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Lecture 20 Vertex Correction, g − 2 Nov. 11, 2013
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Last time we found that we could write the general
form of the vertex correction in terms of

Γµ(q2) = γµF1(q
2) +

iσµνqν

2m
F2(q

2),

with Γµ(q2) = γµ + δΓµ(q2), and the first order cor-
rection term in δΓµ is given by

ū(p′)δΓµ(q2)u(p) = 2ie2

∫

d4k

(2π)4

ū(p′) [6kγµ 6k ′ + m2γµ − 2m(k + k′)µ] u(p)

((k−p)2 + iǫ) (k′ 2 − m2 + iǫ) (k2 − m2 + iǫ)
,

where q = p′ − p, k′ = k + q. We also saw that the three denominators can
be combined using the Schwinger trick

1

((k − p)2 + iǫ) (k′ 2 − m2 + iǫ) (k2 − m2 + iǫ)

= Γ(3)
∫ 1

0

dx dy dz δ(1 − x − y − z)
1

D3
,

where

D = x
(

k2 − m2 + iǫ
)

+ y
(

k′ 2 − m2 + iǫ
)

+ z
(

(k − p)2 + iǫ
)

= k2 + 2k · (yq − zp) + yq2 + zp2 − (x + y)m2 + iǫ,

where we have substituted k + q for k′ and used x + y + z = 1. Recalling
that kµ is a an integration variable, we see that we can simplify the integral
by shifting to ℓ = k + yq − zp, so

D = ℓ2 − ∆ + iǫ,

with

∆ = (yq − zp)2 − yq2 − zp2 + (x + y)m2

= −y(1 − y)q2 − 2yz q · p − z(1 − z)p2 + (1 − z)m2

= −y(1 − y − z)q2 + (1 − z)2m2 = −xyq2 + (1 − z)2m2,
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where in the first expression in the third line, I used 2q ·p = (q+p)2−q2−p2 =
p′ 2 − q2 − p2 = m2 − q2 − m2 = −q2, as well as p2 = m2.

Read pages 191–196.

Some hints:
Page 191, in the second line of the evaluation of the Numerator, the term
quadratic in ℓ from 6kγµ 6k ′ is

6ℓγµ 6ℓ = ℓαℓβγαγµγβ ∼
1

4
ℓ2gαβγαγµγβ = −

1

2
ℓ2γµ

by A.29(b).

Clearing the smoke on page 192: The messy term is

ū(p′) (−y 6q + z 6p) γµ [(1 − y) 6q + z 6p]u(p)

= ū(p′) (z 6p ′ − (y + z) 6q) γµ [(1 − y) 6q + z 6p]u(p)

From {γµ, γν} = 2ηµν , 6qγµ = 2qµ−γµ 6q, so 6qγµ 6q = 2qµ 6q−γµq2. In addition,
we can replace 6p by m when it acts on u(p), and ū(p′) 6p ′ = ū(p′)m. Thus
between ū(p′) and u(p), 6q ∼ 0, 6qγµ = 6p ′γµ − 2pµ + γµ 6p ∼ 2mγµ − 2pµ, and
γµ 6q = 2p′µ − 6p ′γµ − γµ 6p ∼ 2p′µ − 2mγµ. Thus

ū(p′) (−y 6q + z 6p) γµ [(1 − y) 6q + z 6p]u(p)

= ū(p′)
(

m2z2γµ − mz(1 − x) 6qγµ + mz(1 − y)γµ 6q

−(1 − x)(1 − y)(2qµ 6q − γµq2)
)

u(p)

= ū(p′)
(

m2z2γµ − 2mz(1 − x)(mγµ − pµ)

+2mz(1 − y)(p′µ − mγµ) + (1 − x)(1 − y)γµq2
)

u(p)

= ū(p′)
{(

m2(−2z − z2) + (1 − x)(1 − y)q2
)

γµ

+mz(1 + z)(p′ + p)µ + mz(x − y)qµ
]

u(p).

Adding this to the other terms in “Numerator”, the numerator is

ū(p′)

[

{

−
1

2
ℓ2 + m2(1 − 2z − z2) + (1 − x)(1 − y)q2

}

γµ

+mz(z − 1) (p′µ + pµ) + m(z − 2)(x − y)qµ

]

u(p)
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which is the expression cleared of smoke from the top of page 192.
Using the Gordon identity the mz(z−1)((p′ µ+pµ) term gives 2m2z(1−z)

contribution to the F2 piece and changes the (1 − 2z − z2)m2 piece in F1 to
(1 − 4z + z2)m2. Thus we have

F1(q
2) = 1 + 2ie2

∫

d4ℓ

(2π)4

∫ 1

0

dx dy dz δ(1 − x − y − z)

×
−ℓ2 + 2(1 − x)(1 − y)q2 + 2(1 − 4z + z2)m2

(ℓ2 − ∆ + iǫ)3

F2(q
2) = +2ie2

∫

d4ℓ

(2π)4

∫ 1

0

dx dy dz δ(1 − x − y − z)
4m2z(1 − z)

(ℓ2 − ∆ + iǫ)3

with ∆ = −xyq2 + (1 − z)2m2 > 0. These are the equivalent of 6.47.

