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Lecture 17 Oct. 31, 2013

Crossing symmetry; Compton Scattering

Algebra help for Page 161, and more

Copyright c©2006, 2007 by Joel A. Shapiro

First, we are going to skip sections 5.2 and 5.3. Exper-
imentalists who might someday need to measure and/or
calculate polarized cross sections should, and should be
able to, read 5.2 on their own.
Last time we calculated e− e+ → µ− µ+, and found

M = ie2v̄s′(p′)γµus(p)ūr(k)γµv
r′(k′)/q2,

where qµ = pµ + p′µ.
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Now we consider e− µ− scattering, which has the same

diagram, flipped on its side, with the only changes that
1) we have relabeled the momentum, and 2) the v̄s′(p′)
for the incoming e+ is replaced by ūs′(p′1) for the outgoing
electron, and the vr′(k′) of the outgoing µ+ is replaced
by ur(p2) for the incoming µ−.
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Read pp 153-169

Help for page 161

I am not going to discuss the algebra for the Klein-Nishina formula in
lecture, but I want to make sure you can follow it on your own. There are
two involved trace calculations not completely spelled out in the book. Here
they are:

I = Tr {( 6p ′ + m) (γµ 6kγν + 2γµpν) ( 6p + m) (γν 6kγµ + 2γµpν)} (1)

= Tr
{

( 6p ′ + m)
[

γµ 6k(−2 6p + 4m) 6kγµ + 2(−2 6pγν 6k + 4mkν)pν

+2γµ( 6p + m) 6p 6kγµ + 4p2(−2 6p + 4m)
]}

(2)
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= Tr
{

( 6p ′ + m)
[

4 6k 6p 6k + 16mk2 − 4m2 6k + 8mk · p + 8mp · k − 4 6km2

−8m2 6p + 16m3
]}

(3)

= 32p′ · kp · k − 16k2p · p′ − 16m2k · p′ − 16m2k · p′ − 32m2p · p′

+64m2k2 + 64m2k · p + 64m4 (4)

= 16
(

4m4 − 2m2p · p′ + 4m2p · k − 2m2p · k′ + 2(p · k)(p′ · k)
)

(5)

= 16
(

4m4 + m2(t − 2m2) + 2m2(s − m2) + m2(u − m2)

−
1

2
(s − m2)(u − m2)

)

(6)

= 16
(

2m4 + m2(s − m2) −
1

2
(s − m2)(u − m2)

)

. (7)

In the second line, (2), the first term comes from γν 6pγν = −2 6p (5.9a) and
γνmγν = 4m; the second term from γµ 6kγν 6pγµ = −2 6pγν 6k (5.9c); the third
just rewrites 2γµpν ( 6p+m) γν 6kγµ, and the fourth is 4p2γµ( 6p+m)γµ and uses
the same tricks as the first.

In the third line, (3), the first and second terms come from the first in (2),
the first again using 5.9c. The third and fourth come from the second of (2),
using 6p2 = p2 = m2. In the third term of (2), we use (6p + m) 6p = p2 + m6p =
m( 6p + m) so 2γµ( 6p + m) 6p6kγµ = 2mγµ( 6p + m) 6kγµ = −4m2 6k + 8mp · k, and
of course in the last term we replace p2 by m2.

In the fourth expression, (4), the first line comes from the 6p ′ and the
second line from m of the ( 6p ′ + m).

In the fifth line, (5), we use k2 = 0 for a photon, and as p · k′ = p′ · k, this
verifies 5.82.

In the sixth line, (6), we use 2p · k = 2p′ · k′ = s − m2, 2k · p′ = 2k′ · p =
m2 − u, 2p · p′ = 2m2 − t, and 2k · k′ = −t from 5.83. Finally, in (7) we use
s + t + u =

∑

m2
i = 2m2, and so we verify 5.84.

Now for the second term,

II = Tr {( 6p ′ + m) (γµ 6kγν + 2γµpν) ( 6p + m) (γµ 6k
′γν − 2γνpµ)} (8)

= Tr
{

( 6p ′ + m)
[

(−2 6pγν 6k + 4kνm) 6k ′γν − 2 6p 6k(−2 6p + 4m)

+2(−2 6p + 4m) 6k ′ 6p − 4m2( 6p + m)
]}

(9)

= Tr
{

( 6p ′ + m)
[

−8k · k′ 6p + 4m6k ′ 6k + 4 6p6k 6p − 8m6p 6k − 4 6p 6k ′ 6p

+8m6k ′ 6p − 4m2( 6p + m)
]}

(10)
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= −32k · k′p · p′ + 16m2k · k′ + 16 · 2p · p′k · p − 16m2k · p′

−32m2k · p − 16 · 2 p · p′p · k′ + 16m2k′ · p′

+32m2k′ · p − 16m2p · p′ − 16m4 (11)

= 16
(

4m4 − 2m2p · p′ + 4m2p · k − 2m2p′ · k + 2(p · k)(p′ · k)
)

(12)

= −8
(

4m4 + m2(s − m2) + m2(u − m2)
)

(13)

and so we verify 5.86.

Note on 5.88: recall from freshman physics that λ′ − λ = h
mc

(1 − cos θ) .
From 5.88, 5.87 gives

1
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(
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.

In the third line of 5.90, they use ~p ′ = ~ω − ~k ′ = (−ω′ sin θ, 0, ω − ω′ cos θ),

so E ′ =
√

m2 + ω2 + (ω′)2 − 2ωω′ cos θ. In the fifth line we note that as
E ′ + ω′ = m + ω, E ′ + ω′ − ω cos θ = m + ω − ω cos θ.

In 5.93 you might wonder why the last term isn’t even more singular, but
in fact 1/(p · k) − 1/(p · k′) → −2/m2 at θ = π, so it doesn’t blow up.

In the expression below 5.93, the intermediate expression is

2πα2

4E(E + ω cos θ)
≈

2πα2

4E(ω + m2

2ω
+ ω cos θ)

which should explain the last expression. The total cross section is more
straightforwardly evaluated as

σ =
2πα2

4Eω

∫

1

−1

d(cos θ)
1

1 + cos θ + m2

2ω2

=
2πα2

4Eω
ln

(

1 +
4ω2

m2

)

≈
2πα2

s
ln
(

s

m2

)

.

Here is an alternative explanation to what is given in the bottom of p165
and most of p166:

To see why at high energy 5.97 does not produce a more severe singularity
as m → 0 and θ = π, recall that the helicity of a particle is projected by

1

2
(1 ± γ5) =

(

1I2×2 0
0 0

)

or
(

0 0
0 1I2×2

)
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in our representation. Helicity is preserved by the combination of γν from the
vertex and the 6p−6k from the propagator. At very high energies, the dominant
term is the one which preserves helicity for the electron, and therefore in the
backwards scattering its spin changes by ±h̄ in the z direction. The spin of
the photon moving in the ±z direction can only be ±h̄, so it cannot change
by ±1, so angular momentum Lz must pick up one unit, but that cannot be
if all particles are moving in the ±z direction. thus the scattering amplitude
vanishes for θ = π exactly in the massless limit.


