
Gauge Theory on a Lattice

One approach to field theory, in particular to aspects that are not well
treated in perturbation theory, is to approximate the field defined on a space-
time continuum with a lattice field theory, defined on a lattice of space-time
points. There has been a great deal of cross-fertilization from considering
renormalization from the continuum high-energy physics point of view and
from the condensed matter, Wilsonian, viewpoint, in which the field theory
only makes sense down to some small distance scale anyway. But we are
going to consider it for a different reason — because it helps to clarify the
fundamental idea of gauge fields.

Symmetry

Consider a theory which involves a set of N fields φi(x
µ) which have an

internal symmetry group G under which they transform with a representation
M , so that

G : φi(x) → φ′
i(x) =

∑

j

Mij(G)φj(x). (1)

If it is a symmetry, the Lagrangian must be invariant. For the kinetic
term 1

2

∑

µ,i ∂µφi∂
µφi, invariance requires that M is an orthogonal matrix

∑

k MkiMkj = δij . That condition also insures the invariance of the mass
term −1

2

∑

i φ
2
i , and of any other “potential” term V (

∑

i φ
2
i ) depending only

on the “length” of φ. Provided V has that form, we see that the theory
should be invariant under the orthogonal transformations (1). We see that
the individual components φi are only projections along the unit vectors of
an arbitrary orthonormal basis of R

N , and do not have separate intrinsic
physical meanings.

Discretization

How might we approximate the continuum theory on a lattice? Instead of
φi(x) defined for all values of x ∈ R

4, we might have φi(~n) discrete variables
defined only for integer values ~n ∈ Z

4, representing a lattice in space-time
with lattice spacing a, with xµ = anµ. The mass term in the action

−
1

2

∫

d4x
∑

i

φ2
i (x) → −

1

2
a4

∑

~n∈Z
4

∑

i

φ2
i (~n).
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For the kinetic energy term we need to replace a derivative by a finite differ-
ence. The simplest substitution is to replace

∂µφi(x) →
1

a

(

φi(~n+ ~∆µ) − φi(~n)
)

,

where ∆µ is 1 in the µ direction and 0 in the others. Here the relation of xµ

and ~n is xν = anν + 1
2
aδν

µ, representing most accurately the x in the middle
of the two lattice points. If we expand out the squares of the differences,
we get terms which look just like the mass terms, but also nearest neighbor
couplings

∑

i φi(~n+ ∆µ)φi(~n).
Each of these contributions to the action is still invariant under the trans-

formation (1), providing we use the same group transformation at every point
in space-time. This is called a global gauge transformation.

In a relativistic field theory, all information is local, because information
can only travel at the speed of light. So we might ask, if the theory is
unchanged by a group action at one point, why should that depend on having
the same transformation at every other point? In other words, could we have
a local symmetry, in which equation (1) holds with the group element varying
from one point of space-time to another? The mass terms and other terms
in V (φ) only depend on one point, so they don’t care whether M varies, and
they are invariant under such transformations. But the nearest-neighbor
coupling

∑

i

φi(~n+ ∆µ)φi(~n) →Mik(G(~n+ ∆µ))Mij(G(~n)) φk(~n + ∆µ)φj(~n)

is not invariant because

M−1(G(~n+ ∆µ))M(G(~n)) 6= 1

if the G’s (and hence the M ’s) vary from point to point.

Parallel Transport

The problem is that we have a term in the Lagrangian that is a function
of how φ changes from point to point, but we measure that change by how
much the components change. That is only correct if the basis for comparing
the φ’s does not change. We must have a way to measure change from point
to point, but before we can subtract one φ vector from another at a different
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point, we must “parallel transport” it to that new point. That is, for each
link between neighboring points, we must have a rule for parallel transporting
φ fields from one end of the link to the other. This introduces new degrees
of freedom, which are actually one element of the symmetry group (and
therefore perhaps several degrees of freedom, 1

2
N(N − 1) for SO(N), the

orthogonal transformations in N dimensions). We can then build a theory
with a local symmetry, but at the expense of introducing a lot of new degrees
of freedom.

The theory that emerges from these consideration is a gauge field the-

ory. Its degrees of freedom include not only the “matter fields” at each site
of the lattice, but also “gauge fields” on each link between nearest neighbors.
The matter fields live in a vector space which transforms linearly as a repre-
sentation1 of the “gauge group” G. The gauge fields live in the group itself,
at least in the lattice field theory, but may alternately be considered to take
values in the Lie algebra of generators of the group.

