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Lecture 7: Dirac and Weyl Fields Sept. 26, 2013
Copyright(©2005 by Joel A. Shapiro

We have seen that we expect to construct our field theory from fields
which transform “simply” under Poincaré transformations, with

U(A)¢a(2)U(A) = Dap(A™")gn(Aw), (1)

where D is a finite dimensional representation of the Lorentz group. We also
saw that such representations are in fact products of representations of two
SO(3) groups generated by Ly = 3(J +4K). Thus in general there are two

spins, s+ and the field has two indices, the eigenvalues of L., respectively.
The derivative terms of (L6 Eq. 10) can be simplified

— — —

- 1
0 - Juyl’yﬁu = +§€ijk‘9i (ﬁjk)uu l’yﬁu =160 - (f X V),
R-KMa'd, = wi(Lo)', 2"8, = —iR - T8y — itR - V.
Then the operators J and K have commutators with fields given by
[5 jv ¢m+,m7 (ZL’)] = _Dréb+,mjr (5 ﬂ)(émﬁr,mf (I)
—Dﬁ,,m;(e : L)¢m+,m’, (z)
il (& X V), m_ ()
P 7 o . A -
{l{ ’ K> ¢m+,m7 (ZL’)] - +ZDm+,m’+(KJ ’ L)gbmﬁr,mf (I)
~iDY_ (R -L) by, ()
+ — iR Ty () — iR - Vs (2).

In particular, we considered a field (whose name I will now change to ¥,
which transforms with A = %, B =0, and we saw that

3, 0(2)] = — 3Bt () + T X Gl ().

We will consider this field further, but before we do, let us also note that the

Poincaré algebra [L,s, P,] = —ig0,Ps + igs, P, means
1 )
[Ji> P]] - §€iab[Lab> P]] = ZeijkPka [Jz> PO] = 0. (2)

K, P,] = [Lo;, P;j| = —i0;; Py, K, Po] = [Lg;, Po] = —iP;. (3)
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The (3,0) Field ¢p

We are going to look for scalar combinations of fields, in order to construct
a Lagrangian density £. The coordinate derivative terms will work out as
they should for any representation, so in what follows I am going to drop the
derivative terms, with just a warning (+d.t.) that I have done so.

First suppose that ¢ g transforms with A = %, B =0, so

[Ji,¥g] = —%UWR, K, ¥g] = +Z%UWR (+d.t.).

Hermitean conjugate gives, as J and K are hermitean operators on the hilbert
space, but the 2 x 2 representation of K is not,

1 1
[Jia,lvbj%] = 5@5;{02', [Kz’,@bg] = —l—iiw}zai, (+d.t.)

What can we make that is quadratic in ¢ and its hermitian conjugate,
and how do these terms transform?

1 1
JiVhton) = Sekoin = JUkowR=0  (+dt)
[Ji,hojvr] = %wk[m, 05| r = i€pdhortr (+d.t.)

[Kz’ﬂ”%w}%] = i?ﬁ}zaiw}z (+d.t.)
Ks, Vkostn] = %wk{giaaj}wR:idiﬂb;{wR (+d.t.)

Combining with (2) we see that 1/hr, ¥ho; P and ¢} Pytbr commute
with J;. We seek a combination which commutes with K, as well.

[Ki, @DI%wRPO} - [k, @DI%@DR} Py + ¢k [K;, Po)

= i}PEUiiﬁRPo — iR P; (4)

= |K,Y hosr| Py +i> vhojtr [Ki, Pl
J J

[Ki, ZTPEUWRPJ'

= WhrP — iphoirPy (5)
SO

=0 (+d.t.).

|:Ki7 %T#ﬂRPo + Z ﬂ%aijPj
J
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The (0,3) Field vy,
On the other hand, suppose 1, transforms with A =0, B = %, SO

1 1 1

The commutations with J; are therefore all the same, while the one of the
fields with K; are reversed, but not those of K with P. So now the first
terms in the final expressions in (4) and (5) have their signs reversed, and
the combination which is a scalar is

W Py — Z Yilonb P

Notice there is no invariant we can make from just ¢)g without a momen-
tum, or from just ¢y without a momentum, but if we mix ¥g with ¢, we
see @D}T{@b 1, commutes with J as before, and also

1 1
(K, ¥hir) = %@DEUWL - 15@%0@'?% =0,

SO w}z@b . is an invariant. Similarly ;" is invariant..

