The maximum of V 2/b2E2 is at
r = 3M with value 1/27M2, so for E2 > V 2

max = 27M2b2E2, or b < 3
√

3M ,
the photon will not turn around in r. That is, it will spiral in to r = 0,
despite its having a nonzero L.

If b > 3
√

3M there will be a turning point rT for which dr/dλ = 0, at

r2
T = b2

(

1 − 2M
rT

)

.

Consider a photon at a point r, with momentum pµ = (−E, pr, 0, pφ).
Define the angle to the r axis by tan δ = pφ̂/pr̂, where we use orthonormal
coordinates

pφ̂ =
√

gφφ pφ =
1

r
pφ =

bE

r
,

pr̂ =
√
grr p

r =
(

1 − 2M

r

)−1/2

E

{

1 − b2

r2

(

1 − 2M

r

)}1/2

,

so we see that

tan δ =
b(r − 2M)1/2

r3/2

{

1 − b2

r2

(

1 − 2M

r

)}−1/2

.
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A given angle determines b, and b at a given r determines whether the photon
winds up at r = 0 or at r = ∞. Especially interesting is r = 2M +∆r, where
∆r is small. Then escape requires pr > 0 and b > 3

√
3M . The critical angle

is therefore

tan δ =

√
27M(∆r)1/2

(2M)3/2

(

1 − 27M2

8M3
∆r

)−1/2

∝
√

∆r,

so δ ∝
√

∆r. A smaller and smaller cone of rays can get out as we approach
r = 2M . We shall see later that within r = 2M , no light can ever escape.

A curious feature of this equation is that, for an incoming ray with b
just slightly greater than 3

√
3M , dr/dλ becomes very small not only at the

turnaround but for a long λ around it. If a roller coaster has just slightly too
little energy to make the hill, it takes a long time to turn around. Here it is
not time but λ which we have in our equation, but

dt

dλ
=
(

1 − 2M

r

)

E ∼ 1

3
E and

dφ

dλ
=
L

r2
∼ bE

9M2

are both perfectly nonzero, so φ and t both increase by arbitrarily large
amounts as b → 3

√
3M . The photon makes many orbits around the star

before finally getting away!
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0.18 An Isotropic Universe

The progress of physics was stymied for about 1700 years by the notion
that the Earth was at rest in a preferred reference frame. When it was
finally realized that this is not so, the reaction was very strong. With special
relativity our prejudice that geocentrism is wrong and any frame is as good
as another because dogma.

We therefore have a very strong feeling that one point in space is like any
other (homogeneity), and one direction in space like another (isotropy). when
it comes to cosmology, we must to some extent temper our statements about
all Lorentz frames being like others, for there is clearly a frame in which the
matter in a neighborhood of a few hundreds of millions of lightyears is at
rest, the local rest frame.

We now know that the clusters of galazies are flying apart with a speed
proportional to distance. Unless matter is being created (a violation of
T µν

;ν = 0, hence “unthinkable”), this implies the universe was more dense in
the past, so it is not true that one time is like any other. The best we can
salvage seems to be this:

(a) On a sufficiently large scale, each point in space (each grand neighbor-
hood really), in its local rest frame, looks the same in every spatial
direction. (Isotropy)

(b) For to such pictures at the same time, the pictures are the same. That is,
physics is independent of the particular spatial point. (Homogeneity)

What does “at the same time” mean? there exists a series of spacelike
hypersurfaces which we may parameterize by t, such that for t = c, physics
at ~x in the cosmological fluid’s rest frame at ~x is the same regardless of choice
of ~x.

Consider the world lines of different elements of the fluid as we pass from
one hypersurface t1 to another t2. The physics must be the same, so δτ is
independent of ~x. We might as well use proper time as t, so g00 = −1.

The velocity of the luid at ~x is u = dt. Let us establish three directions
within the t = constant hypersurface. Given a vector v in this hypersurface,
u · v = u · −v by isotropy, so g0j = 0.

Take a particulal “fiducial” hypersurface t = t0. Erect a spatial coordinate
system any way you like on this hypersurface, with metric

g(~x) = dt⊗ dt + γij(~x)dxi ⊗ dxj for x0 = t0.
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Let the coordinates of any event in spacetime by given by x0 = τ measured
along the fluid world line, and xj = xj of the fluid world line when it passed
through the fiducial hypersurface.

What is g at this point off the fiducial hypersurface? Consider the motions
of all the neighboring peices of fluid. Their distance apart may hva changed,
but it must have changed by the same amount in all directions, and angles
must have stayed the same, by isotropy. Therefore gij(t) = a2(t)γij, and

(ds)2 = −(dt)2 + a2(t)γij dx
i ⊗ dxj.

Choice of the spatial coordinates:
Any point is like any other. Take a particular point and call it χ = 0. Assign
χ’s to other points by the distance away from χ = 0. Thus χ is a kind of
radial coordinate.

Consider the two dimensional surface χ = constant. This, at least for
small enough χ, must be a sphere. Choose one such sphere and erect spher-
ical coordinates θ, φ on it. All directions on this sphere are isotropic, so
γijdx

idxj = (dχ)2 + b2(χ)
(

(dθ)2 + sin2 θ(dφ)2
)

by the same argument with

which we decomposed g into (dt)2 + γ. We extend θ and φ coordinates by
geodesics. Ratios of distances must stay the same by isotropy. We choose b
such that b(0) = 0, b′(0) = 1, so for sufficiently small circles the circumference
c = 2πχ.

We now calculate the curvature of the three dimensional space.

gij : gχχ = 1, gχθ = gχφ = 0, gθθ = b2(χ), gφφ = b2(χ) sin2 θ

gij,k = 0 except gθθ,χ = 2bb′, gφφχ = 2bb′ sin2 θ, gφφθ = b2 sin(2θ)

so
Γχ

θθ = −bb′, Γχ
φφ = −bb′ sin2 θ, other Γχ

ij = 0,

Γθ
θχ =

1

2
gθθgθθ,χ = b′/b, Γθ

φφ =
1

2
gθθgφφ,θ = −1

2
sin 2θ,

Γφ
φχ = b′/b, γφ

φθ =
1

2
gφφgφφ,θ = cot θ.

Dχ = ∂χ +






0 0 0
0 b′/b 0
0 0 ’

¯
/b




 , Dθ = ∂θ +






0 −bb′ 0
b′/b 0 0
0 0 cot θ
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Dφ = ∂φ +






0 0 −bb′ sin2 θ
0 0 −1

2
sin 2θ

b′/b cot θ 0




 .

[Dχ, Dθ] =






0 −bb′′ 0
b′′/b 0 0

0 0 0




 ; Rχ

θχθ = −bb′′; Rθ
χχθ = +b′′/b;

[Dχ, Dφ] =






0 0 −bb′′ sin2 θ
0 0 0
b′′/b 0 0




 ;

Rχ
φχφ = −bb′′ sin2 θ;

Rφ
χχφ = +b′′/b;

[Dθ, Dφ] =






0 0 0
0 0 (1 − b′ 2) sin2 θ
0 b′ 2 − 1 0




 ;

Rθ
φθφ = sin2 θ(1 − b′ 2;

Rφ
θθφ = b′ 2 − 1

.

R = gjkRi
jik =

(i = χ) (i = θ) (i = φ)

0 −b′′/b −b′′/b (j + χ)
−b′′/b +0 ?? (j = θ)
−b′′/b +(1 − b′ 2)/b2 +(1 − b′ 2)/b2 (j = φ)

= −4
b′′

b
+ 2

1 − b′ 2

b2
.