What is the meaning that the group
element G associated with a given link
(~n, ~n+~∆µ)? We called it a parallel trans-
port, a definition of how one can transport
the basis vectors ~ei(~n) to the point ~n+ ~∆µ

while keeping them parallel, and then reex-
pressing them in terms of the basis vectors
~ei(~n+ ∆µ). Perhaps this is confusing, and
you might ask why the basis vectors ~ei(~n)
are not each identical to the corresponding
~ei(~n + ∆µ). It might help to think of an
ordinary vector in the plane, expressed in
polar coordinates. Consider the unit basis
vector ~er at the point P . If we transport
it to the point P ′ while keeping it parallel
to what it was, we arrive at the vector la-
belled Ger, which is not the same as the
unit radial vector e′r at the point P ′.

e
eθ

re’

rP

P’
G e

G

r

1To a physicist, the vector space in which the matter fields live is called the represen-
tation, but to mathematicians the representation consists of the matrices Mij , or more
accurately the mapping from elements of the group into matrices, G → M(G).
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Covariant Derivative

When a group element G acts on a vector ~V =
∑

i Viêi which transforms
under a representation M , the components of the new vector are multiplied
by the matrix:

G : ~V → ~V ′ =
∑

ij

Mij(G)Vj êi, so V ′
i =

∑

j

Mij(G)Vj.

So if G parallel transports ~φ(~n) from ~n to ~n + ~∆µ, and if we subtract this

from ~φ(~n+ ∆µ) to get the change in φ, we have

∆φ =
∑

i



φi(~n + ∆µ) −
∑

j

Mij(G)φj(~n)



 êi.

If the fields are slowly varying over the distance of one lattice spacing,
which is necessary if we are to consider the lattice an approximation to the
continuum, we can approximate

φi(~n+ ∆µ) ≈ φi(~n) + a∂µφi.

We can also assume that the group transformation that parallel transports by
one lattice spacing is close to the identity, and that the Lie algebra element
which generates it should be proportional to the lattice spacing a. Thus
we may write G = eiagA, M(G) = M(eiagA) ≈ 1 + iagM(A), where A is
an element in the Lie algebra g of the gauge group G. [We have added a
parameter g which will turn out to be the fundamental charge, in order to
get conventionally defined A fields, although sometimes that is not done, and
the scale for measuring A is the natural one for the group.] Then we find, to
first order in the lattice spacing a,

∆φi = a



∂µφi − ig
∑

j

Mij(A)φj



 .

In the continuum limit, we define 1/a times this to be the covariant deriva-

tive, but first I must say a few words about the gauge field A. First, as there
is a different value on each link, and in the continuum limit there are four
links radiating from each point, we need to be defining four fields Aµ(x).
Also, each Aµ is not a single field, in general, but an element of the Lie
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algebra, which is a vector space. The Lie algebra for the rotation group, for
example, is parameterized by a vector with three components, ~ω. Rotations
themselves are not a gauge group, but one possible gauge group to consider
is the SU(2) of the electro-weak theory, which is isomorphic2 to the rotation
group. One usually uses Li to represent a basis vector of the Lie algebra
vector space, so the gauge field can be expanded as

Aµ(x) =
∑

b

A(b)
µ (x)Lb.

This brings us to the definition of the covariant derivative:

(Dµφ)
j
= ∂µφj − ig

∑

kb

A(b)
µ Mjk(Lb)φk ; Dµφ = ∂µφ− igA(b)

µ M(Lb)φ,

where on the right we have written the expression with implied summations
and matrix and vector indices and multiplication.

Gauge Transformations

What does this have to do with local symmetry? We saw that the trans-
formation (1), where we let G vary with x, is a symmetry for the lattice
terms involving only a single site, but not for the kinetic term, (∂φ)2, which
involves cross terms such as

∑

i φi(~n + ∆µ)φi(~n). These couple neighboring
points, and are not invariant. But with our improved definition of (∆φ), the
cross terms now have the form

φ(~n + ∆µ) ·M(GL) · φ(~n),

where GL is the group transformation associated with the link (~n, ~n+ ∆µ).
We can now ask what happens under the transformation in a different

way. If we think of the gauge transformation G(x) in the passive language
as a change in the basis elements for the matter fields, we realize that they
will also effect the rule for doing parallel transport. If GL was the group
transformation on the basis which did a parallel transport from site p to site
q, with link L going from p to q, then after a change of basis by Gp at p
and one by Gq at q, the way to parallel transport the new basis at p must

2Not exactly: the Lie algebra of SU(2) is the same as the Lie algebra of the three
dimensional rotation group SO(3), but the actual groups differ, as is discussed when
considering how spinors transform under rotations of 2π.
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be G′
L = GqGLG

−1
p . So we now define the gauge transformation Λ, which is

specified by a group element at each lattice site

Λ :











φ(xp) → M(Gp) · φ(xp)
φ(xq) →M(Gq) · φ(xq)

GL → GqGLG
−1
p

This gauge transformation is a local symmetry of the gauge field theory.
Let’s verify that this is an invariance of the nearest neighbor term:

φ(xq) ·M(GL) · φ(xp) = φi(xq)Mij(GL)φj(xp)

→ Mik(Gq)φk(xq)Mij(GqGLG
−1
p )Mjℓ(Gp)φℓ(xp)

= φk(xq)M
−1
ki (Gq)Mij(GqGLG

−1
p )Mjℓ(Gp)φℓ(xp)

= φk(xq)Mkℓ(GL)φℓ(xp) = φ(xq) ·M(GL) · φ(xp),

where we have used the orthogonality ofM(Gq) and the fact that the M ’s are
a representation, and therefore M−1

ki (Gq)Mij(GqGLG
−1
p )Mjℓ(Gp) = Mkℓ(GL).

