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I am sure you have heard that for every continuous transformation of the
coordinates that one can make without affecting the Lagrangian, there is a
conserved quantity.

The simplest example is an ignorable coordinate, qj, which does not ap-
pear in the Lagrangian. An example of this is the azimuthal coordinate φ for
a particle in a spherically symmetric potential, or the horizontal position x
in ballistic motion. The conserved quantities are then Lz and px respectively.

Sometimes each of the qi does appear, but in a way that some combina-
tion can change without affecting the Lagrangian. For example, an isolated
system of particles at ~rj , interacting with each other with potentials that de-
pend only on separations ~ri − ~rj, is invariant under all the ~rj being changed

by the same amount, ~rj → ~rj + ~b, corresponding to translating the whole

system by ~b. Then the total momentum ~P =
∑

i ~pi is conserved.
In field theory the dynamical variables η are indexed by continuous pa-

rameters ~r, which complicates the form of symmetry transformations that
η(~r) can have. But Noether’s theorem provides us with a framework for
discussing the general case, which will prove to have many applications in
quantum field theory.

1 Noether’s Theorem

Now I want to give a thorough discussion of Noether’s theorem,1 which re-
lates continuous symmetries of a theory to conserved currents and conserved
charges, for classical fields. The treatment in Peskin and Schroeder is not
very intuitive for transformations in which the coordinates change. When
we consider transformations such as translations or rotations, we expect the
physics to be invariant because we view such changes as passive, as changes in
our coordinate system describing what is really an unchanged physical situa-
tion, though we can also consider the transformation in an active sense, that
the physics would be unchanged if we actually picked up the whole universe
and moved or rotated it some fixed amount before proceeding with the ex-
periments. For transformations such as rotations or Lorentz transformations,

1This section relies heavily on Goldstein, “Classical Mechanics”, 2nd Ed., section 12-7.

the change in fields, φ(x), viewed in an active sense, will have an explicit x
dependence, but in the passive view we see that this is an expected feature
of the change of the coordinate at which the field is evaluated. The transfor-
mation is still a global one, described by parameters that are independent of
x. We will nonetheless permit coordinate-dependent field transformations in
our treatment, in general because they help define the current, but also as
actual symmetry transformations which we will meet later when we discuss
local gauge transformations. For Lorentz transformations, including rota-
tions, the symmetry comes about becaue the same physics is described as
being at different coordinates, with φ′(x′) ∼ φ(x). While symmetries involv-
ing infinitesimal variations in the coordinates can also be considered as local
changes in the fields at the same value of x, as Peskin and Schroeder do, it
is much more intuitive to treat these as relating new fields at new values of
x to old fields at old values of x. But the development of the framework for
this more general transformation will be, I’m afraid, a bit formal.

Symmetries of a Lagrangian and conserved quantities are intimately re-
lated. For example, we know that the momentum conjugate to an ignorable
coordinate is conserved. The general connection is due to the famous theo-
rem of Emmy Noether. We will consider infinitesimal tranformations of the
field degrees of freedom φi(x

µ) which relate the new value of the field to the
old value at some other value of the coordinates, one which we consider to
describe, in the old coordinates, the same physical point that the new x′

describes in the new coordinates. That is, the new fields φ′

i(x
′) are related

to φj(x) rather than φj(x
′), where

xµ → x′

µ = xµ + δxµ (1)

is some infinitesimal transformation of the coordinates rather than of the
degrees of freedom. For a scalar field assumed “invariant” under the trans-
formation, like temperature under a rotation, we would define the new field

φ′(x′) = φ(x).

More generally the field may also change, in a way that may depend on other
fields,

φ′

i(x
′) = φi(x) + δφi(x; φk(x)). (2)

This is what you would expect for a vector field even if it is “physically”
unchanged. For example, for the electric field ~E under rotations, the new
E ′

x(~r
′) gets a contribution from the old Ey(~r ).