Homogeneity requires this to be a constant, say 6K.

Solutions: (1) b = K−1/2 sin(
√
K χ) for arbitrary K√

K → i
√
K: (2) b = K−1/2 sinh(

√
K χ)

limK→0 (3) b = χ

These are the only solutions to the homogeneous isotropic problem. They
correspond to

1. A closed universe. the radii of the 2-spheres (surfaces of a ball) begin
to shrink after χ > π/

√
K, and shrink to zero at

√
k χ = π. Thus χ

only ranges up to π/
√
K, and the world has a finite volume

V =
∫ √

g dχ dφ dθ =
∫

b2 sin θ dχ dφ dθ = 4π
∫

b2dχ

= 4πK−3/2
∫ π/

√
K

0
sin2(

√
K χ)

√
K dχ = 2π2K−3/2

[This is easily pictured by surpressing one dimension as a surface of a
sphere.]
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2. An open universe. Here χ can grow without limit. The surfaces of
spheres grow more rapidly than (radius)2.

3. Flat space, with χ = r and the usual spherical coordinates.

In writting the 4-D metric, it is more convenient to scale χ, as there is a
constant in front of γij anyway. Let χ′ =

√
K χ, so

γ = K−1(dχ′)2 + sin2 χ′ d2Ω (K > 0)

γ = −K−1(dχ′)2 + sinh2 χ′ d2Ω (K < 0)

and

(ds)2− = −(dt)2 + a2(t)







(dχ)2 +
sin2 χ

sinh2 χ
χ2

︸ ︷︷ ︸

choose world

(

(dθ)2 + sin2 θ (dφ)2
)







Einstein had a very strong prejudice in favor of a closed universe. Physicists,
especially general relativists, have a very strong prejudice in favor of Einstein.
So let us work out the case11 for which the universe is closed, and use sin2 χ.

[This seems inappropriate to do:] We will accept the book’s [MTW] cal-
culation of G, as I’m sure you are not anxious for yet another curvature
calculation. G00 = 8πT00 gives

3

a2

(

da

dt

)2

+
3

a2
= 8πρ.

We need an equation for ρ, which can be a function of t. From T 0ν
;ν = 0 =

T 0ν
,ν + Γ0

ρνT
ρν + Γν

ρνT
0ρ, T 00 = ρ, T 0i = 0, T ij = p gij, so we need Γ0

ij and
Γν

0ν .

Γ0
µν =

1

2
gµν,0 =

a′

a

(

gµν + δ0
µδ

0
ν

)

Γν
0ν =

1

2
gνρg − ρν, 0 =

a′

a
gijgij = 3

a′

a

11But we now have new information that seems to favor a flat universe with a cosmo-
logical constant.
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so

0 = ρ,t +
a′

a

(

gijT
ij + 3ρ

)

= ρ,t + 3
a′

a
(p+ ρ) .

Now we need to know p. Here we need an equation of state.
Case 1: Gas of matter with m≫ T .

Recall that for a gas of noninteracting particles T µν =
∑

n

∫

dτ δ4(xµ −
xµ

n)muµ
nu

ν
n. In the rest frame of the fluid, therefore, ρ = T 00γ2 ≈ mγ2 while

p = Tii ≈ mv2γ2. If the particles are moving nonrelativistically with respect
to the fluid “background” at their location, ρ ≫ p, and we may ignore p in

the conservation equation
1

ρ

dρ

dt
= −3

a

da

dt
, or ρ ∝ a−3.

It would be näıve to say “of course, the total energy of the universe is
∝ ρa3 and is constant”, because ρ is the matter energy density (without
gravitational energy).

The situation is quite different if the particles are ultrarelativistic, i.e. with
v very nearly equal to c with respect to the fluid rest frame. Photons and
gravitons are always ultrarelativistic, and neutrinos almost always. Other
particles are also relativistic if the temperature T ≫ 2m. (We are choosing
Boltzmann’s constant kB = 1. In conventional units we mean kBT ≫ 2mc2.)
There are no known particles which have small enough non-zero mass to sat-
isfy this relation now, but near the beginning it was hotter. At T ≫ 1010◦K,
electrons were ultrarelativistic, and so on.

Suppose that the universe is dominated by radiation (or ultrarelativistic
particles). Then

T =
∑

∫

E(1, ~v) × (1, ~v) where v2 = 1.

Averaging over directions, assuming isotropy of course, ρ = 3p, and

dρ

dt
= −3

a

da

dt
× 4

3
, or ρ ∝ a−4.

Thus the energy density times volume is not conserved — rather it is inversely
proportional to the size of the universe.

Consider what is happening. We have assumed the number of photons
doesn’t change, though not in a crucial way. If theere is relatively little matter
around, a gas of photons will actually have the number of photons conserved
because ther is not matter for them to interact with. Thus the energy per
photon is falling with th expansion of the universe. That is, the wavelength
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is proportional to the “radius” of the universe, just as if the photon were a
standing wave in an adiabatically expanding container.

These two cases are extreme simplified cases, but they cover the recent
history of the universe pretty well [NO — DARK ENERGY] Let us write
ρ ∝ a−n, with n = 3 for a matter-dominated universe, n = 4 for a radiation
dominated universe (and now n = 0 if dark energy dominates!).

Thus Einstein’s equation tells us

3

a2

(

da

dt

)2

+
3

a2
=

k

an

or ȧ2 +1− k

an−2
= 0, (where we can replace

the +1 with −1 for an open universe).
As the universe expands, eventually k/an

becomes 1 and ȧ = 0, thereafter it falls
back in.

2a
k

an

Thus the closed universe which led to our form of Einstein’s equation is
required to grow to a maximum size, and then collapse back down to zero.

If we had assumed the open universe with sinh2 χ instead of sin2 χ, the
sign of the 3/a2 term is reversed. When the universe is very young, a is very
small, and the ±1 is negligible. But as a gets large, the ±1 term dominates.
For the open universe ȧ can never vanish, so the expansion continues forever.

At early times, we may write, approximating ȧ = ka2−n/2, or
dt

da
∝ a

1
2
n−1,

t ∝ an/2, or

a ∝ t2/n,

{

t2/3 matter

t1/2 radiation

This is the reason for the peculiar statement that, even in a closed universe
which started at a point (of zero size), there are points of the universe we
can not yet see. Consider a photon starting out as χ = 0 at t = 0, travelling

in the θ = 0, φ = 0 direcction. Then
dχ

dt
=

1

a(t)
∝ t−2/n, so χ ∝ t1−2/n.

Thus it has gone only a finite χ, (which is a form of spherical angle) since
the beginning. If we are separated by more than the present kt1−2/n we can’t
see this event yet but will be able to later on.

By the way — you can’t see the back of your head! If the photon left the
back just after thebig bang, it will be approaching your eyeballs (along with
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everything else, but faster) just at the big crunch when the universe collapses
to a point again.

Read Chapter 28 but skip box 28.1. You might also like to read Ch V of
“The First Three Minutes”.

Notice that Stephan-Boltzmann assures us that in the radiation domi-
nated phase the energy density is ρ = KT 4 ∝ a−4, so T ∝ 1/a. Therefore it
was very hot at the beginning.