In a continuum field theory, we consider only local gauge transformations
where the group element varies differentially in the continuum limit. We may
think of Λ as given by a Lie-algebra valued scalar field λ(x) =

∑

b λ
(b)(x)Lb.

Then the matter fields transform as

φ(x) → φ′(x) = ei
∑

b
λ(b)(x)M(Lb)φ(x),

while the gauge field itself transforms by

A(b)
µ (x) → A′ (b)

µ (x),

with

eiagA
′ (b)
µ (x) = e

iλ(x+
1

2
a∆µ)

eiagA
(b)
µ (x)Lbe

−iλ(x−
1

2
a∆µ)

. (2)

We have placed x at the middle of the link. We now expand to first order in
the lattice spacing, remembering that λ(x) and ∂µλ(x) may not commute.
So we will expand the exponential rather than λ. Approximating

eiagAµ → 1 + iagAµ,

eiλ(x± 1
2
a∆µ) → eiλ(x) ±

1

2
a∂µ

[

eiλ(x)
]

,
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and the same for e−iλ(x), and plugging these into (2), we get

1 + iagA′
µ =

(

eiλ +
1

2
a∂µe

iλ

)

(1 + iagAµ)
(

e−iλ −
1

2
a∂µe

−iλ

)

= 1 + iageiλAµe
−iλ +

1

2
a
(

∂µe
iλ
)

e−iλ −
1

2
aeiλ

(

∂µe
−iλ
)

Note from ∂µ

(

eiλe−iλ
)

= 0 that the third and fourth terms are equal, so
we can drop the third and double the fourth, to get

A′
µ = eiλAµe

−iλ +
i

g
eiλ∂µe

−iλ

= eiλ

(

Aµ +
i

g
∂µ

)

e−iλ

Let us now ask how this is related to the gauge transformations we know
from Maxwell’s theory, which look less complicated. Electromagnetism is a
gauge field, but one with a very simple gauge group, that of rotations about a
single fixed axis3. The group consists of G = {eiθL1} and the Lie algebra has
only one generator, L1, and is therefore isomorphic to the real line R, and the
single structure constant c 1

11 is zero (a counterexample to assuming that the
Killing form can always be set to 2×1I). The rotations act on charged fields,
which are usually represented by complex fields Φ but in our treatment here
are represented by a doublet of real fields, (φ1, φ2) = ( Re Φ, Im Φ). The
transformation

φ→ φ′ =
(

Re Φ′

Im Φ′

)

=
(

cos θ − sin θ
sin θ cos θ

)(

Re Φ
Im Φ

)

gives Φ′ = eiθΦ, so the gauge transformations are local changes in phase of
the charged fields. The gauge transformations of fields themselves is vastly
simplified by the fact that all the terms commute, so

A′
µ = eiλ

(

Aµ +
i

g
∂µ

)

e−iλ = Aµ + g−1∂µλ.

But this simplicity only holds for an Abelian group, one where all the gen-
erators commute, which is not enough when we wish to consider the gauge
theories of the electroweak and strong interactions.

3These are not rotations in real space, but in some abstract space of field configurations.
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Pure Gauge Terms in L

We now know how the kinetic terms for charged fields are modified by the
presence of an external gauge field, but we have not yet discussed the terms
which propagate the gauge fields themselves. We need these terms in the
Lagrangian to be invariant under gauge transformations. In particular this
means that they cannot depend only on a single link, because we can always
make a gauge transformation Gp = GL which resets the group element for
a single link to 1, so there would be no dependence on the field. In fact,

the simplest way to get rid of the gauge
dependance of Ga = eiagAx(xa) on G2 =
eiλ(x2) is to premultiply it by Gb,

GbGa → G3GbG
−1
2 G2GaG

−1
1 = G3GbGaG

−1
1 . 1 2

34 4 3

21a

b

c

d

a

b

c’

d’

There is still a gauge dependence on the endpoints of the path, however, so
the best thing to do is close the path. To do so, we are traversing some
links backwards from the way they were defined, but from that definition in
terms of parallel transport it is clear that the group element associated with
taking a link backwards is the inverse of the element taken going forwards.
So the group element associated with the closed path on the right (which
is called a plaquette) is GP = G−1

d G−1
c GbGa, which transforms under gauge

transformations as

GP → G′
P =

(

G4GdG
−1
1

)−1 (

G3GcG
−1
4

)−1
G3GbG

−1
2 G2GaG

−1
1

= G1G
−1
d G−1

4 G4G
−1
c G−1

3 G3GbG
−1
2 G2GaG

−1
1 = G1G

−1
d G−1

c GbGaG
−1
1

= G1GPG
−1
1 .