From last time’s Schwinger notes, we have (for m − p > 1

2
, d < 2(m − p))

I(d, p, m, ∆) :=
∫

ddℓ

(2π)d

(ℓ2)p

(ℓ2 − ∆(α) + iǫ)m

=
i (−1)m+p Γ(1

2
d + p)Γ(m − p − d/2)

(4π)d/2Γ(d/2)Γ(m)

(

∆(α)
)

1
2
d+p−m

If we look first at the F2, which comes from the σµνqν term, we need
∫

d4ℓ

(2π)4

1

(ℓ2 − ∆ + iǫ)m
= I(4, 0, m, ∆) =

i(−1)m

(4π)2

Γ(m − 2)

Γ(m)
∆2−m

=
i(−1)m

(4π)2

∆2−m

(m − 1)(m − 2)

because Γ(z + 1) = zΓ(z). This is 6.49. Note in particular for m = 3,

I(4, 0, 3, ∆) =
−i

2(4π)2∆
.

We will see that we can get good physics from this straightforward evaluation.
For the F1 term, however, we also need
∫ d4ℓ

(2π)4

ℓ2

(ℓ2 − ∆ + iǫ)m
= I(4, 1, m, ∆) =

i(−1)m+1

(4π)2

Γ(3)

Γ(2)

Γ(m−3)

Γ(m)
∆3−m

=
i(−1)m+1

(4π)2

2∆3−m

(m−1)(m−2)(m−3)
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which is 6.50. Unfortunately this blows up for m = 3, which is where we
need it.

Finally

∫

d4ℓ

(2π)4

(

ℓ2

(ℓ2 − ∆ + iǫ)3
−

ℓ2

(ℓ2 − ∆Λ + iǫ)3

)

= lim
ε→0−

(I(4 + 2ε, 1, 3, ∆) − I(4 + 2ε, 1, 3, ∆Λ))

= lim
ε→0−

i(−1)4Γ(3 + ε)Γ(−ε)

(4π)2Γ(2 + ε)Γ(3)

[

(

∆

4π

)ε

−
(

∆λ

4π

)ε
]

=
i

(4π)2
lim
ε→0

1

−ε

[

1 + ε ln
∆

4π
−
(

1 + ε ln
∆Λ

4π

)]

=
i

(4π)2
ln

∆Λ

∆
,

where we have used zΓ(z) −→
z→0

1 and zε ≈ 1 + ε ln z. This gives us 6.53.

After deriving 6.47 and these integrals, we see there is no difficulty in
evaluating the form factor F2(q

2),

F2(q
2) = 2ie2

∫

d4ℓ

(4π)4

∫ 1

0

dx dy dz
δ(1 − x − y − z)4m2z(1 − z)

(ℓ2 + xyq2 − (1 − z)2m2 + iǫ)3

=
4m2e2

(4π)2

∫ 1

0

dz
∫ 1−z

0

dx
z(1 − z)

(1 − z)2m2 − x(1 − x − z)q2

−→
q2

→0

4e2

(4π)2

∫ 1

0

dz
z

(1 − z)

∫ 1−z

0

dx

=
2e2

(4π)2
=

α

2π
.

Thus we have a prediction for the “anomalous” magnetic moment:

ae :=
g − 2

2
= F2(0) =

α

2π
≈ .0011614.

This result was found by Julian Schwinger in 1947-8, and was, I think,

the first definitive result of quantum field theory.
α

2π
appears above his name

on his tombstone.

At the Department Colloquium on Nov. 15, 2006, we heard

New Measurement of the Electron Magnetic Moment
and the Fine Structure Constant

Gerald Gabrielse
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For the first time since 1987, the magnetic moment of the electron and the
fine structure constant have been measured with a greatly improved accuracy.
His papers in Physical Review Letters 97 030801-2 report

ae = .001 159 652 180 85± .000 000 000 000 76,

a measurement of g of better than one part in a trillion! In order to compare
these results to theory, which is now in fact used to determine e, they had
to calculate 891 diagrams of order α4.

More recently, Experiment says1

g − 2

2
= 0.001 159 652 180 73

±0.000 000 000 000 28

with the inverse fine structure constant

α−1 = 4πǫ0h̄c/e2 =
137.035 999 084
± 0.000 000 051

and theory said2

g − 2

2
=

α4, 891 diagrams
0.001 159 652 182 79

±0.000 000 000 007 71

α5, 12, 672 diagrams
0.001 159 652 181 78

±0.000 000 000 000 77

certainly one of the most accurately measured quantities in physics.
The same calculations can be done for the muon3. The calculations in

QED, of which we have given the first but in principle have provided the
tools for the whole thing, need to be supplemented by the interactions with
other particles with other interactions, both strong and weak. All together

(

g − 2

2

)

exp
= 0.001 165 920 89

(

g − 2

2

)QED

µ
= 0.001 165 847 19

1D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse, arχiv:1009.4831;
Phys. Rev. A83 052122 (2011).

2Aoyama, Hayakawa, Kinoshita, Nio, Phys. Rev. D 77, 053012 (2008);
arχiv:1205.5368v2

3Höcker and Marciano; Aoyama et. al. arχiv:1205.5370v3.
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(

g − 2

2

)EW

µ
= 0.000 000 001 54

(

g − 2

2

)Had

µ
= 0.000 000 071 10

(

g − 2

2

)SM

µ
= 0.001 165 918 40(59)

so this tests all sorts of contributions of quantum field theory and the stan-
dard model.

So F2 is a great success, but we also saw the integrals in F1 are problem-
atic. We will discuss that next time.