If we try to extrapolate the history of the universe back in time, say
to time about 1 second, the temperature was so hot that all atoms were
dissociated. In fact, even nuclei were dissociated. As time went on, a ∝ t2/n,
T ∝ t−2/n, the temperature cooled to a point where free neutrons would
decay, but also nuclei could become bound. This period, with t ≈ 2 minutes,
is when most of the deuterium and helium and lithium currently around was
formed. After a brief period the nuclei were no longer sufficiently energetic
to fuse.

the world was still too hot for atoms, and we had a plasma, in equilib-
rium with electromagnetic radiation. As the temperature dropped to three
or four thousand degrees Kelvin, at about 10000 years, nuclei were able to
bind electrons, and atoms formed and the plasma disappeared. Suddenly the
universe became rather transparent to radiation, and so the black body radi-
ation present at that time has continued, unscattered, to this day. However
the wavelength has grown along with the universe about 1000 fold, so the
temperature of this blackbody radiation has fallen to 2.7◦K. The detection
of this radiation by Penzias and Wilson led to the Nobel Prize in 1978, the
year before I first prepared these notes.

The black body radiation is a great success of the Robertson-Walker met-
ric. But it is also an embarrassment of sorts. Tests of the isotropy of the
radiation have shown th temperature to vary by less than one part in a thou-
sand in the local fluid rest frame. Thus the homogeneity of the fluid in the
early universe was very good === all in equilibrium. But the universe we
currently see consisted of many regions which had never had causal contact!
How could this perfect homogeneity be established? This is called the hori-
zon problem. A pssible solution comes from pushing even further back in
time.

In the very early universe, the temperature was very hot and falling very
quickly. At very high energy, the elementary physics is radically changed.
For example, the objects which we consider particles are in fact composites of
inseperable quarks. But at very high temperatures quarks are not expected to
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be confined. This corresponds to a “false vacuum” state which has a different
energy density from the true (temperature = zero) vacuum. At even higher
temperatures, a grand unified symmetry may be restored, and the physics is
best described as particles over a false vacuum of enormous energy density.
As the universe cools, it would remain in this state for some time after the
energy is supercooled. thus the major contribution to the energy density is
just the extra energy density ρ0, which this state contains, independent of a.

Then

(

da

dt

)2

+ 1 =
8π

3
ρ0a

2 + k′a−2, where ρ0 is from the false energy of

the vacuum and k′ is from the excited quarks.

As a grows, the ρ0a
2 term dominates th 1 and the k′/a2, and we have

da

dt
=

√

8πρ0

3
a, or a(t) ∝ e

√
8πρ0/3 t,

growth at an exponential rate. But because the false vacuum is unstable,
it will decay and turn its energy density into radiation, so eventually this
exponential growth phase will stop, and lead into a more normal expansion
of a radiation dominated universe.

Now if we extrapolate our present universe back in time to the beginning
of the era of radiation domination of the current vacuum (at a time on the
order of microseconds) the current universe consisted of causally disconnected
patches. But if we extrapolate backwards the exponential growth, the size of
this universe is much smaller, and could well have been causally connected
and in equilibrium at very early times when SU(5) or some larger symmetry
controlled the physics.

/subsectionThe Hubble Constant

Given two elements of fluid at separation ∆χ, the distance between them,
a(t)∆χ is increasing at a rate ȧ∆χ, so at early times

H =
velocity of separation

separation
=
ȧ

a
=

2

nt
is independent ofχ.

It is not constant in t, and furthermore H−1 = nt/2 is an overestimate (by
50% if matter dominated) of the actual proper time. So if the Earth is ∼ 5
billion years old (proper time),

H−1 ≥ 7 × 109 years
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or we have a contradiction. If some globular clusters in our galaxy are ten
billion years old, as claimed by people who do stellar evolution studies, then
H ≥ 15× 109 years. Direct measurements of H yielded 18 billion in the mid
’70’s , but just as I was teaching this course for the first time, November
’79, Walter Cronkeit announced it had fallen to 9-10 billion. The Rutgers
Astrophysics group at the time said they didn’t believe it.

There has been tremendous progress measuring the parameters of the uni-
verse since I first prepared these lectures. Much of this is based on precision
measurements of the cosmic background radiation, the black-body radiation
we mentioned earlier, but now its angular variation has been studied exten-
sively. We also have much better measurements of distance versus redshifts
to large distances. The current measurements point to about 13.5 billion
years.
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0.19 More on the Schwarzschild Geometry

Recall

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

.

What happens at r = 2M? The best way to find out is to go there. Might
as well fall freely, radially,

dt

dτ
=

(

1 − 2M

r

)−1

Ẽ, Ẽ := E/m

dr

dτ
= ±

√

Ẽ2 − Ṽ 2 Ṽ 2 := V 2/m2 = 1 − 2M

r
if L = 0

= ±
√

Ẽ2 − 2M

r
− 1

We might as well fall in from infinity from rest, so E = energy at ∞, = m,
and

dr

dτ
= −

√

2M

r
, or

r3/2

(2M)3/2
= − τ

2M
+ const.

We take infinitely long, of course, to fall in from infinity, but from any finite
distance it takes only a finite proper time to pass through the mysterious
r = 2M and hit r = 0. Choose the constant to be zero (set clock).

What about t?

t = int
1

1 − 2M
r

dτ

dr
dr,

but
dτ

dr
= −

√
r2M → −1 at r = 2M , so the integral diverges as r → 2M ,

τ → −2M , t→ 2M
∫

dr

r − 2M
∼ −2M ln

(
r

2M
− 1

)

+ const.

What does this mean? Does it mean the falling physicist never gets to
into teh Schwarzschild radius? Not at all, from his own point of view, he
sails past without a glitch at τ = −2M .

t is only a coordinate, not necessarily a good “time”. But it is times in a
sense. Outside the Schwarzschild radius, the paths of possible travel (forward
light cone) are always with ∆t > 0. So photons leaving the physicist and
reaching an observer at ∞, or any other point outside r = 2M , do so after
time t if they leave at coordinate t. Thus the observer at infinity, or even
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at some finite radius > 2M , never sees the free falling physicistenter the
Schwarzshild radius.

The atoms in the physicists skin or spacesuit vibrate at their usual speed
in proper time. But as we approach the Schwarzschild radius, this takes
divergingly long in t. thus the outside observer sees the free falling physicist
as redshifting away, barely visible just setting almost at the Schwarzschild
radius.

I have spoken as if nothing unusual happens to the f.f.p. as he passes the
S.R. But is not the metric singular there? The metric is a choice of coordinate
system, not a physical quantity. What about the curvature? Components of
the curvature tensor will be singular simply because our coordinate system
is. To find out if something really terrible happens, we will attempt to set
up a local inertial coordinate system. First start with the static orthonormal
frame in which we calculated G. the curvature components in this frame
are all ∝ 1/r3, with nothing funny at r = 2M . But this is a funny frame,
for a particle sitting “at rest” at r = 2M has (ds)2 = 0dt2 + 0 = 0, so it
is lightlike (tracelling at the speed of light, in some sense). Let us instead
choose a new x0 = τ so dx0 = u. the new orthonormal frame is related to the
old (at r > 2M) by a Lorentz transformation. As r goes through 2M , this
transformation is still possible but becomes a Lorentz transformation faster
than the speed of light. Thus the ffp inertial system and the Schwarzschild
orthonormal fram are not both physical rest frames. Which is unphysical?
The Schwarzschild, for at r < 2M , a particle “at rest” with dr = 0 has
(ds)2 = −

(

1 − 2M
r

)

dt2 > 0, spacelike, so is moving faster than light. There
can be no such physical objects.