So the plaquette group element is not invariant but it does have a simpler
and more restricted variation. In the continuum limit we expect each link’s
group element to be near the identity and also to have Gc differ from Ga by
something proportional to the lattice spacing, so GP should be close to the
identity, the difference considered a generator in the Lie algebra. The Killing
form acting on that generator will provide us with an invariant. Let us define
Fµν = −ia−2g−1(GP − 1) to be the field-strength tensor, where µ and ν are
the directions of links a and b respectively. Let us take x in the center of the
placquette. Expanding each link

Ga ≈ 1 + iagAµ(x −
1

2
a∆ν) −

1

2
a2g2A2

µ(x −
1

2
a∆ν)
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≈ 1 + iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)

G−1
c ≈ 1 − iagAµ(x +

1

2
a∆ν) −

1

2
a2g2A2

µ(x +
1

2
a∆ν)

≈ 1 − iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x),

we have, to second order in a,

GP =
(

1 − iagAν(x) +
1

2
ia2g∂µAν(x) −

1

2
a2g2A2

ν(x)
)

(

1 − iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)
)

(

1 + iagAν(x) +
1

2
ia2g∂µAν(x) −

1

2
a2g2A2

ν(x)
)

(

1 + iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)
)

= a2g {g [Aµ(x),Aν(x)] + i∂µAν(x) − i∂νAµ(x)}

Thus
Fµν(x) = ∂µAν(x) − ∂νAµ(x) − ig [Aµ(x),Aν(x)] .

Note that Fµν is

• a Lie-algebra valued field, Fµν(x) =
∑

b F
(b)
µν (x)Lb.

• An antisymmetric tensor, Fµν(x) = −Fνµ(x).

• Because the Lie algebra is defined in terms of the structure constants,
c d
ab by

[La, Lb] = ic d
ab Ld,

the field-strength tensor may also be written

F (d)
µν = ∂µA

(d)
ν − ∂νA

(d)
µ + gc d

ab A
(a)
µ A(b)

ν .

Before we turn to the Lagrangian, let me point out a crucial relation-
ship between the covariant derivatives and the field-strength. If we take the
commutator of covariant derivatives

Dµ = ∂µ − igA(b)
µ Lb
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at the same point but in different directions,

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν] = −ig∂µAν − g2AµAν − (µ ↔ ν)

= −g2 [Aµ,Aν] − ig∂µAν + ig∂νAµ

= −igFµ,ν .

Notice that although the covariant derivative is in part a differential operator,
the commutator has neither first or second derivatives left over to act on
whatever appears to the right. It does need to be interpreted, however, as
specifying a representation matrix that will act on whatever is to the right.

Now consider adding to the Lagrangian a term proportional to β(Fµν ,F
µν) =

2
∑

b F
(b)
µν F

(b) µν . I have assumed the generators Li have been normalized so
that the Killing form β(Li, Lj) = 2δij, and the stucture constants are to-
tally antisymmetric4. We know that under a gauge transformation Fµν →

eiλFµνe
−iλ. If λ is infinitesimal, Fµν → Fµν+i[λ,Fµν ] =

{

F (d)
µν − λ(a)F (b)

µν c
d

ab

}

Ld,
so

δβ(Fµν,F
µν) = −2λ(a)F (b)

µν c
d

ab F
(d) µν = 0

where the expression vanishes because c d
ab is antisymmetric under inter-

change of b and d but F (b)
µν F

(d) µν is symmetric under the same interchange
(and we are summing on b and d). As β(Fµν ,F

µν) doesn’t change to first
order under infinitesimal transformations, it also doesn’t change under the
finite transformations they generate.

Equations of Motion for the Gauge Fields

We choose the normalization of the A fields so that the pure gauge term in
the Lagrangian density is −1

4
F (b)

µν F
(b) µν . Suppose we also have Dirac matter

fields transforming under a representation tbij = Mij(Lb) of the group, and
perhaps some scalar fields as well, transforming under a (possibly) different
representation t̄bij = M̄ij(Lb), where the bars here only represent a different
representation, not any kind of conjugation. The gauge fields come into the
matter terms in the Lagrangian because, in order to maintain local gauge
invariance, all derivatives need to be replaced by covariant derivatives. Thus
the potential terms for matter fields in L will not be involved in the equations

4See groups.pdf and adjnote.pdf in http://www.physics.rutgers.edu/∼shapiro/616/
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of motion of the gauge fields, and we need only look at

L = −
1

4
F (b)

µν F
(b) µν + iψ̄γµ

(

∂µ − igA(b)
µ tb

)

ψ

+
1

2

[(

∂µ − igA(b)
µ t̄b

)

φ
]T [(

∂µ − igA(b) µt̄b
)

φ
]

.