To say that
xµ → x′

µ, φi → φ′

i

is a symmetry means, at the least, that if φi(x) is a specific solution of
the equation of motion, the transformed field φ′

i(x
′) is also a solution. The

equations of motion are determined by varying the action, so if the corre-
sponding actions are equal for each pair of configurations (φ(x), φ′(x′)), so
are the equations of motion. Notice here that what we are saying is that the
same Lagrangian function applied to the fields φ′

i and integrated over x′ ∈ R′

should give the same action as S =
∫

R
L(φi(x)...)d4x, where R′ is the range

of x′ corresponding to the domain R of x.
[Of course our argument applies also if δxµ = 0, that the transformation
does not involve a change in coordinates. Such symmetries are called inter-

nal symmetries, with isospin an example.]
Actually, the above condition that the actions be unchanged is far more

demanding than is needed to insure that the same equations of motion arise.
The variations required to derive the equations of motion only compare ac-
tions for field configurations unchanged at the boundaries, so if the actions

S ′ =
∫

R′

L(φ′

i(x
′), ∂′

µφ
′

i(x
′), x′)d4x′ and S =

∫

R

L(φi(x), ∂µφi(x), x)d4x (3)

differ by a function only of the values of φi on the boundary ∂R, they will
give the same equations of motion. Even in quantum mechanics, where the
transition amplitude is given by integrating eiS/h̄ over all configurations, a
change in the action which depends only on surface values is only a phase
change in the amplitude. In classical mechanics we could also have an overall
change multiplying the Lagrangian and the action by a constant c 6= 0, which
would still have extrema for the same values of the fields, but we will not
consider such changes because quantum mechanically they correspond to
changing Planck’s constant.

The Lagrangian density is a given function of the old fields L(φi, ∂µφi, xµ).
If we substitute in the values of φ(x) in terms of φ′(x′) we get a new density
L′, defined by

L′(φ′

i, ∂
′

µφ
′

i, x
′

µ) = L(φi, ∂µφi, xµ)
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where the last factor is the Jacobian of the transformation x → x′, required
because these are densities, intended to be integrated. This change in func-
tional form for the Lagrangian is not the symmetry transformation, for as

long as x ↔ x′ is one-to-one, the integral is unchanged

∫

R′

L′(φ′

i(x
′), ∂′

µφ
′

i(x
′), x′)d4x′ =

∫

R′

L(φi(x), ∂µφi(x), x)
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d4x′

=
∫

R

L(φi(x), ∂µφi(x), x)d4x = S (4)

regardless of whether this transformation is a symmetry.
We see that the change in the action, δS = S ′ − S, which must vanish

up to surface terms for a symmetry, may be written as an integral over R′

of the variation of the Lagrangian density, δS =
∫

R′ δL, with

δL(φ′

i(x
′), ∂′

µφ
′

i(x
′), x′) := L(φ′

i(x
′), ∂′

µφ′

i(x
′), x′) − L′(φ′

i(x
′), ∂′

µφ
′

i(x
′), x′)

=L(φ′

i(x
′), ∂′

µφ′

i(x
′), x′) − L(φi(x), ∂µφi(x), x)
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(5)

Here we have used the first of Eq. (3) for S ′ and Eq. (4) for S.
Expanding to first order, the Jacobian is

det
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∂x′µ

∂xν
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∣
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∣

−1

= det (δµ
ν + ∂νδx

µ)−1 =

(

1 + Tr
∂δxµ

∂xν

)−1

= 1 − ∂µδx
µ, (6)

while

L(φ′

i(x
′), ∂′

µφ
′

i(x
′), x′) = L(φi(x), ∂µφi(x), x)

+δφi
∂L

∂φi
+ δ(∂µφi)

∂L

∂∂µφi
+ δxµ δL

δxµ
, (7)

Thus2

δL = L∂µδxµ + δφi
∂L

∂φi

+ δ(∂µφi)
∂L

∂∂µφi

+ δxµ δL

δxµ
, (8)

and if this is a divergence, δL = ∂µΛµ, we will have a symmetry.
There are subtleties in this expression3. The last term involves a deriva-

tive of L with its first two arguments fixed, and as such is not the derivative
with respect to xµ with the functions φi fixed. For this reason we used a

2This is the equation to use on homework.
3There is also a summation understood on the repeated i index as well as on the

repeated µ index.



different symbol, because it is customary to use ∂µ to mean only that xν is
fixed for ν 6= µ, and not to indicate that the other arguments of L are held
fixed. That form of derivative is the stream derivative,

∂L
(

φi(x), ∂µφi(x), x
)

∂xν
=

δL
(

φi(x), ∂µφi(x), x
)

δxν
+(∂νφi)

∂L

∂φi

+(∂ν∂µφi)
∂L

∂∂µφi

.