MTW assures us that in the local inertial frame

Rt̂r̂t̂r̂ = −2M

r3
= −Rθ̂φ̂θ̂φ̂ = 2Rr̂θ̂r̂θ̂ = 2Rr̂φ̂r̂φ̂ = −2Rt̂θ̂t̂θ̂ = −2Rt̂φ̂t̂φ̂,

all others zero, so nothing singular happens at r = 2M

We are getting a strong impression that the singularity is not real, but
a coordinate singularity. to get an idea about such things, consider a flat 3-
space, which certainly has no physical singularities, in spherical coordinates.

(ds)2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2, gφφ =
1

r2 sin2 θ
,

singular both alond r = 0 and along θ = 0.



104. Last Latexed: November 19, 2015 at 11:03 Joel A. Shapiro

If you are given a 3-D coordinate system, you expect theta = 0 is a plane.
But it’s not — theta = 0 is a line. What is r = 2M? in 4-D space we would
expect it to be a hypersurface, with a three dimensional volume

∫ √
gttgθθgφφdtdθdφ = 4π(2M)2

∫ √
gttdt = 0

. So perhaps it is two dimensional. Surpressing θ, φ coordinates, which are
not singular there except at θ = 0, π, we have what we might expect to be a
line (r =const, t arbitrary but finite) is really a point in 2-D spacetime.

There is a long motivation in the book, which will take you through
Novikov coordinates, Eddington-Finkelstein coordinates, and then finally to
the Kruskal-Szekeres coordinates,

u =

√
r

2M
− 1er/4M cosh(t/4M)

u =

√
r

2M
− 1er/4M sinh(t/4M)

for r > 2M , which maps the region r > 2M onto u2 − v2 > 0, u > 0. The
“line” r = 2M , t finite is a mapped intot he point (0, 0). Every particle
falling into r = 2M has t = −2M ln(r − 2M) + k, so cosh(t/4M) and
sinh(t/4M) → 1

2
( r

2M
− 1)−1/2ek, so u = v (a line) corresponds to the locus

of points passed by different particles as r = 2M , more sensible than all
particles falling in at t = ∞.

From u2−v2 =
(

r
2M

− 1
)

er/2M we get 2udu−2vdv = r
(2m)2

er/2Mdr. From
v
u

= tanh(t/4M) we get

dv

u
− v

u2
du =

1

4M

1

cosh2(t/4M)
dt

or udv − vdu = 1
4M

(
r

2M
− 1

)

er/2Mdt. Then

−
(

1 − 2M

r

)

dt2 +
dr2

1 − 2M
r

= −(4M)2 2M

r

(
r

2M
− 1

)−1

(u dv − v du)2 e−r/M

+(4M)2 2M

r

(
r

2M
− 1

)−1

e−r/M (u du− v dv)2
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= (4M)2 2M

r

(
r

2M
− 1

)−1

e−r/M
[

(u2 − v2) du2 − (v2 − u2)dv2
]

= 32
M3

r

(

du2 − dv2
)

e−r/2M .

The singularity has disappeared.
Note r is now a function of u and v,

given by

(
r

2M
− 1

)

er/2M = u2 − v2,

so r is a single valued function of u2 − v2

until r gets to zero.

r

2M

u -v2 2

What happens to a particle falling in? It is easiest for a photon, which if
radial (dθ = dφ = 0) satisfies du2 = dv2 just as in flat space. The solutions
are

u = ±v + k, u2 − v2 = ±2vk + k2 =
(
r

2M
− 1

)

er/2M .

At large distances for finite k, |t| must also get large, and we have

±2k sinh t/4M =

√
r

2M
− 1er/4M , or ± t ≈ r (+ ln terms).

Thus the incoming photons are with a − sign, outgoing with a +.

The path of the photon is a straight
line which eventually hits v2 −u2 =
1 (r = 0) where the curvature has
a singularity. We cannot go past
there. But nothing unusual hap-
pened at r = 2M . The u, v co-
ordinates continue right on in, al-
though the connection with r and
t no longer apply here. The an-
alytic expressions give t an imagi-
nary part, which, if ignored, gives
the connection

u =

√

1 − r

2M
er/4M sinh(t/4M)

v =

√

1 − r

2M
er/4M cosh(t/4M).

r=2M

r=2M

r=0

r=0

I

I

II

IV

1

u

v
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Consider an outgoing photon at r > 2M . It has a line u = v+k. Perhaps
it was created at an event with r > 2M . But let us ask how far in it could
have come from? As we push back further to |u| = |v|, r = 2M , nothing
singular occurs, and the photon might have come from even further in, right
from r = 0, v2 − u2 = 1. The only difficulty is to see how anything could
have got there to start it off, for no particle which was ever outside r = 2M
can later be found in the region IV of the Kruskal-Szekeres diagram.

Consider our freely falling physi-
cist (ffp) again. After passing r =
2M , in a panic, he forgets his gen-
eral relativity and tries to beam a
message for help outward. the light
ray, of course, does not escape, it
eventually crashes into the hyper-
bola of the black hole. The pho-
ton is spied by another ffp, (#2),
who chooses to spend his last mi-
crosecond speculating on how far
back it could have come from. So
he extrapolates it back, and finds
that it might have come from out-
side the Schwarzschild radius. But

I

I

II
III

IV

1

u

v

ffp

ffp1

2

not from anyone he’s ever talked to before, because the region III, u <
0, u2 > v2, although not separated from u > 0 by a singularity, is not causally
connected with any point in the region I. People in I and III can communicate
only after both have irrevokably sacrificed themselves in the attempt.

Recall that we discussed embedding a star’s geometry in a Euclidean 5
dimensional space. A snapshot at t = 0 and at θ = π/2 yields a tow dimen-
sional surface in a 3-D Euclidean space, which was shaped inside the con-
stant density model star like a section of a sphere, but outside like a parabola
z =

√
8M

√
r − 2M , from the geometry inside. Now our Schwarzschild ge-

ometry has the same form outside the star. Let us consider the
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spacelike hypersurface v = 0
which corresponds to t =
0. Then we are always out-
side the Schwarzschild ra-
dius, and we have:

Away from the black
hole there are two asymp-
totically flat spaces, u > 0
and u < 0. This is a space-
like hypersurface. It has no
ends.

φ=0

2M

r

u=0

What happened to the piece of t = 0 r < 2M? It is not connected to t = 0,
r > 2M . And it’s not spacelike, as grrdr

2 < 0.

So it is v = 0 which is a complete snapshot of the universe(s), not t = 0.
and it has two almost disconnected spaces.

Now we seem to have a paradox. The Schwarzschild geometry was static,
so every slice in t generates a snapshot which looks like what we have here.
Then why can’t I simple walk along on of these φ = constant lines and get
from one universe to another? The reason is that things aren’t really static
— the spacelike hypersurfaces t = constant are, in the Kruskal system, lines
through the origin. That is, the planes of different t do not permit the passage
of time at u = 0, so successive smapshots will show an observer approaching
but never reaching u = 0 (r = 2M).

We can, of course, propagate the hypersurface forwards in proper time
everywhere. But we have now gone away from varying t at constant r.
In particular, we have now included regions of r < 2M in our spaceline
hypersurface. Recall that the metric is not static in v, that is, g(u, v, θ, φ) is
a function of v.
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B

C

D

A

A

A

B

B

B

B

C

C

C

C

D

D

D1

1
1

1

1

1

1

A
1

2

2

2
2

2

2

2

2

A’

A’

Successive hypersurfaces with a real lapse of proper time correspond to
changing geometry, and bridge between the two universes are only connected
for a short period.

Disclaimer: The Kruskal coordinate system and metric, with its two uni-
verses neatly joined at their singularity, is certainly a solution but probably
not a physical one. Real black holes are formed by collapse, say of a star.
Within the boundary layer of the star, the metric is no longer Schwarzschild
or Kruskal, and the other universe doesn’t exist.