Let us analyze the classical mechanics of the gauge fields. First we find the
canonical momentum conjugate to A(b)

µ (x), which is

π(b) µ(x) =
δL

δȦ
(b)
µ

(x) = −
1

2
F (b) µν

δF (b)
µν

δȦ
(b)
µ

= −F (b) 0µ(x).

Notice that

• The matter field terms do not contribute to the canonical momenta,
because they depend on Aµ but not its time derivative.

• The momentum conjugate to A0 is identically zero.

Momenta are not supposed to be identically zero in ordinary classical mechan-
ics, they are supposed to be substitutes for velocities, i.e. time derivatives
of the coordinates. The N coordinates and N momenta of an N degrees-
of-freedom problem are supposed to span a 2N dimensional phase space.
π0 = 0 is not an equation of motion, it is a constraint. To properly handle
such a situation we would need either to eliminate the constrained degrees
of freedom or use some fancy techniques not usually discussed in classical
mechanics courses. The canonical form of quantum mechanics would seem
to require zero to not commute with A0, which is too strange to contem-
plate even in quantum mechanics. But it turns out that this situation can
be handled somewhat straightforwardly in the path integral formulation of
quantum mechanics, as we shall see.

In the classical mechanics of a field theory we generally define a general-
ization of the momentum,

Πν
i (x) =

δL

δ∂νφi

, Π0
i (x) = πi(x)

for each field φi. The ν = 0 component is the conjugate momentum, but all
components enter the Euler-Lagrange equations

∂νΠ
ν =

δL

δφ
.
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Here our fields are not scalars but have additional indices b and µ because A
is both Lie-algebra-valued and a vector. So the Euler-Lagrange equation is

∂νΠ
(b) µ;ν −

δL

δA
(b)
µ

= 0,

where

Π(b) µ;ν =
δL

δ
(

∂νA
(b)
µ

) = −F (b) νµ.

Let’s turn to evaluating the right-hand side of the Euler-Lagrange equa-
tion, δL/δA(b)

µ . Recall that the derivative intended here is to look for terms

depending directly on A(b)
µ considering the derivatives fixed. We will need to

differentiate the field-strength

F (c)
µν = ∂µA

(c)
ν − ∂νA

(c)
µ + gc c

ab A
(a)
µ A(b)

ν ,

but only the last term depends on undifferentiated gauge fields, so

δF (c)
µν

δA
(b)
ρ

= gc c
ab

(

A(a)
µ δρ

ν −A(a)
ν δρ

µ

)

,

and thus
δ

δA
(b)
ρ

[

−
1

4
F (c)

µν F
(c) µν

]

= −gc c
ab F

(c) µρA(a)
µ .

The contributions to δL/δA(b)
ρ from the matter terms are more straight-

forward — each Dρ will contribute a −igtb or equivalent, so

δ

δA
(b)
ρ

{

+iψ̄γµDµψ +
1

2
[Dµφ]T Dµφ]

}

= gψ̄γρtbψ + igφT t̄bDρφ,

where I have used the fact that the representations of the generators t̄ for
real unitary representations are antisymmetric imaginary matrices.

Define the current

ja
ν = ψ̄γνt

aψ + iφT t̄aDνφ,

so that we have found

∂νF
(b) νµ − gc c

ab F
(c) νµA(a)

ν + gjbµ = 0. (3)
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The appearence of the first two terms is reminiscent of a covariant deriva-
tive, but we have not explicitly defined the covariant derivative acting on
Lie-algebra valued fields, because we have not explicitly explored their repre-
sentation under the group. While the local gauge transformation of the gauge
field is more complicated than can be described by a representation of the
gauge group, under a global gauge transformation it or any other Lie-algebra
valued field transforms as

eiλcLc : A → eiλcLcAe−iλcLc = Madj
ab

(

eiλcLc

)

AbLa,

which is the adjoint represenation. Differentiating wrt λc and setting λ to
zero gives

[Lc, A
bLb] = Madj

ab (Lc)A
bLa = ic a

cb A
bLa,

so the appropriate representation for the covariant derivative of a Lie-algebra
valued field is

Madj
ab (Lc) = ic a

cb .

Madj
ab (Lc) is called the adjoint representation, and is always of the same

dimension as the Lie algebra itself.
As discussed above5 we have normalized our generators Lb so that the

structure constants are totally antisymmetric, and we can substitute

iMadj
ab (Lc) = −c a

cb = c c
ab

in the expression (3), giving

∂ρF
(a) ρµ − igA(c)

ρ Madj
ab (Lc)F

(b) ρµ + gjaµ = DρF
(a) ρµ + gja µ = 0.

Now that we have defined the covariant derivative of a Lie algebra valued
field,

Dµλ
(b) = ∂µλ

(b) − igA(c)
µ Madj

bd (Lc)λ
(d),

we may note that for an infinitesimal gauge transformation,

A(b)
µ → A′(b)

µ = A(b)
µ + iλdA(c)

µ (ic b
dc ) +

1

g
∂µλ

(b) = A(b)
µ +

1

g
(Dµλ)(b) .