Note also that δφi(x) = φ′

i(x
′) − φi(x) is not simply the variation of the

field at a point, �φi(x) = φ′

i(x) − φi(x), but includes in addition the change
(δxµ)∂µφi due to the displacement of the argument (1). Thus

δφi(x) = �φi(x) + (δxν)∂νφi. (9)

The variation with respect to ∂′

µφ
′

i needs to be examined carefully, because
the δ variation effects the coordinates, and therefore in general ∂µδφi 6= δ∂µφi.
By definition,

δ∂µφi = ∂φ′

i/∂x′µ|x′ − ∂φi/∂xµ|x

=
∂xν

∂x′µ

∂

∂xν
[φi + (δxρ)∂ρφi + �φi]

∣

∣

∣

∣

∣

x

− ∂φi/∂xµ|x

= − (∂µδxν) ∂νφi +
∂

∂xµ
[(δxρ)∂ρφi + �φi]

= (δxν)∂µ∂νφi + �∂µφi (10)

where in the last line we used ∂µ�φi = �∂µφi, because the � variation is

defined at a given point and does commute with ∂µ. Alternatively, we might
have rewritten the third line as

δ∂µφi =
∂

∂xµ
δφi − (∂µδx

ν) ∂νφi.

Notice that the δxν terms in (9) and (10) are precisely what is required
in (7) to change the last term to a full stream derivative. Thus

L(φ′

i(x
′), ∂′

µφ′

i(x
′), x′) = L(φi(x), ∂µφi(x), x)

+�φi
∂L

∂φi

+ �∂µφi
∂L

∂∂µφi

+ δxµ ∂L

∂xµ
, (11)

where now ∂L/∂xµ means the stream derivative, including the variations of
φi(x) and its derivative due to the variation δxµ in their arguments.

Inserting this and (6) into the expression (5) for δL, we see that the
change of action is given by the integral of

δL = (∂µδx
µ)L + δxµ ∂L

∂xµ
+ �φi

∂L

∂φi
+ �∂µφi

∂L

∂∂µφi

=
∂

∂xµ

(

δxµL + �φi
∂L

∂∂µφi

)

+ �φi

(

∂L

∂φi

−
∂

∂xµ

∂L

∂∂µφi

)

(12)

We will discuss the significance of this in a minute, but first, I want to present
an alternate derivation.

The alternative derivation of this result is based on the observation that
in the expression (3) for S ′, x′ is a dummy variable and can be replaced by x,
and the difference can be taken at the same x values, except that the ranges
of integration differ. Thus

S ′ =
∫

R′

L (φ′(x), ∂µφ′(x), x) d4x.

This differs from S(φ) because

1. the Lagrangian is evaluated with the field φ′ rather than φ, producing
a change

δ1S =
∫

(

∂L

∂φi
�φi +

∂L

∂∂µφi
�∂µφi

)

d4x,

where the variation with respect to the fields is now in terms of �φi(x) :=
φ′

i(x) − φi(x), at the same argument x.

2. Change in the region of integration, R′ rather than R,

δ2S =
(
∫

R′

−
∫

R

)

L(φi, ∂µφi, x) d4x.

If we define dSµ to be an element of the three dimensional surface ∂R of R,
with outward-pointing normal in the direction of dSµ, the difference in the
regions of integration may be written as an integral over the surface,

(
∫

R′

−
∫

R

)

d4x =
∫

∂R
δxµ · dSµ.

Thus

δ2S =
∫

∂R
Lδxµ · dSµ =

∫

R

∂µ (Lδxµ) (13)



by Gauss’ Law (in four dimensions).
As � is a difference of two functions at the same values of x, this operator

commutes with partial differentiation, so �∂µφi = ∂µ�φi. Using this in the
second term of δ1S

δ1S =
∫

R

d4x

[

∂µ

(

�φi
∂L

∂∂µφi

)

+ �φi

(

∂L

∂φi
− ∂µ

∂L

∂∂µφi

)]

Thus altogether S ′−S = δ1S +δ2S =
∫

R
d4x δL, with δL given by (12). This

completes our alternate derivation that S ′ − S =
∫

R
d4xδL, and Eq. (12).

