Little Note on Fierz

What is $\left(\sigma^{\mu}\right)_{\alpha \beta}\left(\sigma_{\mu}\right)_{\gamma \zeta}$?
If $\alpha=\beta$, only $\sigma^{0}=\delta_{\alpha \beta}$ and $\sigma^{3}=\delta_{\alpha \beta}(-1)^{\alpha+1}$ contribute, giving

$$
\delta_{\alpha \beta} \delta_{\gamma \zeta}\left(1-(-1)^{\alpha+\gamma}\right)=2 \delta_{\alpha \beta} \delta_{\gamma \zeta}\left(1-\delta_{\alpha \gamma}\right)=2 \epsilon_{\alpha \gamma} \epsilon_{\beta \zeta} \quad \text { for } \alpha=\beta .
$$

If $\alpha \neq \beta$, only σ^{1} and σ^{2} can contribute, in which case only $\gamma \neq \zeta$ gives nonzero, and then

- either $\alpha=\gamma$, and the two terms cancel, $\left(\sigma_{\alpha \beta}^{1}\right)^{2}+\left(\sigma_{\alpha \beta}^{2}\right)^{2}=0$,
- or $\alpha=\zeta, \beta=\gamma \sigma_{\alpha \beta}^{1} \sigma_{\gamma \zeta}^{1}=1, \sigma_{\alpha \beta}^{2} \sigma_{\gamma \zeta}^{2}=1$, so we get -2 .

Thus when $\alpha \neq \beta$, $\left(\sigma^{\mu}\right)_{\alpha \beta}\left(\sigma_{\mu}\right)_{\gamma \zeta}=2 \epsilon_{\alpha \gamma} \epsilon_{\beta \zeta}$.
So in either case,

$$
\left(\sigma^{\mu}\right)_{\alpha \beta}\left(\sigma_{\mu}\right)_{\gamma \zeta}=2 \epsilon_{\alpha \gamma} \epsilon_{\beta \zeta} .
$$

Another Approach

Consider the mapping of 2×2 matrices

$$
M \rightarrow \sum_{\mu} \sigma^{\mu} M \sigma_{\mu}
$$

This is a linear real transformation, so we may describe it by its action on a basis of 2×2 matrices, in particular using the identity and the Pauli matrices:

$$
\begin{aligned}
\mathbb{I I} & \rightarrow\left(\sigma^{0}\right)^{2}-\sum_{j=1}^{3}\left(\sigma^{j}\right)^{2}=-2 \mathbb{I} \\
\sigma^{j} & \rightarrow \sigma^{0} \sigma^{j} \sigma^{0}-\sum_{k=1}^{3} \sigma^{k} \sigma^{j} \sigma^{k}=\sigma^{j}+\sum_{k=1}^{3}\left[-2 \delta_{j k} \sigma^{k}+\sigma^{j}\left(\sigma^{k}\right)^{2}\right]=(1-2+3) \sigma^{j} \\
& =2 \sigma^{j}
\end{aligned}
$$

Thus

$$
\sum_{\mu=0}^{3} p_{\mu} \sigma^{\mu} \rightarrow-2 \sum_{\mu=0}^{3} p_{\mu} \sigma_{\mu}
$$

which is strange, but reverses σ_{L} and σ_{R}, in addition to multiplying by -2 .

Now if we consider the right hand side of the Fierz identity as a transformation on $M_{\beta \gamma}$

$$
\begin{aligned}
& M \rightarrow 2 \epsilon M^{T} \epsilon, \\
\mathbb{I} \rightarrow & -2 \mathbb{I} \\
\sigma^{j} \rightarrow & 2\left(i \sigma_{2}\right)\left(\sigma^{j}\right)^{T}\left(i \sigma_{2}\right)=2 \sigma^{j}
\end{aligned}
$$

So, of course, these are the same transformation.
This latter approach is a useful one to take to consider the Fierz identity for Dirac matrices, rearranging the Dirac indices (a, b, c, d) on $\gamma_{a b}^{\mu} \gamma_{\mu c d}$.