1 Invariant Lagrangians

The momentum transforms the same way a derivative does, so we see that
the Hermitean quadratic invariants we can form from g and v, are

WhOR + ik - Vg
W} owwr — W}é - Vi
VRYL + LR
and i — ivlg
The only one which involves only 1y is the first, and if we vary with respect

to @DL, we get the equation of motion

iR + id - Vg = 0.
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=

Multiplying by —i(9y — & - V) gives!
0 = (80 — 5 . 6)(80 + 53 . ﬁ)w}z = (83 — O'iﬁiaj&j)iﬂ}g
1
= (05 - 5{%03'}@0]')%% = (85 — 6:;0,0;)¥r
= (%} — V?)r = "9, 0r.

In the second line we have used the fact that 0;0; = 9;0; to replace o;0; by
half the anticommutator, which we then evaluate to a Kronecker delta. We
see the result is that g obeys the Klein-Gordon equation, but with zero
mass. The same is true for the second lagrangian, with only ¢y. Only by

including a term with a mixture of ¢z and v can we create a mass.
Let’s define?

o =(1,0;), and of = (1,—0;).

Then we can write the first two lagrangian densities as W%Uﬁ@uiﬂ}z and
i} 0! ,abr,, and the equations of motion from them individually as 0%, =

0 and 070,10 = 0.
If, however, we take a combination to form the lagrangian,
L = iphohdubn + iWLoL0m — m(Phs + VLYR).
we get the equations of motion
10RO, VR —mapy =0 ( -m z'a’é@u) <¢L> o
_— B or _— =0.
10,0 — mipr =0 0,0y —m YR

Because we are mostly interested in massive fields, we will prefer to con-
sider 17, and Y as parts of a four component field. Define

o= () =g %)

'Properties of 7: 0; = a;; 00 = 0;j+i€k0%, s0 {04, 05} = 20;; and [0, 0] = 2i€;,0%.
The usual representation, which we will assume, is

/(0 1 (0 —i (1 0
9e=\10) %=\ o) %27\ o0 -1)°

2The book, and indeed everyone else who defines these, uses o# for what I call oty and
ot for what I call of. But that notation is not ideal.
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which means

70 — ( 0 I[2><2> —
Ix2 O
Then the equation above becomes

(iv*0, —m)y = 0.

This is known as the Dirac equation.
A good part of learning how to calculate scattering amplitudes for fermions
is becoming agile with the algebra of the v matrices. From

H v
KAV — OROY 0 )
T ( 0 ool

O = O O
= o O O
o O O
O O = O
2
-
Il
VRS
|
So
o
N———

we see that
{7 = 29" X Mgy, (6)

which of course means %> = 1, 41> = —1.
Premultiplying the equation of motion 0 = (iy*9, —m)v¢ by — (i7" 0, +m)
we see that

0 = —(i7"0, + m)(iy"0, —m)y = <% {2, 7"} 0,0, + mQ) P
= (90,0, +m?) v = (9, + m?) v,

so the Dirac equation implies the Klein-Gordon equation with mass m, but
has additional information in it.

The v matrices will prove to be much more often used than our ¢f and
oly, so we need to reexpress our Lagrangian in terms of them. Notice that

Aot = <UOL UO > so our lagrangian can be written
R

L = iy 9,1p — mapTy .

That looks very strange, not even covariant, but the reason for this is that
YT does not transform as we might expect, because 1 transforms under a

representation D(A) = Ay (or (3,0) + (0,1)), which is not a unitary repre-

sentation of the Lorentz group, because L. involves iK. Under P — A 1 U,
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we have ¥Ty) — WAEA%@D, and if A% were unitary we would have AT_ = A7
2 2 2
and 9T would be invariant, as it appears. But this is not the case.

What is A 1 ? It turns out there is a simple expression for its generators

in terms of )
)

4

From the anticommutation relations of the gammas (6) simple algebraic ma-
nipulations show that D(L*) = S* obeys the Lorentz algebra commutation
relations, and thus is a representation. In fact, from

i T i _ L (O
S _26“'“<0 ak)’ S 2(0 —O'j)’

we see that this is exactly how 1 transforms, or rather that

S*=-D0"A

1 1
v v
——w"L,, —iw“ Sy

Aile 2 =e

1
2

Now notice that 75 vy = 7, = (7*)T, which means that ISL,% =
S, and %_IAE% = A7'. Thus if we define ¥ := 9!y, under a Lorentz
2 2
transformation

¥ — Tl g0 = ¥Tr0r5 1ALy = DAL

so 1) is invariant, and so is ﬁy“@uw Thus we can rewrite the free Dirac
lagrangian density as

'CDirac = w(lf}/uau - m),lvb



