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Here is the way Schwinger presented the method of combining propaga-
tors. An interesting anecdote of physics history is that Schwinger remained
bitter that a virtually identical mathematical trick became commonly known
as Feynman parameters. Why two brilliant physicists, each of whom had an
appropriately won a Nobel prize, should fight over what is essentially a trivial
mathematical trick, is an interesting question in the sociology of physicists.
But we are not interested in that now.
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at least when Re A > 0, where the integral is well defined. Applying this to
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is the Euler Gamma function. So all together
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which is equation 6.41.

The simplest application would be something like
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which is something like what we would encounter if we
cared about the second diagram of Fig. 6.1, which contains
the (amputatable) correction shown. In terms of Feynman
parameters, this is
∫ d4k

(2π)4

1

(p − k)2 − m2 + iǫ

1

k2 + iǫ

p

p

p−k
k

= Γ(2)
∫

1

0

dα
∫

1

0

dβ δ(1 − α − β)

∫

d4k

(2π)4

1

(α(p − k)2 − αm2 + βk2 + i(α + β)ǫ)2

=
∫

1

0

dα
∫

d4k

(2π)4

1

(k2 − 2αk · p + iǫ)2

This can be simplified by noting that the denominator can be written as
the square of D, where D is defined in terms of a shifted four-momentum
ℓµ = kµ − αpµ as

D = ℓ2 − α2m2 + iǫ = ℓ2 − ∆ + iǫ, with ∆ = α2m2.

Thus our integral can be written as
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where the integrand is invariant under
Lorentz transformations, and I have gen-
eralized 2 to an arbitrary power n > 1

2
.

For a fixed ~ℓ, the ℓ0 integral is along the
path Γ, but we can throw in the arcs A at
infinity, and then deform the integral to be
along Γ′, as we are not passing any singu-
larities. Writing ℓ0 = iL4 and ~ℓ = ~L, our
integral is now
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where the integral is now over Euclidean space, with L2 =
∑

4

1(L
i)2. In fact,

let’s generalize further to an arbitrary number of space-time dimensions d. As
the integrand is rotationally invariant in d dimensions, the angular integral
∫

dΩd is just the area Sd of a unit d− 1 sphere, where Sd = 2, 2π, 4π, 2π2 for
d = 1, 2, 3, 4 respectively. We will derive the general expression later. The
full measure of integration is dV = rd−1drdΩd so we have
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This is treated in the book a bit later, with this equation as 7.80

In other notes1 we show that
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1“Γ(N/2) and the volume of SD−1” and “The Beta function B(x, y)”.