But outside is still Schwarzschild. We derived S by asking for

(a) Solution to vacuum field equation Gµν = 8πTµν (for r > surface)

(b) Spherical symmetry

(c) Static

In fact, Berkhoff’s theorem states that (c) is unnecessary, that (a) and (b)
are enough to give Schwarzschild in the vacuum region.



617: Last Latexed: November 19, 2015 at 11:03 109

A proof is in the text (MTW) You’ll have to read Box 23.3 to understand
it (something we’ve skipped). I’m more interested in the motivation.

Consider an uncollapsed star, very slowly varying because of the light
being given off, and non-rotating. Outside we have Schwarzschild. Now let
it contract (maybe the core is used up, coools and collapses) to within the
gravitational (Schwarzschild) radius. The geometry outside can only change
if something tells it to, i.e. gravitational waves. And a spherically symmetric
object and motion can’t produce gravitational waves. (Easier problem to
think about: collapsing spherically symmetric charge distribution) so the
field outside, both gravitational and electromagnetic, doesn’t change due to
the collapse — it remains Schwarzschild.

That means that all the things we said about small particles falling into
a static Schwarzschild singularity also hold for the gas on the surface of the
star:

(a) No force (no p(ρ) can stop the collapse once the surface is within r = 2M .

(b) Light emitted from the surface after that can’t escape.

(c) An outside observer can never see the final collapse. Instead he just
sees the surface fade away. In fact, the luminosity vanishes as L ∝
e−t/3

√
3M = e−t/26µs for a one-solar mass star. the light coming from

the surface is similarly red-shifted z = ∆λ
λ

= et/4M for radial photons,

though many of the photons arriving late are old photons coming from the
surface as it passed r = 3M and stored themselves in unstable orbits there.
These have z ≈ 2. Anyway, quibbling over redshifts in the last 100 µs of
collapse seems silly right now.
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0.20 Black Holes with Charge and Spin

In finding the Schqarzschild metric we insisted on

(a) Spherical symmetry, so S = 0

(b) no T µν outside, therefore no electric field, and Q = 0

Why are spin and charge important? Because you can detect the S and Q
of a black hole from far away, by the dragging of inertial coordinates and
by the electric flux. Baryon number, lepton number, etc.are not similarly
measurable from afar.

The general solution with S and Q is

ds2 = −∆

ρ2

(

dt− a sin2 θdφ
)2

+
sin2θ

ρ2

[(

r2 + a2
)

− adt
]2

+
ρ2

∆
dr2 + ρ2dθ2,

(10)
where

a = S/M angular momentum / mass

ρ2 = r2 + a2 cos2 θ

∆ = r2 − 2Mr + a2 +Q2

This does not look very familiar. Note only that g is independent of φ, so it
is axially symmetric. We must give F as well as g.

F =
Q

ρ4

{(

r2 − a2 cos2 θ
)

dr ∧
(

dt− a sin2 θdφ
)

+2ar cos θ sin θdθ ∧
[(

r2 + a2
)

dφ− adt
]}

(11)

We will not verify that this is a solution of the coupled Einstein and Maxwell
equations, but accept it on faith. To understand the parameters, we note at
large distances,

ds2 = −
[

1 − 2M

r
+ O(r−2)

]

dt2 + 2a
[

1 − 2M

r
− 1

]

sin2 θ dφ dt+ O(r−2)

+
[

r2 sin2 θ + O(1)
]

dφ2 +
[

r2 + O(1)
]

dθ2 +
[

1 + O(r−1)
]

dr2.

Comparing to MTW 19.5 showsM is indeed the mass, and using r2 sin2 θdφ =
xdy − ydx, we have sin2 θdφ = ǫℓj3

xℓdxj

r2 , with (?) 4aM = 4S, so a = S/M .
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The electric field is

F =
θ

r2
(dr ∧ dt + 2ar cos θ sin θdθ ∧ dφ+ other components O(1))

= Erdr ∧ dt +Brrdθ ∧ rdφ+ other components ,

With Er =
Q

r2
, other components O(r−4), Br =

2Qa

r3
cos θ, so p = Qa is the

magnetic dipole moment.

The horizon:
Is it possible for a particle to maintain constant r? Its path must have

ds2 < 0, so this can only happen if ∆ > 0. This puts a horizon at r2−2Mr+
a2 +Q2 = 0, or

f = r+ := M +
√

M2 − (a2 +Q2).

There is no horizon if a2 +Q2 > M2.
We will later see that the area of the horizon is important. Lengths on a

surface of fixed r, at fixed t, are [dt = 0 = dr]

ds2 =

[

−∆a2 sin4 θ

ρ2
+

(r2 + a2)2

ρ2
sin2 θ

]

dφ2 + ρ2dθ??

so the area is
∫
{

ρ2

[

(r2 + a2)2

ρ2
sin2 θ − ∆a2

ρ2
sin4 θ

]}1/2

dθdφ. This simplifies

on the horizon, where ∆ = 0, to

A =
∫ π

0
dθ
∫ 2π

)
(r2

+ + a2) sin θ = 4π(r2
+ + a2).

Once it becomes impossible for an observer to maintain his r, he is irrevokably
doomed to fall into the hole, to r = 0. In some sense he is already there, for
no photon he admits can get out either.

For a black hole with angular momentum, there is a dragging of the
inertial frames. We saw this effect even in the weak field approximation,
equation 19.5, but it becomes dramatic closer in, when it becomes impossible
to “stay still”. To stay put with respect to the background geometry dr =
dθ = dφ = 0, so

ds2 =

(

−∆

ρ2
+
a sin2 θ

ρ2

)

dt2
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had better be timelike (< 0). This “static limit” is at

∆ = a sin2 θ = (r −M)2 + a2 +Q2 −M2

or r = r0(θ) = M +
√

M2 −Q2 − a cos2 θ ≥ r+.

Within the ergosphere it is impossible
not to rotate in the same direction as
the hole. What happens to an infalling
particle? Just as for the Schwarzschild
case, the t coordinate goes to ∞ as the
ffp reaches the horizon. But dφ/dt →
(r2

+ + a2)/a, which is finite, so as t →
∞ the orbit also makes infinitely many
loops around during the plunge.

horizon

ergo sphere

static limit
= 0θ

Yet all this happens in a finite proper time, with no singular tidal forces
or torques on the ffp. One may make a change of variables to make the non-
singular nature of the horizon apparent — the version in MTW is analogous
to the infalling Eddington-Finkelstein coordinate system for the Scharzschild
case, which we skimmed. Here, however, one needs to change the φ coordi-
nate so we don’t get all tangled up.

The Kerr-Newman black hole is a “static” solution, but we may ask what
happens if an object falls in. There is, of course, conservation of momentum
and energy (as understood in the asymptotically flat space), and also of
angular momentum and charge. Actually an object won’t put everything in,
for in the process gravitational waves, and, if charged, Maxwell waves, are
radiated, so not all the E, p, and L go in, but whatever doesn’t get readiated
away goes into changing the M , ~v, ~S and Q of the black hole.

As

A = 4π(a2 + r2
+) = 4π

(

2M2 −Q2 + 2M
√

M2 − (a2 +Q2)
)

,

a small change in M , Q and J (= aM) gives

dM =
κ

8π
dA+ ΩdS + ΦdQ.