Note that δL is a divergence plus a piece which vanishes if the dynamical
fields obey the equation of motion, quite independent of whether or not the
infinitesimal variation we are considering is a symmetry. As we mentioned,
to be a symmetry, δL must be a divergence for all field configurations, so that
the variations over configurations will give the correct equations of motion
(classically) or, for the functional integral formulation of quantum mechanics,
so that all the paths will contribute equivalently.

We have been assuming the variations δx and δφ can be treated as in-
finitesimals. This is appropriate for a continuous symmetry, that is, a sym-
metry group4 described by a (or several) continuous parameters. For exam-
ple, symmetry under displacements xµ → xµ + cµ, where cµ is any arbitrary
fixed 4-vector, or rotations through an arbitrary angle θ about a fixed axis.
Each element of such a group lies in a one-parameter subgroup, and can be
obtained, in the limit, from an infinite number of applications of an infinites-
imal transformation. If we call the parameter ǫ, the infinitesimal variations
in xµ and φi are given by derivatives of x′(ǫ, x) and φ′ with respect to the
parameter ǫ. Thus

δxµ = ǫ
dx′µ

dǫ

∣

∣

∣

∣

∣

xν

, δφi = ǫ
dφ′

i(x
′)

dǫ

∣

∣

∣

∣

∣

xν

.

The divergence must also be first order in ǫ, so δL = ǫ∂µΛµ if we have a
symmetry.

We define the current for the transformation

Jµ = −
∂L

∂∂µφi

dφ′

i

dǫ
+

∂L

∂∂µφi

∂νφi
dx′ν

dǫ
− L

dx′µ

dǫ
+ Λµ. (14)

4Symmetries always form a group. Continuous symmetries form a Lie group, whose ele-

ments can be considered exponentials of linear combinations of generators. The generators

form a Lie algebra.

Recalling that �φi = δφi − (δxν)∂νφi, we can rewrite (12)

δL =
∂

∂xµ

(

δxµL + δφi
∂L

∂∂µφi

− δxν(∂νφi)
∂L

∂∂µφi

)

+�φi

(

∂L

∂φi

−
∂

∂xµ

∂L

∂∂µφi

)

and see that

ǫ∂µJµ =
∂

∂xµ

(

−
∂L

∂∂µφi

δφi +
∂L

∂∂µφi

∂νφiδx
ν

)

−
∂

∂xµ
(Lδxµ) + δL

= �φi

(

∂L

∂φi
−

∂

∂xµ

∂L

∂∂µφi

)

Thus we have

∂µJµ = 0 for a symmetry, when the fields obey the equations of motion.

This condition is known as current conservation. Associated with each
such current, we may define the charge enclosed in a constant volume V

QV (t) =
∫

V
d3xJ0(~x, t).

If we evaluate the time derivative of the charge, we have

d

dt
QV (t) =

∫

V
d3x∂0J

0(~x, t) ≈ −
∫

V
d3x

∑

i=1,3

∂iJ
i(~x, t) = −

∫

V
d3x~∇ · ~J(~x, t)

= −
∫

∂V

~J · d~S,

where ∂V is the boundary of the volume and d~S an element of surface area.
We have used the conservation of the current and Gauss’ Law. If, as can
usually be assumed, the current vanishes as we move infinitely far way from
the region of interest, the surface integral vanishes if we take V to be all
of space, and we find that the total charge is conserved, dQ/dt = 0, in the
same sense that equations of motion are satisfied. The assumption about
asymptotic behavior is not always valid, and we must consider whether we
have grounds for it in particular applications. We will see later that in some
circumstances there are “anomolies” when this assumption is not justified.



In all of the examples you will consider for homework, using the descrip-
tion of the symmetry transformation described above, we will find Λµ = 0.
These symmetries might have been described differently, however, by not in-
cluding any change in the coordinates xµ, considering only the variation of
the fields φi → φi + �φi. In that treatment the δxµL term would not have
appeared explicitly, but would have entered anyway by means of Λµ.


