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Lecture 21 Nov. 14, 2013
δF1(q

2).
Copyright c©2006 by Joel A. Shapiro

Last time we saw that the calculation of the first order (in α) correction to
F2 was untroubled by infrared or ultraviolet divergences, but the expression
for the first order correction to F1,

δF1(q
2) = 2ie2

∫

d4ℓ

(2π)4

∫

dx dy dz δ(1 − x − y − z)

−ℓ2 + 2(1 − x)(1 − y)q2 + 2(1 − 4z + z2)m2

(ℓ2 − ∆ + iǫ)3
,

(with ∆ = −xy q2 + (1 − z)2m2), diverges in the ultraviolet because of the
term ℓ2 in the numerator, and also, at q = 0, because ∆ = (1−z)2m2 vanishes
in the denominator at the z ≈ 1 end of the integration interval.

We may regulate the infrared divergence by pretending that the photon
has a small mass µ instead of being massless, thereby changing the photon
propagator’s denominator (k−p)2+iǫ → (k−p)2−µ2+iǫ, which changes ∆ →

−xy q2 +(1−z)2m2 +zµ2. To take care of the ultraviolet divergence, pretend
that there is also another, very heavy, photon of mass Λ with imaginary
coupling, so that there is another term, and now the photon propagator

−igνρ

(k − p)2 + iǫ
→

−igνρ

(k − p)2 − µ2 + iǫ
−

−igνρ

(k − p)2 − Λ2 + iǫ
,

Eventually we will take µ → 0 and Λ → ∞, and in terms without ultraviolet
divergences the heavy photon’s contribution will vanish. Using the second
and last expressions from page 3 of last time’s notes, this gives

δF1(q
2) =

2

4π

e2

4π

∫

dx dy dz δ(1 − x − y − z)
[

ln
−xy q2 − (1 − z)2m2 + z Λ2

−xy q2 + (1 − z)2m2 + z µ2

+
(1 − x)(1 − y)q2 + (1 − 4z + z2)m2

−xy q2 + (1 − z)2m2 + z µ2

]

.
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As we are interested in the Λ → ∞ limit, we can drop the other terms in the
numerator of the log. For q2 = 0 the integrand is independent of x and y so
∫

dx dy dz δ(1 − x − y − z) →
∫

1

0
dz(1 − z), and

δF1(0) =
α

2π

∫

1

0

dz (1 − z)

[

ln
z Λ2

(1 − z)2m2 + z µ2
+

(1 − 4z + z2)m2

(1 − z)2m2 + z µ2

]

,

which is 7.32, and what we will need in explaining how to throw δF1(0) away.
But first we will ask about what is left of F1(q

2) after we throw away the
troublesome pieces we know ought not make F1(0) differ from 1. That is,
define

δ̄F1(q
2) := lim

Λ→∞

(

F1(q
2) − F1(0)

)

=
α

2π

∫

dx dy dz δ(1 − x − y − z)
[

ln
(1 − z)2m2 + zµ2

−xy q2 + (1 − z)2m2 + zµ2

+
(1 − x)(1 − y)q2 + (1 − 4z + z2)m2

−xy q2 + (1 − z)2m2 + z µ2
−

(1 − 4z + z2)m2

(1 − z)2m2 + z µ2

]

.

The logarithm is not singular as µ → 0 so we can drop those terms, and this

term gives
α

2π

∫

1

0

(1− z)dz
∫

1

0

dξ ln
m2

−ξ(1 − ξ) q2 + m2
, which is nonsingular,

where we substituted x = (1 − z)ξ.
Now the part of δ̄F1(q

2) which does blow up for µ2 → 0 comes from
the z = 1, x = y = 0 endpoint of the integral, so except for vanishing
denominators, we can make that substitution, and the same substitution as
above, x = (1 − z)ξ, and also w = 1 − z, to get

δ̄F1(q
2) ∼

α

2π

∫

1

0

dz
∫

1−z

0

dx
q2 − 2m2

m2(1−z)2−q2x(1−z−x)+µ2
−

−2m2

m2(1−z)2+µ2

=
α

4π

∫

1

0

d(w2)
∫

1

0

dξ
q2 − 2m2

(m2 − q2ξ(1 − ξ))w2 + µ2
−

−2m2

m2w2 + µ2

=
α

4π

∫

1

0

dξ
q2 − 2m2

(m2−q2ξ(1−ξ))
ln

(

(m2−q2ξ(1−ξ)+µ2

µ2

)

+
α

2π
ln

(

m2

µ2

)

.

Thus

F1(q
2) = 1 −

α

2π
fIR(q2) ln

(

m2

µ2

)

+ IR nonsingular terms,
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where

fIR(q2) =
∫

1

0

(

m2 − q2/2

m2 − q2ξ(1 − ξ)

)

dξ − 1.

Read the first third of page 200
So the next order corrections to the elastic scattering amplitude subtracts

a piece proportional to the lowest order calculation. But we also saw that
the lowest order calculation of the cross section for emission of a soft photon
of energy less than ε was similarly proportional to the elastic scattering,

dσ(~p → ~p′ + γ) = dσ(~p → ~p′) ·
α

2π
ln

(

ε2

µ2

)

I(~v,~v ′),

On Evaluating I(~v,~v ′)
The expression for

I(~v,~v ′) =
∫

dΩk

4π

(

2p · p′

(k̂ · p′)(k̂ · p)
−

m2

(k̂ · p′)2
−

m2

(k̂ · p)2

)

can be evaluated using the Feynman parameter trick. First of all the last
two terms in (6.15) can be evaluted, for each choosing the z access along the
velocity, so they contribute

∫

dΩk

4π

−2m2

E2

1

(1 − v cos θ)2
=

−m2

E2

∫

1

−1

du

(1 − vu)2
= −

m2

E2v

1

1 − vu

∣

∣

∣

∣

1

−1

= −
m2

E2v

(

1

1 − v
−

1

1 + v

)

= −
2m2

E2

1

1 − v2
= −2.

For the first term, use

1

(k̂ · p′)(k̂ · p)
=
∫

1

0

dα
1

(k̂ · (αp′ + (1 − α)p))2
.

Recalling we are working in a frame with E ′ = E and q0 = 0, this is just like
1/2m2 times the above with Ev → α(~p ′ − ~p) + ~p = α~q + ~p, so the integral is

1

E2 − ~p 2 − 2α~p · ~q − α2~q 2
. As ~p · ~q = ~p ·~p ′ − ~p 2 = −1

2
~q 2 = q2/2, we have

∫

dΩk

4π

1

(k̂ · p′)(k̂ · p)
=
∫

1

0

dα
1

m2 − α(1 − α)q2
.
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2p · p′ = 2m2 − q2 so all together,

I(~v,~v ′) =
∫

1

0

(

2m2 − q2

m2 − α(1 − α)q2

)

dα − 2 =: 2fIR(q2).

If −q2 ≫ m2, the integral is given by equal contributions near each endpoint,

so ≈ 2
∫

0

dα
1

α − m2/q2
≈ 2 ln(−q2/m2).

Read the bottom third of page 200 and the top half of
201.

It would be good to at least skim section 6.5 to get the
gist of the argument to all orders for infrared behavior.


