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Lecture 22 Nov. 18, 2013

Källen-Lehmann, Σ2, Z and Z2, δF1(0).
Copyright c©2006 by Joel A. Shapiro

Last time we saw that the calculation of the first order (in α) correction to
F2 was untroubled by infrared or ultraviolet divergences, but the expression
for the first order correction to F1,

δF1(q
2) = 2ie2

∫

d4ℓ

(2π)4

∫

dx dy dz δ(1 − x − y − z)

−ℓ2 + 2(1 − x)(1 − y)q2 + 2(1 − 4z + z2)m2

(ℓ2 − ∆ + iǫ)3
,

(with ∆ = −xy q2 + (1 − z)2m2), diverges in the ultraviolet because of the
term ℓ2 in the numerator, and also in the infrared because ∆ vanishes in
the denominator at the z ≈ 1 end of the integration interval. Last time we
explained away the infrared divergence, and mentioned that F1(q

2) − F1(0)
doesn’t have the ultraviolet divergence, but didn’t really address why F1(0)
is coming out wrong because of ultraviolet divergence.

Now we turn to understanding the ultraviolet divergence, and at the same
time make more explicit the reason for amputating the feynman diagrams
and the “one more modification” hinted at on p115. This is our introduction
to the process of renormalization.

Read sections 7.1.
I have some notes expanding on the “Kinematics of p. 218” in the sup-

plemental notes. This discusses 7.20 and the expression for k at the top of
p. 219, and the discontinuity in p2 of σ2( 6p)

In section 7.1, we find (7.31):

δZ2 =
α

2π

∫

1

0

dz

[

−z ln
zΛ2

(1 − z)2m2 + zµ2
+ 2(1 − z)

z(2 − z)m2

(1 − z)2m2 + zµ2

]

.

In the last lecture, we found

δF1(0) =
α

2π

∫

1

0

dz(1 − z)

[

ln
zΛ2

(1 − z)2m2 + zµ2
+

(1 − 4z + z2)m2

(1 − z)2m2 + zµ2

]

,
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so

δF1(0)+ δZ2 =
α

2π

∫

1

0

dz(1−2z) ln
zΛ2

(1 − z)2m2 + zµ2
+m2

(1 − z)(1 − z2)

(1 − z)2m2 + zµ2
.

In the first term integrate by parts, with u = z(1− z), v = ln ..., with uv = 0
at both endpoints, and

dv =
1

z
+

2(1 − z)m2 − µ2

(1 − z)2m2 + zµ2
,

so

−
∫

udv = −
∫

1

0

[

(1 − z) + z(1 − z)
2(1 − z)m2 − µ2

(1 − z)2m2 + zµ2

]

= −
∫

1

0

(1 − z)

[

1 − 1 + m2
1 − z2

(1 − z)2m2 + zµ2

]

,

which cancels the second term, and

δF1(0) + δZ2 = 0.

We are going to skip sections 7.2–7.4, but we need to make use of the
main result of section 2, which is that the invariant amplitude M for any
process is correctly given by the sum of amputated connected diagrams, but
with a factor of

√
Z for each external line.

A handwaving sketch of the derivation of this fact, given in section 2, is
to ask how the fourier transform in x of a time ordered product involving
φ(x) behaves near p2 = m2, where for simplicity I am taking a scalar field of
physical mass m. On the one hand, we know that the time ordered product
is given by the sum over all diagrams, so we have

〈0|Tφ(x) . . . |0〉 =
∫

dyD(x− y)f(y),

where
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Amp

Amp

f(y) = =

n=0

n

Σ

g(y) = 
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with f(y) the sum of all diagrams (with the line to x removed) and g(y) is
the sum of diagrams with amputation on that leg.

〈0|Tφ(x) . . . |0〉 =
∫

dyD(x− y)f(y)

=
∫

d4p

(2π)4

i

p2 − m2
0 + iǫ

e−ipxf̃(p)

=
∫

d4p

(2π)4
e−ipx i

p2 − m2
0 + iǫ

∞
∑

n=0

(

−iΣ(p2)
i

p2 − m2
0 + iǫ

)n

g̃(p)

=
∫

d4p

(2π)4
e−ipx i

p2 − m2
0 − Σ(p2) + iǫ

g̃(p)

The fourier transform will have a pole at p2 = m2 = m2

0
+ Σ(p2) and in the

vicinity of that pole, we have

〈0|Tφ(x) . . . |0〉 =
∫

d4p

(2π)4
e−ipx i

p2 − m2 − (p2 − m2)
dΣ(p2)

dp2
+ iǫ

g̃(p)

=
∫

d4p

(2π)4
e−ipx iZ

p2 − m2 + iǫ
g̃(p),

where

Z−1 = 1 − dΣ(p2)

dp2

∣

∣

∣

∣

∣

p2=m2

.

On the other hand, the time ordered product should be

〈0|φ(x) |p〉 i

p2 − m2 + iǫ
M,

and 〈0|φ(0) |p〉 =
√

Z, so the invariant amplitude is given by
√

Zg̃, that is,
the sum of all amputated diagrams with a factor of

√
Z for each external leg.

Notice that now when we evalutate F1(0) = 1 + δF1(0) we get

Z2Γ
µ(0) = Z2F1(0) = 1 + δZ2 + δF1(0) = 1.


