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Here is the way Schwinger presented the method of combining propaga-
tors. An interesting anecdote of physics history is that Schwinger remained
bitter that a virtually identical mathematical trick became commonly known
as Feynman parameters. Why two brilliant physicists, each of whom had an
appropriately won a Nobel prize, should fight over what is essentially a trivial
mathematical trick, is an interesting question in the sociology of physicists.
But we are not interested in that now.
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at least when Re A > 0, where the integral is well defined. Applying this to
each of the terms in a product of inverses,
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is the Euler Gamma function. So all together
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which is equation 6.41.
The simplest application would be something like
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which is something like what we would encounter if we f bk

cared about the second diagram of Fig. 6.1, which contains p-k
the (amputatable) correction shown. In terms of Feynman

parameters, this is
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This can be simplified by noting that the denominator can be written as
the square of D, where D is defined in terms of a shifted four-momentum
= kP — ap* as
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Thus our integral can be written as
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where the integrand is invariant under
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Lorentz transformations, and I have gen-

eralized 2 to an arbitrary power n > % ‘,\ .

For a fixed lz the (0 integral is along the
path I", but we can throw in the arcs A at
infinity, and then deform the integral to be .
along T", as we are not passing any singu-
larities. Writing ¢° = iL* and (=L, our
integral is now
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where the integral is now over Euclidean space, with L? = >"1(L")2. In fact,
let’s generalize further to an arbitrary number of space-time dimensions d. As
the integrand is rotationally invariant in d dimensions, the angular integral
[ dQq is just the area Sy of a unit d — 1 sphere, where S; = 2, 27, 47, 272 for
d = 1,2,3,4 respectively. We will derive the general expression later. The
full measure of integration is dV' = r¢~ldrdQ, so we have
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This is treated in the book a bit later, with this equation as 7.80

In other notes' we show that
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14I'(N/2) and the volume of SP~1” and “The Beta function B(z,y)”.



