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In the second problem of the first homework assignment, you explored
the lagrangian density

L0 = −
1

4
F µν(x)Fµν(x), with Fµν(x) := ∂µAν(x) − ∂νAµ(x),

with the vector potential Aµ(x) as the four component dynamical field. You
showed that the equations of motion then gave

∂νF
µν = ∂ν∂

µAν − ∂ν∂
νAµ = 0,

which, with1 Ej = F j0 and Bk = −1
2
ǫijkF

ij , gives Maxwell’s equation in
free space, without charges or current present. But in the project, problem
3.4d, as well as in lecture 8, PS 3.74, we learned that the Dirac field has a
conserved current

Jµ(x) = qψ̄(x)γµψ(x)

so in homework 1, problem 3, we asked what happens to Aµ in the presence

of a charge density J0 and current density ~J . Maxwell’s equations for the
fundamental fields E and B are, in rationalized MKS units, with c = ǫ0 =
µ0 = 1, are

~∇ · ~E = J0,

~∇ · ~B = 0,

~∇× ~E + ~̇B = 0,

~∇× ~B − ~̇E = ~J.

which corresponds to changing the equation of motion for F µν :

∂νF
µν = Jµ.

As you showed in the first homework, to get this equation of motion for Aµ,
we need only add a term −Aµ(x)Jµ(x) to the lagrangian:

L = L0−Aµ(x)Jµ(x) = −
1

2
∂µAν(x)∂

µAν(x)+
1

2
∂νAµ(x)∂µAν(x)−Aµ(x)Jµ(x).

1These signs are not generally agreed to. See “Notation Comparison”, convcomp.pdf.
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Then

∂ρ

δL

δ∂ρAσ

−
δL

δAσ

= −∂ρ∂
ρAσ + ∂ρ∂

σAρ + Jσ = −∂ρF
σρ + Jσ = 0.

So we see that adding an interaction term

LI = −qAµ(x)ψ̄(x)γµψ(x)

to the free Dirac and photon lagrangians will give us an interacting theory.
This interaction term is cubic in the fields, while up to now we have

had only quadratic terms. Quite generally, terms in the lagrangian of higher
order than quadratic in the fields give rise to nonlinear terms in the field
equations, and nonlinear equations are hard to solve. Note that cubic and
nonlinear here refer to the dependence on all the fields — it is not enough
that the equations are linear in ψ for fixed Aµ, because the Aµ equations will
depend on ψ. For each field, the free particles correspond to linear equations,
and the nonlinear terms are responsible for interactions.

Read pages 77-87, though you should read 78
and the first half of 79 first.

Below are two discussions, first to clarify which fields are the arguments
of H and H0, and the second on the unitarity of U(t, t′) and 4.25.

Which fields, φ or φI , are arguments of H and H0?

I had my troubles on pages 83-84, but I think I have resolved them. Here
are the details of what was bothering me, and the resolution.

I had a problem with what H and H0 represented. Are these are expres-
sions in terms of φ(t, ~x) and π(t, ~x), or in terms of φI(t, ~x) and πI(t, ~x)? Here
is how I resolved things.

4.12 is an expression in terms of the full fields, that is,

H(φ, π, t) = HKl-G(φ, π, t) +
∫

d3x
λ

4!
φ4(t, ~x)

where

HKl-G(φ, π, t) =
∫

d3x

(

1

2
π2(t, ~x) +

1

2
(~∇φ(t, ~x))2 +

1

2
m2φ2(t, ~x)

)

,
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expressed in terms of the full fields. Note that HKl-G depends on time through
the fields, and is not independent of time, because it does not commute
with the full Hamiltonian. On the other hand, the full hamiltonian H does
commute with itself, so it is time independent, and the H ’s in exp±iH(t−t0)
in

φ(t, ~x) = eiH(t−t0)φ(t0, ~x)e
−iH(t−t0)

can be evaluated at any time.
In defining the evolution of φI to be

φI(t, ~x) = eiH0(t−t0)φ(t0, ~x)e
−iH0(t−t0),

we take H0(t) to mean HKl-G(φI .πI , t), not the Klein-Gordon hamiltonian in
terms of the full field. Because φI evolves with H0, H0(t) is time independent.

Then U(t, t0) is expressed in terms of both sets of fields,

U(t, t0) = eiH0(φI , πI , t1)(t− t0)e−iH(φ, π, t2)(t− t0),

where t1 and t2 are arbitrary times, because each expression is time indepen-
dent. The first line of 4.18 then becomes

i
∂

∂t
U(t, t0) = eiH0(φI , πI , t1)(t− t0)

[H(φ, π, t2) −H0(φI , πI , t1)]

e−iH(φ, π, t2)(t− t0).

What had me bothered is that the term in brackets does not look like Hint,
because the H and H0 are evaluated with different fields, while in 4.12 they
are both evaluated with the full field. But they are independent of t1 and t2,
so I can choose both to be t0, in which case φ(t0, ~x) = φI(t0, ~x) and similarly
for π, so the bracket is, in fact, Hint(φI , πI , t0). From the last line of 4.18
(and 4.19) we also see that HI is to be interpreted in terms of φI , because it
evolves with H0.

Unitarity of U(t, t′) and Eq. 4.25

How to show 4.25 directly was not obvious to me, but if we first show
U(t, t′) is unitary, and 4.26, then it follows easily.
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As hermitian conjugation reverses the order of operators,

U †(t, t′) = T−1
{

exp
[

i

∫ t

t′
dt′′HI(t

′′)
]}

,

where I have used2 T−1 as the anti-time-ordering operator. Therefore the
derivative with respect to t brings down a factor on the right:

∂

∂t
U †(t, t′) = iU †(t, t′)HI(t),

so
∂

∂t
U †(t, t′)U(t, t′) = U †(t, t′) (iHI(t) − iHI(t))U(t, t′) = 0, and as U(t′, t′) =

1, we have U †(t, t′)U(t, t′) = 1 for all t, and U(t, t′) is unitary.
The first of equations 4.26 is obvious in terms of the time ordering ex-

pression, as all the times ∈ [t1, t2] are later than those in (t2, t3]. The second
equation is then the first, after multiplying by U(t2, t3) on both sides. Defin-
ing U(t2, t3) = U−1(t3, t2) for t3 > t2) removes the t1 ≥ t2 ≥ t3 restriction on
4.26.

Finally,

U(t, t′) = U(t, t0)U(t0, t
′) = U(t, t0)U

†(t′, t0)

= eiH0(t−t0)e−iH(t−t0)eiH(t′−t0)e−iH0(t′−t0)

= eiH0(t−t0)e−iH(t−t′)e−iH0(t′−t0),

which is 4.25.

2This is ad hoc: don’t assume anyone will understand T
−1 outside this discussion.