(S is spin, not entropy) To evaluate κ, Ω and Φ, we write
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dA

4π
= 4MdM − 2QdQ+ 2(r+ −M)dM

+
2M

r+ −M

(

MdM −QdQ− SdS

M2
+

S2

M3
dM

)

=
2

r+ −M
[r2

+ + a2]
︸ ︷︷ ︸

=A/4π

dM − 2Qr+
r+ −M

dQ− 2a

r+ −M
dS,

so dM =
r+ −M

2A
dA+

4πQr+
A

dQ+ 4πaAdS,

so κ = 4π
r+ −M

A
, Ω =

4πa

A
, Φ =

4πQr+
A

.

This is to be thought of as a kind of first law of thermodynamics, with A
playing the role of entropy and κ a temperature.

But this first law of holedynamics is not enough — things with black holes
are not reversible. The second law is this: In any classical process the area
of the horizon cannot decrease. We can increase or decrease the charge, the
spin, and even the mass, but always subject to the constraint that the area of
the horizon cannot decrease. One may even cosider colllisions of black holes,
which may combine to form one whose area is at least as great as teh sum of
the two initial ones. This is all supposed to remind you of entropy. That the
black hole had entropy is not surprizing — after all, information about the
infalling praticle is lost — only the energy, angular momentum and charge
are remembered.

But if the black hole has entropy, in a cold empty space, shouldn’t it
radiate in a box with no entropy at all?

Classical mechanics does not permit this, and MTW only hints at an
analogy. But since then it has been realized that quantum mechanics plays
a vital role. Consider an S = Q = 0 hole, and let a pair of photons spon-
taneously emerge from the vacuum just outside r = 2M . Of course, there
is not energy for two real photons, but if the one with negative energy falls
into the hole within ∆t ∼ h̄/|E|, who is to object? The remaining positive
energy photon can then escape, with a net extraction of mass from the hole,
and a shrinkage of the horizon.
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The effect is that the black hole is a black body, and does radiate accord-
ing to standard thermodynamics. It has a temperature

T =
κ

2π
=

2(R+ −M)

A
.

Note for nonrotating uncharged holes T ∝ 1/M . Thus ∂M
∂T

< 0, and black
holes have a negative specific heat.

Large (starlike) black holes are so cold that their radiation is negligible.
But it is possible that right after the big bang highly compressed regions of
perhaps a billion tons of material formed little black holes with r+ approxi-
mately 1 fermi (1 femtometer). Such objects could be found with a density
of, say, 100 per cubic light-year, and would radiate 6,000 megawatts, a nice
power source if you can find one.

Refs:
Hawking, Scientific American January 1977
Hawking, Phys Rev D13 (76) 191.
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0.21 Equivalence Principle, Fermions, and Fancy

Formalism

We have discussed primarily how to treat the gravitational forces between
objects. Other forces must be specified in other ways — general relativity
does not tell you what these are, but it does specify how to incorporate them
into curved space. A loose prescription is: convert all tensors in flat space to
local tensors defined in terms of tangent vectors, and change all derivatives
to covariant derivatives.

But how do you handle, for example, the Lagrangian for the electron,

L = −ψ̄ (γα∂α −m)ψ ?

Of course ∂α → Dα but how does D act on ψ, which is not a tensor? And
what about γα ? In special relativity γα are constant matrices, and ψ is
neither a scalar nor a tensor, but a spinor. How does ψ transform under
general coordinate chart change (coordinate transformation)? It cannot be
defined!

Instead we must return to the equivalence principle. At a given event
P, set up a local inertial coordinate system ξα in a chart I not necessarily
connected tot he xµ which are the variables for chart M . Define the vierbein
at that particular point to be

V α
µ :=

∂ξα

∂xµ

∣
∣
∣
∣
∣
P
. (12)

In the ξ coordinate system we have

L = −ψ̄(ξ)

(

γα ∂

∂ξα
−m

)

ψ = −ψ̄(ξ) (γαDα −m)ψ.

Changing to M , we find

L = −ψ̄(x)
(

(V −1)µ
αγ

αDµ −m
)

ψ.

Notice that ψ is a spinor which transforms under changes of chart I. But chart
I is restricted to orthonormal coordinates12 at P, so only Lorentz transforma-
tions are permitted. That’s good, because I can define spinor representations

12More accurately, to a Minkowski space’s coordinates.
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of the Lorentz group, but I cannot define objects which transform like “spi-
oors” under the group of arbitrary changes of chart at a point, general linear
4 → 4 real transformations.

The ψ’s are scalar fields under changes of chart M . That is, ψ′
a(x′) =

psia(x), as long as I hold I fixed. The γ’s are still the numbers the field
theory books tell me.

The vierbeins V have two indices but they live in different charts. Thus
V −1 behaves like a vector in M in the index µ, and like a 1-form in I in the
index α. Let’s agree that M indices are µ, ν, ρ, . . . and I indices are α, β, γ, . . ..
I indices are raised and lowered with the Minkowski metric ηαβ , M indices
with gµν , so

V µ
α = ηαβV

β
νg

µν = ηαβV
β
ν

(

V −1
)ν

γ

(

V −1
)µ

δ
ηγδ

= ηαβδ
β
γ η

γδ
(

V −1
)µ

δ
=
(

V −1
)µ

α
.

ow we come to the crucial question: what does Dµ mean, acting on ψ.
Recall that D(object) = 0 defines parallel transport of that object. If we
parallel transport an I basis, we must be left with an orthonormal basis, so

(Dµeα) = ω β
µ αeβ ,

where the matrix (ωµ)β
α must be a generator of a Lorentz transformation,

(ωµ)αβ = (ωµ)[α,β].
If I take a vector u and express it in the I chart,

(Dµu) = Dµ(uαeα) = (∂µu
α)eα) + uα(ωµ)β

αeβ

= uβ
;µeβ, so uβ

;µ = uβ
,µ + ω β

µ αu
α.

Of course we may also express u and Dµu in the C chart u = uνEν , where

the basis Eν in M is connected to eα in I by EνV
β
ρeβ, so uβ = V β

νu
ν,

uν = (V −1)
ν
β u

β = V
/

β nuuβ,

Dµu =
[

uν
,µ + Γν

ρµu
ρ
]

Eν

=
[(

V ν
β uβ

)

,µ
+ Γν

ρµV
ρ

β uβ
]

V γ
νeγ

=
[

uγ
,µ + uβω γ

µ β

]

eγ
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so
ω γ

µ β = V ν
β ,µV

γν + Γν
ρµV

ρ
β V γ

ν .

What about ψa? We must have

(Dµψ)a ≡ ψa;µ = ψa,µ + Ω b
µa ψb

(

Dµψ̄
)a ≡ ψ̄a

;µ = ψ̄a
,µ − ψ̄bΩ a

µb ,

so Dµψ̄ψ = ∂µ(ψ̄psi as we should have for a scalar.
Now ψ̄γψ is a vector, so

Dmuψ̄γ
αψ = ∂µ(ψ̄γαψ) + ω α

µ βψ̄γ
βψ

= ψ̄a
,µγ

α
abψ

b − ψ̄cΩ a
µc γ

α
abψ

b + ψ̄cγα
cb

(

ψb,µ + Ω a
µb ψa

)

,

so ω α
µ βψ̄γ

βψ = −ψ̄ [Ωmu, γ
α]ψ. The solution is Ω b

µa = i
4
ω α

µ β

(

σ β
α

) b

a
, for

[Ωmu, γ
α] =

i

4
ω γδ

µ [σγδ, γ
α]

=
1

2
ω γδ

µ

[

δα
γ γδ − δα

δ γγ

]

=
1

2
ω αδ

µ γδ −
1

2
ω γα

µ γγ = ω α
µ βγ

β.

