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Gauge Theory on a Lattice

Copyright c©2005 by Joel A. Shapiro

One approach to field theory, in particular to aspects that are not well
treated in perturbation theory, is to approximate the field defined on a space-
time continuum with a lattice field theory, defined on a lattice of space-time
points. There has been a great deal of cross-fertilization from considering
renormalization from the continuum high-energy physics point of view and
from the condensed matter, Wilsonian, viewpoint, in which the field theory
only makes sense down to some small distance scale anyway. But we are
going to consider field theory on a lattice for a different reason — because it
helps to clarify the fundamental idea of gauge fields.

Symmetry

Consider a theory which involves a set of N real fields φi(x
µ) which have an

internal symmetry group1 G under which they transform with a representa-
tion M , so that a particular symmetry transformation G ∈ G acts on the φ
fields by

G : φi(x) 7→ φ′

i(x) =
∑

j

Mij(G)φj(x). (1)

If it is a symmetry, the Lagrangian must be invariant. If the kinetic term is of
the usual form, 1

2

∑

µ,i ∂µφi∂
µφi, invariance requires that M is an orthogonal

matrix
∑

k MkiMkj = δij . That condition also insures the invariance of the
mass term −1

2

∑

i φ
2
i , and of any other “potential” term V (

∑

i φ
2
i ) depending

only on the “length” of φ. Provided V has that form, we see that the theory
should be invariant under all the orthogonal transformations (1). We see that
the individual components φi are only projections along the unit vectors of
an arbitrary orthonormal basis of R

N , and do not have separate intrinsic
physical meanings. Alternatively, V might not be invariant under all of
O(N), but only under the subgroup2 G. For example, one important group

1The notation is not completely standard. Many books would use G for the group, G
for the Lie algebra of the group, and g for an element of G. Because we are going to use
g as the analogue of the fundamental charge, I am using G for a group element, G for the
group, and G for the Lie algebra, elements of which will be called A.

2More precisely, the image of G under the representation M : G → N × N matrices is
a subgroup of O(n).

615: Gauge Theory Last Latexed: November 26, 2013 at 10:41 2

is the SU(3) of colors which act on each triplet (in color) of quarks. Replacing
the 3 complex quark fields by 6 real fields, the kinetic term would be invariant
under the group O(6) ∼ SU(4), but the interaction terms are only invariant
under the subgroup SU(3).

So we are going to be considering a symmetry group3 G which has gen-
erators Lb which form a basis of the “Lie algebra” G of the group4. As we
saw for the Lorentz group, the Lie algebra for SO(N) is the set of antisym-
metric real N ×N matrices, with 1

2
N(N − 1) independent generators L̃, or,

for physicists, 1
2
N(N − 1) purely imaginary antisymmetric N ×N matrices.

For SU(3), the generators may be thought of as traceless hermitean 3 × 3
matrices.

Discretization

How might we approximate the continuum theory on a lattice? Instead of
φi(x) defined for all values of x ∈ R

4, we might have φi(~n) discrete variables
defined only for integer values ~n ∈ Z

4, representing a hypercubic lattice in
space-time with lattice spacing a, with xµ = anµ. The mass term in the
action

−
1

2

∫

d4x
∑

i

φ2
i (x) → −

1

2
a4

∑

~n∈Z
4

∑

i

φ2
i (~n).

For the kinetic energy term we need to replace a derivative by a finite differ-
ence. The simplest substitution is to replace

∂µφi(x) →
1

a

(

φi(~n+ ~∆µ) − φi(~n)
)

,

where ∆µ is 1 in the µ direction and 0 in the others. Here the relation of xµ

and ~n is xν = anν + 1
2
aδν

µ, representing most accurately the x in the middle

3We will only consider connected groups which are either Abelian or semisimple, or
products of such groups.

4Here is what we will need to know about groups and Lie algebras: The algebra can be
represented by generators La which satisfy [La, Lb] = i

∑

k c k
ab Lk, with c k

ab real numbers
known as the structure constants of the group. These give a bilinear Killing form β :
G × G → R given by β(Li, Lj) = −

∑

ab c b
ai c

a
bj . As this is a real symmetric matrix, it

can be diagonalized. For compact, semisimple groups, all the eigenvalues are positive, the
Li’s can be scaled, so that βij = 2δij . Then the basis has be chosen such that

∑

k L2

k is a
casimir operator, commuting with each of the La’s, and it can be shown that the structure
constants are totally antisymmetric. This should be familiar for the rotation group, and is
explained in more detail in “Lightning review of group” and “Notes on Representations,
the Adjoint rep, the Killing form, and antisymmetry of c

k
ij ”.
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of the two lattice points. If we expand out the squares of the differences,
we get terms which look just like the mass terms, but also nearest neighbor
couplings

∑

i φi(~n+ ∆µ)φi(~n).
Each of these contributions to the action is still invariant under the trans-

formation (1), providing we use the same group transformation at every point
in space-time. This is called a global gauge transformation.