The theory we have just defined, the gauge theory based on a non-Abelian
Lie group, is known as Yang-Mills theory.

5And more extensively in my notes on “Adjoint Representation, Killing forms and the
antisymmetry of c

k
ij ”, http://www.physics.rutgers.edu/grad/616/adjnote.pdf.
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Inadequacy of the Equations of Motion

Field configurations which are gauge transformations of each other cannot
be distinguished. As local symmetries can affect the asymptotic states in a
scattering experiment, even to the extent of affecting the fields representing
just one of the particles, it is clear that field configurations related by a gauge
transformation do not describe different physical states! Thus there appear
to be field excitations describing particle states which are, in fact, unphysical.
These degrees of freedom of the fields are also undetermined by the physics.
For example, if we take the g → 0 limit of the gauge theory,

F (c)
µν = ∂µA

(c)
ν − ∂νA

(c)
µ

∂µF (c)
µν = ∂µ∂µA

(c)
ν − ∂ν∂

µA(c)
µ = 0.

If we expand the A field in fourier modes as we did for φ,

A(c)
µ (x) =

∫

d4k

(2π)4
e−ikνxν

Ã(c)
µ (k),

we find the equations of motion

k2Ã(c)
µ (k) − kµk

νÃ(c)
ν (k) = 0 (4)

Let us compare this equation to the corresponding equation for the scalar
field,

(k2 −m2)φ̃(k) = 0.

The scalar field equation tells us that, in the absence of a source, φ̃(k) = 0
unless k2 = m2. That is, only on-shell particles can propagate in free space,
as we would expect. But for each four-vector k the equations for the four
components of the gauge field Ã(c)

ν (k) only provide three real constraints, for
if we project out one component of Eq. (4) by multiplying by kµ, we get the
identity (k2−k2)kνÃ(c)

ν (k) = 0, which does not provide a constraint (a partial
differential equation) for the gauge field. Thus the equations of motion are
not adequate to determine the evolution of the gauge field.

This should come as no surprise. Ordinary mechanics is deterministic, in
the sense that if you know enough about the state at time zero (including
time derivatives) you can predict the degrees of freedom in the future. But
with local gauge invariance we can make a gauge transformation which has
no effect for times before t = 1, but can change the values of the fields in the
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future. This doesn’t mean the physics is non-deterministic, only that there is
spurious information in the fields which is neither determined nor physical.

If we believe the equations should determine the future physical state even
if not a unique representation of it, we can ask if we might add equations
which would make the equations deterministic. The result of propagating
the fields would then represent the correct physical state. Even if there is
arbitrariness in the equations we add, so the future fields will be somewhat
arbitrary, the physical state we get should be uniquely determined.

Consider again the free theory. With g = 0 each Lie-algebra component
is independent of the others, so we might as well consider just the Maxwell
situation, with only one component Aµ. The field is gauge equivalent to any
other field A′

µ with6

A′
µ = Aµ + ∂µλ

If I like, I can insist that my new field be four-divergenceless:

∂µA′
µ = ∂µAµ + ∂2λ = 0

by solving the equation ∂2λ(x) = ρ(x), where the source term ρ(x) =
−∂µAµ(x). So I can add the fourth differential equation

∂µAµ = 0

to the equations of motion, to get a deterministic set. The additional equa-
tion is called the Lorenz gauge condition. Any solution to the previous set
of equations will be equivalent, up to a gauge transformation, to a solution
of this enlarged set.

The Lorenz gauge condition is just one possibility — more generally we
might imagine taking some local function of the gauge field, and requiring
it to vanish7: G(Aµ) = 0. It should have the property that for any gauge
configuration Aµ, there should be a unique gauge transformation, say with
generator λ(x), such that under this transformation Λ : Aµ 7→ Aλ

µ with
G(Aλ

µ) = 0. Then adding the equation G(Aµ) = 0 would provide the deter-
ministic equation to keep the evolution of the gauge field determined, and
still represent the right physical state.

That statement helps us do classical mechanics, but for quantum me-
chanics we need to sum over all physical states independent of the equations

6I have rescaled the required λ by a factor of g from our previous expression, as all this
is intended to describe the g = 0 approximation.

7Here G is some function of Aµ and perhaps its first derivatives, not a group element.
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of motion. We want the functional integral to count each physically distinct
field configuration once, or at least equally. We could insure that each such
state appears once in the integration volume, by inserting a Dirac delta func-
tion imposing the G = 0 condition, δ(G(Aµ)). (This needs to be interpreted
as a delta function at each point of spacetime.) But while the delta function
insures each physical field occurs only as one gauge field configuration, it
doesn’t ensure different physical configurations are counted equally!