Now we have three kinds of covariant derivatives:

Dµ = ∂µ + Aµ







A ν
µ ρ = Γν

ρµ

A α
µ β = ω α

ν β

Aµab = (ωµ)ab

And of course each generates an Rµν = [Dµ, Dν ], with (Rµν)ρ
σ ≡ Rρ

σµν ,

(Rµν)α
β and (Rµν)a

b all different matrices. But all of these matrices are
representations of the Lorentz group, or rather, of generators of the Lorentz
group. We may write the six generators as Li and write

Dµ = ∂µ + A i
µ Li

where Li is viewed as an abstract group generator. The Rµν ’s are all essen-
tially the same, for whatever the representation, the commutators of the Li’s
are fixed by the structure of the group, [Li, Lj ] = f k

ij Lk. Thus

Γν
ρµ = A i

µ RV (Li)
ν
ρ

ω α
µ β = A i

µ RT (Li)
α

β

Ω a
µ b = A i

µ RS(Li)
a
b
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but as they are all representations, [R(Li), R(Lj ] = f k
ij R(L− k).

We see that the covariant derivative is a description of how to do Lorentz
transformationa while doing parallel transport. This is just as in a Yang-Mills
theory, where the group is the Lorentz group. Thus it is a gauge theory.

One way of viewing a gauge theory, where fields depend not only on xµ

but also on some arbitrary choice of coordinates in the group space, is to
treat the fields as functions of x and the choice of coordinates. We therefore
have, say, ψ(x,Υ), where Υ represents a choice of coordinates. Let Υ0 be a
given one, then all the others are given by gΥ0, where g is the local symmetry
group which relates all acceptible choices of coordinates. ψ, however, is not
an arbitrary function of Υ — it transforms in a definite way — according to
a specific representation ψ(x, gΥ0) = R(g)ψ(x,Υ0).

The space of (x, g) on whih ψ depends is called a fiber bundle. The
functions on this bundle which transform appropriately are, of course, much
more limited than the general functions on this extended manifold. In
fact, if for each xµ there is some g(xµ) for which one specifies the func-
tion ψ(xµ, g(xµ)), then ψ is determined everywhere. Such a cross section of
the bundle σ := (xµ, g(xµ)) cannot be chosen in a special manner, so that
same physics is described by another cross section σ′ = (xµ, g′(xµ)) where
g′(xµ) = Ω(xµ)g(xµ). The field ψ is reduced in one case to

ψ(xµ) := ψ(xµ, g(xµ))

while in the other to

ψ′(xµ) := ψ(xµ, g′(xµ)) = R(Ω(xµ))ψ(xµ).

The covariant derivative Dµ = ∂µ + A i
µ (xµ, g)Li also has specified values

Aµ = A i
µ Li,

A (
µ x

µ) on σ Dµψ = ∂µ + R(Aµ)ψ

A
′ (
µ x

µ) on σ′ D′
µψ = ∂µ + R(A′

µ)ψ

with Dµψ|σ′ =
(

∂µ + R(A′
µ)
)

R(Ω)ψ = R(Ω) (∂µ + R(Aµ))ψ

or R
(

A′
µ

)

= R (Ω))R (Aµ)R−1 (Ω)

If the representation is faithful,

A′
µ = ΩAµΩ−1 − (∂µΩ) Ω−1
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specifies how gauge transformations proceed. It is, however, more transpar-
ent to write

D′
µ = ΩDµΩ−1

which is equivalent as ∂mu(ΩΩ−1) = 0.
The usual formulation of gravity, in terms of Rµ

µρσ, obscures this Lorentz
group gauge invariance because

Rµ
µρσ =

(

RI
ρσ

)α

β
V µ

α V β
ν

is invariant under I Lorentz transformations.
Although the vierbein formalism permits us to cast gravity in a Yang-

Mills type of formulation, the fact that the group is connected to space-time
makes it different. In Yang-Mills, the Lagrangian density

L ∼
∑

i

F i
µνF

i µν ,

which is not the action for gravity. This is because in addition to the connec-
tion ω α

µ β (which is analogous to Ai
µ) th vierbeins must enter into the action.

It is
S =

∫

d4x
(

− det(V α
µ

)

RµναβV
αµV βν .

Back in the Dirac Equation, we can now write

L = −ψ̄ (γαDα −m)ψ

where Dα = V µ
α Dµ. We may write

Dα = V µ
α ∂µ + ωα, ωα = V µ

α ωµ.

This anoholonomic covariant derivative has some interesting algebraic prop-
erties. Think of the fiber bundle as a 10 dimensional manifold, and the cross
section as a four dimensional subsurface. A general change in σ generated
by

Ω := Ωµ∂µ + ΩiLi

can generate a new covariant derivative

D′
α = ΩDαΩ

−1.

This corresponds to both a Lorentz gauge tranformation ΩiLi and a general
coordinate transformation xµ → xµ + Ωµ.
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The commutator of D’s here is

[Dα, Dβ] = 2T γ
αβ Dγ +Ri

αβLi.

In more general theories T is called the torsion. In general relativity T = 0,
which imposes the condition which gives ω in terms of ∂’s and V ’s.
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0.22 Quantized Field Theory

To write a quantized field theory, the basic ingredient normally is an ac-
tion, the spacetime integral of a Lagrangian density. We treat the fields as
operators.

Nearly all real results in field theory come from perturbation theory. The
vacuum state is assumed to be nearly a simple state, and the actual fields
are expanded about that simple state.

Whether this method is applicable to gravity is rather controversial, but
we will outline it. we take as our “vacuum” flat space, and expand the metric
(or, if we wish to include fermions, the vierbein) about its flat space value.
We restore Newton’s constant G for clarity

L = −
√
g

16πG
R + Lmatter.

Define κ =
√

16πG, gµν = ηµν + κhµν . We use κh to give h the appropriate
units for a boson field, with dimension [h] = (L−1) in units with h̄ = c = 1,
but G 6= 1.

κ = 1.15 × 10−32 cm

Γµ
νρ =

1

2
κ
(

h µ
ρ ,ν + h µ

ν ,ρ − h µ
νρ,

)

+ O(κ2)

where indices on h are raised with η. Expanding the Lagrangian in powers
of κ, we get
a kinetic energy term of O(κ0) in h2,
couplings of thre or more h’s with powers of κ. The Lagrangian contains
arbitrary orders in h due to the

√
g. Each such term corresponds to a possible

vertex in a Feynman diagram, which itself represents a term in the expansion
of eiS/h̄, evaluated between given initial and final states.

As you know, when you evaluate beyond the lowest order in perturbation
theory, all field theories give divergent integrals, infinities in the evaluation of
the amplitudes. It is possible to enumerate th possible operator forms which
are multiplied by these divergent integrals just by dimensional analysis. For
the action is dimensionless (or we couldn’t exponentiate it). thus L has units
of L−4. Consider a theory such as φ4, with

L = −1

2
∂µφ∂µφ− 1

2
m2φ2 − λ

4!
φ4.
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From the first term we see that, as [∂µ] = L−1, we have [φ] = L−1, and so
[m2] = L−2 and [λ] = L0.

In expanding the amplitude, we get extra terms of dimension 4. For
example, divergent loop graphs may give

[
∫
d4p

p2

]

= L−2 and

[
∫
d4p

p4

]

= L0

which integrals are quadratically divergent and logarithmically divergent re-
spectively. The only possible operators to multiply these by are
for quadratic divergence: φ2

for logarithmic divergence: ∂µφ∂
µφ, m2φ2 and φ4.