In a relativistic field theory, all information is local, because information
can only travel at the speed of light. So we might ask, if the theory is
unchanged by a group action at one point, why should that depend on having
the same transformation at every other point? In other words, could we have
a local symmetry, in which equation (1) holds with the group element varying
from one point of space-time to another? The mass terms and other terms
in V (φ) only depend on one point, so they don’t care whether M varies, and
they are invariant under such transformations. But the nearest-neighbor
coupling

∑

i

φi(~n+ ∆µ)φi(~n) →Mik(G(~n+ ∆µ))Mij(G(~n)) φk(~n + ∆µ)φj(~n)

is not invariant because

M−1(G(~n+ ∆µ))M(G(~n)) 6= 1

if the G’s (and hence the M ’s) vary from point to point.

Parallel Transport

The problem is that we have a term in the Lagrangian that is a function
of how φ changes from point to point, but we measure that change by how
much the components change, subtracting φj(x + ∆) − φj(x). That is only
correct if the basis for comparing the φ’s does not change. We must have a
way to measure change from point to point, but before we can subtract one
φ vector from another at a different point, we must “parallel transport” it to
that new point. That is, for each link between neighboring points, we must
have a rule for parallel transporting φ fields from one end of the link to the
other. The change in the field φ =

∑

a φ
aêa as we go from point A to point B

is equal to ∆φ =
∑

a(φ
a
B −φa

A)êa only if we can assume that the basis vectors
don’t change, êA

a = êB
a . If we allow for the possibility that the basis we have

chosen at the point ~n + ∆µ differs by a group element G from that which

615: Gauge Theory Last Latexed: November 26, 2013 at 10:41 4

corresponds to parallel transport from ~n, we get a more elaborate definition
of ∆φ.

As an example, it might help to think of
an ordinary vector in the plane, expressed
in polar coordinates. Consider the unit ba-
sis vectors ~er and ~eθ at the point P . If we
transport ~er to the point P ′ while keeping
it parallel to what it was, we arrive at the
vector labelled Ger, which is not the same
as the unit radial vector e′r at the point P ′.

Note that if we have a vector ~V ′ =
V ′

r~e
′
r +V ′

θ~e
′
θ at P ′ which is unchanged from

the vector ~V = Vr~er+Vθ~eθ at P , we do not

have V ′
r = Vr.

e
eθ

re’

rP

P’
G e

G

r

Now in our example we had an a priori rule for what parallel transport
means, but if we are to allow local gauge invariance, this rule becomes a
new degree of freedom. This dynamical variable is actually one element
of the symmetry group (and therefore perhaps several degrees of freedom,
1
2
N(N − 1) for SO(N), the orthogonal transformations in N dimensions),

for each point on the lattice and each direction we might parallel transport
φ. We can then build a theory with a local symmetry, but at the expense of
introducing a lot of new degrees of freedom.

The theory that emerges from these consideration is a gauge field the-

ory. Its degrees of freedom include not only the “matter fields” at each site
of the lattice, but also “gauge fields” on each link between nearest neighbors.
The matter fields live in a vector space which transforms linearly as a repre-
sentation5 of the “gauge group” G. The gauge fields live in the group itself,
at least in the lattice field theory, but may alternately be considered to take
values in the Lie algebra of generators of the group, especially if we are to
take the continuum limit of the lattice.

Covariant Derivative

When a group element G acts on a vector ~V =
∑

i Viêi which transforms
under a representation M , the components of the new vector are multiplied

5To a physicist, the vector space in which the matter fields live is called the represen-
tation, but to mathematicians the representation consists of the matrices Mij , or more
accurately the mapping from elements of the group into matrices, G 7→ M(G).



615: Gauge Theory Last Latexed: November 26, 2013 at 10:41 5

by the matrix:

G : ~V → ~V ′ =
∑

ij

Mij(G)Vj êi, so V ′

i =
∑

j

Mij(G)Vj.

So if G parallel transports ~φ(~n) from ~n to ~n + ~∆µ, and if we subtract this

from ~φ(~n+ ∆µ) to get the change in φ, we have

∆φ =
∑

i



φi(~n + ∆µ) −
∑

j

Mij(G)φj(~n)



 êi.

If the fields are slowly varying over the distance of one lattice spacing,
which is necessary if we are to consider the lattice an approximation to the
continuum, we can approximate

φi(~n+ ∆µ) ≈ φi(~n) + a∂µφi.

We can also assume that the group transformation that parallel transports by
one lattice spacing is close to the identity, and that the Lie algebra element
which generates it should be proportional to the lattice spacing a. Thus
we may write G = eiagA, M(G) = M(eiagA) ≈ 1 + iagM(A), where A is
an element in the Lie algebra G of the gauge group G. [We have added a
parameter g which will turn out to be the fundamental charge, in order to
get conventionally defined A fields, although sometimes that is not done, and
the scale for measuring A is the natural one for the group.] Then we find, to
first order in the lattice spacing a,

∆φi = a



∂µφi − ig
∑

j

Mij(A)φj



 .