Instead, we will use a trick due to Faddeev and Popov. Basically it breaks
up the integration regions (in the very large space of all gauge field configu-
rations) into equivalence classes under the gauge group, and then factors out
the integration within each class. This involves the idea of integration over
a group.

Integration over a Group

For a continuous group, a group element g can be specified by a set of coor-
dinates in some fashion. This might be the coefficients of the generators in
the exponential representing that element, or it might be something like the
Euler angles which determine a rotation. Whatever the coordinates νi are,
integration over the group requires a measure, dµ(ν) = h(ν)dν1 . . . dνn for an
n-dimensional Lie group G. The measure is invariant under the group if, for
any function f on G,

∫

G
dµ(ν)f(g(ν)) =

∫

G
dµ(ν)f(g′g(ν)) =

∫

G
dµ(ν)f(g(ν)g′)

for every fixed element g′ of the group. This measure is uniquely determined
by the measure near the identity, because any infinitesimal neighborhood of
any point g ∈ G can be mapped into an infinitesimal neighborhood of the
identity by multiplying by g−1. So the invariant measure is determined up
to a constant for any group, and is called the Haar or Hurwitz measure on
the group. For a semisimple Lie group with the generators normalized as we
have discussed, the measure near the identity is just

∏

dλ(b).

Inserting a Dirac delta function

We also should review the use of Dirac delta functions. If X is an n-
dimensional space with coordinates xi, then an n-dimensional delta function
has the property

∫

X
dnxiδ(xi − ci)f(x) = f(c),
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where c is an arbitrary point in X and f an arbitrary function on X. Some-
what more generally, if h is a 1-1 onto function mapping the space X into
the space Y , (yi = hi(x)) and c is now an arbitrary point in Y , then the
equivalent is

∫

X
dnxiδ(hi(x) − ci) det

(

∂hi

∂xj

)

f(x) = f(h−1c).

This can be shown by changing variables from x to y, which requires the
Jacobian. We don’t actually need h to be 1-1 onto on the whole space — all
that is really needed is that only the one point, h−1(c), is mapped to c, and
h is 1-1 and differentiable in some neighborhood of that point, so that the
Jacobian is well defined.

Now consider the space X to be the space of local gauge transformations
Λ, and h to be the map that applies our gauge condition to the gauge trans-
form of a fixed gauge field A, so h(λ) = G(Aλ). We have already assumed
our function G is such that only one gauge transformation λ gives an Aλ

upon which G vanishes, so it satisies our condition, and

∫

Dλδ(G(Aλ)) det

(

δG(Aλ)

δλ

)

f(Aλ) = f(Aα),

where α is the single gauge transformation for which G(Aα) = 0.
We will naturally assume that our definition of

∫

Dλ is the invariant
measure. Then we claim that the last expression is independent of gauge
transformations on the fixed gauge field A. If gλ represents the gauge trans-
formation eiλ(x), and if gβ : A 7→ A′ = Aβ for some gauge transform eiβ, then
A′λ = gλgβA, so, with A considered fixed,

∫

Dλδ(G(A′λ)) det

(

δG(A′λ)

δλ

)

f(A′λ)

is of the form
∫

G dµ(ν)f(g(ν)g′) we discussed above, provided that the inte-
gration over gauge group elements is the group invariant Hurwitz measure,
which we have assumed. Here g′ is the gauge transformation by β, and g
that by λ, so A′λ = gg′(A). But the invariance of the measure allows us to
drop the g′, so

∫

Dλδ(G(A′λ)) det

(

δG(A′λ)

δλ

)

f(A′λ) = f(Aα),
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where again α is the single gauge transformation for which G(Aα) = 0.
Let us define the functional

∆[A] =
∫

Dλδ(G(Aλ)),

which corresponds to

f(Aλ) = det

(

δG(Aλ)

δλ

)−1

.

Thus we might add a factor of (∆[A])−1
∫

Dλδ(G(Aλ)) inside the functional
integral over DA. Thus we may write the functional integral we want as

∫

DA eiS[A] =
∫

DA (∆[A])−1eiS[A]
∫

Dλδ(G(Aλ))

=
∫

Dλ
∫

DA (∆[Aλ])−1eiS[Aλ]δ(G(Aλ))

where we have used the fact that both ∆ and S are gauge invariant functionals
of A.

Now for fixed λ consider changing integration variables from A to Aλ.
The Jacobian for such a change is easily evaluated from

(Aλ)(b)
µ Lb = A(a)

µ eiλLae
−iλ +

i

g
eiλ∂µe

−iλ = A(a)
µ Madj

ab (eiλ)Lb +
i

g
eiλ∂µe

−iλ.