All of the possible divergent forms are the same as objects already in the
original Lagrangian, and can be taken care of by “renormalizing” the mass,
coupling constant, and the strength of the kinetic energy term (the last called
wave function renormalization).

For gravitation the situation is different. The coupling constant here is
κ, which has dimension of length rather than being dimensionless. Therefore
loop diagrams can generate terms of the form κ2 (∂µh∂νh∂

µh∂νh) etc., which
are not contained in the original Lagrangian. Furthermore, as we go higher in
orders of κ we generate infinitely many such terms, each in general diverging,
adn so we might expect to have to specify an infinite nubmer of arbitrary
renormalization constants to get rid of these infinities.

This very unpleasant circumstnce is known as nonrenormalizablity.
Green’s functions calculated to higher orders develop new types of infinities
which must be subtracted out with arbitrary parameters to get finite Green’s
functions. This does happen in general relativity, and seems to make it a very
unattractive theory.

It must be noted, however, that actual physical amplitudes are Green’s
functions evaluated on mass shell, that is, the operators φ which are left over
after doing all Wick contractions are then describing particles obeying the
classical equations of motion.

Now think of gravity at the one loop level, and let us write the operators
which might diverge as tensors. Then to κ−2R is added a scalar of dimension
L−4, so to order κ0 we may have

R2, RmuνR
muν , and RµνρσR

µνρσ.

But the Gauss Bonnet theorem states
∫ √

g
(

RµνρσR
µνρσ − 4RmuνR

muν +R2
)

= 0.
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[This can be proven by writing Ralphaµνβ = [Dµ, Dν]αβ, using the Jacobi or
Bianchii identities after integrating by parts.]

Thus any infinity multiplying RµνρσR
µνρσ can be replaced by a combina-

tion of R2 and RmuνR
muν . Now when we evaluate these operators for fields

which satisfy the classical Einstein equations

Rµν = Gµν −
1

2
G µ

µ gµν = 8π
(

Tµν −
1

2
gµνT

µ
µ

)

, R = −T µ
µ ,

so if Tµν vanishes, so to R and Rµν , and all the infinite terms in fact give
zero contribution on shell.

Thus at the one loop level, at least, the quantum theory of gravity inter-
acting only with itself gives finite physical scattering amplitudes. But if we
have matter as well, this is not true — one loop amplitudes give infinities,
even on shell in the presence of matter.

That is not much of a consolation. Our real world has eleeentary particles
which are obviously not made up of gravitons, such as electrons, photons,
and quarks, to name a few.

It has been explicitly checked that these possible infinities do in fact exist
in theories of Einstein gravity coupled to

• scalars

• or photons

• or spin 1/2 fermions

• or Yang-Mills

The situation remained like this for many years, with most people believ-
ing the finiteness of pure gravity at one loop level to be of no consequence,
because

• there is matter in the world

• what good is one loop finiteness if the higher loops are not finite. Are
they? There are terms which might be generated in two loops (allowed
by power counting and gauge invariance) which do not vanish on shell.

But then along came supergravity. Supergravity contains a symmetry
group far bigger than the Lorentz group. In fact, it treats as essentially the
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same fermions and bosons. Just as in SU(2) there are group generators Li

which rotate a π+ into a π0, in supersymmetry there are Qi’s which rotate,
for example, quarks into gluons. Thus the Q changes fermions into bosons
and vice versa. The anticommutators of the Q’s give not only an ordinary
(bose) symmetry operator Li but also a piece proportional to the momentum
generator. This means that the internal symmetry is tied up intimately with
the space-time structure.

When one tries to make a gauge theory with supersymmetry (i.e. one tries
to make supersymmetry a local symmetry, independently variable at every
point in spacetime, just as for Yang-Mills or a photon’s gauge invariance)
one discovers that we are immediately forced into including a gauge field for
the momentum operator. This is essentially the vierbein, and we are forced
to include gravity as part of the gauge field. For greater definiteness I will
first discuss a particular supersymmetry called O(4).

There are four Qi’s, each of which is a 4 component real Dirac spinor (a
Majorana spinor). The theory contains a graviton with helicity 2. Applying
each of the 4 Qi’s we lower the helicity and get four helicity 3/2 massless
objects ψi. Applying another Qi again, gives us 6 helicity 1 photon-like
objects Aij , antisymmetric in i ↔ j because {Qi, Qj} ∝ P µ + Lij, neither
of which has lower helicity. Continuing we get 4 helicity 1/2 objects and 1
helicity 0 object. The helicity −2 graviton generates a similar series, so we
have a multiplet consisting of

• 1 graviton

• 4 Majorana spin 3/2 massless fields (gravitinos)

• 6 gauge vector particles

• 4 Majorana spin 1/2 particles

• 2 real scalars.

When we examine the forms of divergences in this theory, we find results
exactly as in general relativity, as if the whole multiplet were a graviton. That
is, the theory is formally nonrenormalizable but the one loop divergences
vanish on mass shell, even in the presence of the helicity 6= ±2 objects in
themultiplet. If we add a “matter” multiplet, with

• 1 helicity 1 particle
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• 4 helicity 1/2 particles

• 6 helicity 0 particles

• 4 helicity -1/2 particles

• 1 helicity -1 particle

then the one-loop divergences no longer vanish on shell, just as in ordinary
gravity.

Witheut the matter multiplet, one can even show that two-loop diver-
gences cancel on-shell as well! So the situation is improved in two ways:

• Some of what we considered matter may in fact by part of the graviton
multiplet

• Finiteness of the graviton multiplet is good through two loops, at least.

The O(4) theory without a matter multiplet has room for 6 vector mesons
and 4 spinors, We need to include everything, so we need electrons, quarks,
gluons, photons, w±, etc.Remember the quarks come in 3 colors and 3 flavors,
so 4 spinors is clearly not enough.

The largest supergravity theory of this conventional type is O(8), with 8
qi’s. The reason is that if there were nine, the state

Q1Q2 · · ·Q9 |graviton with helicity 2〉

would be a nonzero state with helicity −5/2, requiring a massless particle of
spin at least 5/2. General relativity is the minimally complicated theory you
can have for a spin 2 particle (except for one with no interactios) and spin
5/2 seems to be impossible.

What do we have in the O(8) theory?
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Helicity Physical Content SU(3)Q
C

number

2 1 graviton

3/2 8 color triplet with charge −1/3 3−1/3

color antitriplet with charge 1/3 3̄1/3

two chargeless singlets 10+10

1 28 gluons 80

photon 10

Z (weak neutral boson) 10

lepto-quark gauge bosons 3−1/3 + 3−1/3 + 3̄1/3 + 3̄1/3

diquark gauge bosons 32/3 + 3̄−2/3

1/2 56 u, d, s, c quarks 2 × 32/3 + 2 × 3−1/3

+ antiparticles
electron + positron 1+1−

neutrinos 10 + 10?
other stuff 80 + 80 + 61/3 + 6̄−1/3

Is this enough? Nearly. We’ve got the gluons, photon, and neutral cur-
rents, but we have missed the W± which mediate ordinary weak interactions.

We have the quarks in 3 colors and 4 flavors, but no bottom or top. Worse
yet, we have no muon. Close but no cigar!

Supergravitymay not be the grand unification Einstein hoped for, but not
everyone has given up. For many years, 1930-1965 relativity was a dried up
field. But now research has been reinvigorated by

• new technology making new tests possible

• new astronomy and cosmology, finding many conditions under which
general relativity becomes important, even dominant.

• new ideas in combining quantum mechanics with general relativity —
eventually there must be a reconciliation.
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