The last term is independent of A and doesn’t contribute to the Jacobian, and
the adjoint representation is orthogonal and so has determinant 1. Thus we
can simply replace DA with DAλ, and then, as Aλ is a dummy integration
variable, we can replace it by A everywhere. Now the integral over the gauge
transformation is of an integrand independent of the transformation, so it
just gives the volume of the gauge group VG, which will be irrelevant:

∫

DA eiS[A] = VG

∫

DA (∆[A])−1eiS[A]δ(G(A)). (5)

In this form, we appear to be integrating only over gauge fields which
satisfy the gauge condition G(A) = 0. That is in line with our original idea
that we should only integrate over physically distinct gauge fields, though we
see that we need a correction to the näıve measure given by (∆[A])−1, which

18



is known as the Faddeev-Popov determinant8. This form is not convenient,
however, because it is easier to integrate over all A fields than over those
that satisfy a gauge condition. We can convert Eq. (5) to such a form by
noticing that the left hand side is independent of the gauge condition. So we
could choose an arbitrary condition at each point in space-time,

G(A(b)) = ∂µA(b)
µ − ω(b)(x),

and we can multiply the functional integral by

∫

Dω(b) exp

(

−i

2ξ

∫

d4xω2(x)

)

,

(with ξ some numerical constant) which evaluates to an irrelevant constant
factor. Bringing this inside the functional integral over A and using the
δ(G(A)) = δ(∂µA(b)

µ − ω(b))) to do the integral over Dω(b), we arrive at

∫

DA eiS[A] ∝
∫

DA (∆[A])−1 exp i
∫

d4x

(

LY M [A] −
1

2ξ
(∂µA(b)

µ )2

)

. (6)

This appears to be what we would get by adding the gauge-variant term
− 1

2ξ
(∂µA(b)

µ )2 to the Lagrangian density, except for the Faddeev-Popov de-
terminant.

We now need to turn to the Faddeev-Popov determinant. This is

∆−1[A] = det
δ ∂µ(Aλ

µ)
(b)

δλ(a)
.

We shall return to the question of evaluating this for Yang-Mills theory after
we study fermions, and their associated Grassman variables. At this point
we will evaluate the determinant for an Abelian theory, such as Maxwell’s,
for which δAλ

µ = g−1∂µλ. Then the determinant is independent of all fields,
and may be considered a constant and dropped.

The upshot of all this is that, for Abelian theory, the gauge invariant
Lagrangian may be replaced by one with an additional, gauge variant term,
at least in evaluating Z[0]. There are additional complications for Z[J ] unless
the source term J is gauge invariant — we will return to that after we find
the photon propagator and interactions.

8That is, ∆−1 is the Faddeev-Popov determinant, not ∆.
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Feynman Propagator for Gauge Fields

We have seen that, for Maxwell theory, in place of the free Lagrangian

L = −
1

4
F µνFµν = −

1

2
(∂µAν)(∂µA

ν) +
1

2
(∂µA

ν)(∂νAµ)

we now have the gauge-fixed lagrangian

LGF = −
1

2
(∂µAν)(∂µA

ν) +
1

2
(∂µA

ν)(∂νAµ) −
1

2ξ
(∂µA

µ)2.

In homework 3, problem 2, you will show that the gauge field propagator
with this Lagrangian is

D̃µν
F (k) =

−i

k2 + iǫ

(

ηµν − (1 − ξ)
kµkν

k2

)

,

which actually also has a δa
b in Lie-algebra components.

We also need to consider interactions. Recall that for the scalar field the
−λφ4/4! in the Lagrangian, when treated perturbatively, gave rise to vertices
in Feynman diagrams with four legs attached, representing −iλ(2π)4δ4(

∑

p).
For the gauge fields we have interactions with scalars and with spinors (which
we have not yet considered), but we also have self-interactions among the
gauge fields. The full expansion of the pure gauge term is

−
1

4
F (a) µνF (a)

µν = −
1

2
(∂µA(a)

ν )(∂µA
(a) ν) +

1

2
(∂µA

(a) ν)(∂νA
(a)
µ )

−
1

2
gc d

ab A
(a) µA(b) ν(∂µA

(a)
ν − ∂νA

(a)
µ )

−
1

4
g2c d

ab c
d

ef A
(a)
µ A(b)

ν A(e) µA(f) ν .

The terms not already considered for the free Lagrangian are thus

LGI = −gc d
ab A

(a)
µ A(b)

ν ∂µAν (d) −
1

4
g2c d

ab c
d

ef A
(a) · A(e)A(b) · A(f).

These terms in perturbation theory will generate vertices in the Feynman
graphs, the first with three gauge particles entering, the second with four.

There are also terms expressing the interaction of gauge fields with matter
fields,

LGM = gψ̄γµtbψA(b)
µ + igφT t̄b∂µφA

(b)
µ +

1

2
g2φT t̄bt̄aφA(b)

µ A(a) µ.

20



The first of these represents a gauge particle meeting a fermion line in the
Feynman graph. The second and third terms represent one or two gauge
particles, respectively, being emitted (or absorbed) at a point along a scalar
line.

The gauge interactions with spinors are both simpler and more interesting
(in their physics applications) than for scalars, so it is now time to turn to
fermions.
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