In the continuum limit, we define 1/a times this to be the covariant deriva-

tive, but first I must say a few words about the gauge field A. First, as there
is a different value on each link, and in the continuum limit there are four6

links radiating from each point, we need to be defining four fields Aµ(x).
Also, each Aµ is not a single field, in general, but an element of the Lie alge-
bra, which is a vector space. The Lie algebra for the 3-D rotation group, for

6Actually there are eight, as there are forward and backwards links in each direction.
But the “backwards” ones can be thought of as belonging to “previous” sites.
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example, is parameterized by a vector with three components, ~ω. Rotations
themselves are not a gauge group, but one possible gauge group to consider
is the SU(2) of the electro-weak theory, which is isomorphic7 to the rotation
group. One usually uses Li to represent a basis vector of the Lie algebra
vector space, so the gauge field can be expanded as

Aµ(x) =
∑

b

A(b)
µ (x)Lb.

This brings us to the definition of the covariant derivative:

(Dµφ)
j
= ∂µφj − ig

∑

kb

A(b)
µ Mjk(Lb)φk ; Dµφ = ∂µφ− igA(b)

µ M(Lb)φ,

where on the right we have written the expression with implied summations
on matrix and Lie algebra indices and implied multiplication.

Gauge Transformations

What does this have to do with local symmetry? We saw that the trans-
formation (1), where we let G vary with x, is a symmetry for the lattice
terms involving only a single site, but not for the kinetic term, (∂φ)2, which
involves cross terms such as

∑

i φi(~n + ∆µ)φi(~n). These couple neighboring
points, and are not invariant. But with our improved definition of (∆φ), the
cross terms now have the form

φ(~n + ∆µ) ·M(GL) · φ(~n),

where GL is the group transformation associated with the link (~n, ~n+ ∆µ).
We can now ask what happens under the transformation in a different

way. If we think of the gauge transformation G(x) in the passive language
as a change in the basis elements for the matter fields, we realize that it
will also effect the rule for doing parallel transport. If GL was the group
transformation on the basis which did a parallel transport from site p to site
q, with link L going from p to q, then after a change of basis by Gp at p
and one by Gq at q, the way to parallel transport the new basis at p must
be G′

L = GqGLG
−1
p . So we now define the gauge transformation Λ, which is

7Not exactly: the Lie algebra of SU(2) is the same as the Lie algebra of the three
dimensional rotation group SO(3), but the actual groups differ, as is discussed when
considering how spinors transform under rotations of 2π.
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specified by a group element at each lattice site

Λ :











φ(xp) → M(Gp) · φ(xp)
φ(xq) →M(Gq) · φ(xq)

GL → GqGLG
−1
p

L
p q

This gauge transformation is a local symmetry of the gauge field theory.
Let’s verify that this is an invariance of the nearest neighbor term:

φ(xq) ·M(GL) · φ(xp) = φi(xq)Mij(GL)φj(xp)

→ Mik(Gq)φk(xq)Mij(GqGLG
−1
p )Mjℓ(Gp)φℓ(xp)

= φk(xq)M
−1
ki (Gq)Mij(GqGLG

−1
p )Mjℓ(Gp)φℓ(xp)

= φk(xq)Mkℓ(GL)φℓ(xp) = φ(xq) ·M(GL) · φ(xp),

where we have used the orthogonality ofM(Gq) and the fact that the M ’s are
a representation, and therefore M−1

ki (Gq)Mij(GqGLG
−1
p )Mjℓ(Gp) = Mkℓ(GL).

In a continuum field theory, we consider only local gauge transformations
where the group element varies differentially in the continuum limit. We may
think of Λ as given by a Lie-algebra valued scalar field λ(x) =

∑

b λ
(b)(x)Lb.

Then the matter fields transform as

φ(x) → φ′(x) = ei
∑

b
λ(b)(x)M(Lb)φ(x),

while the gauge field itself transforms by

A(b)
µ (x) → A′ (b)

µ (x),

with

eiagA
′ (b)
µ (x) = e

iλ(x+
1

2
a∆µ)

eiagA
(b)
µ (x)Lbe

−iλ(x−
1

2
a∆µ)

. (2)

We have placed x at the middle of the link. We now expand to first order in
the lattice spacing, remembering that λ(x) and ∂µλ(x) may not commute.
So we will expand the exponential rather than λ. Approximating

eiagAµ → 1 + iagAµ,

eiλ(x± 1
2
a∆µ) → eiλ(x) ±

1

2
a∂µ

[

eiλ(x)
]

,

and plugging these into (2), we get

1 + iagA′

µ =
(

eiλ +
1

2
a∂µe

iλ

)

(1 + iagAµ)
(

e−iλ −
1

2
a∂µe

−iλ

)

= 1 + iageiλAµe
−iλ +

1

2
a
(

∂µe
iλ
)

e−iλ −
1

2
aeiλ

(

∂µe
−iλ
)
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Note from ∂µ

(

eiλe−iλ
)

= 0 that the third and fourth terms are equal, so
we can drop the third and double the fourth, to get

A′
µ = eiλAµe

−iλ +
i

g
eiλ∂µe

−iλ

= eiλ

(

Aµ +
i

g
∂µ

)

e−iλ

Let us now ask how this is related to the gauge transformations we know
from Maxwell’s theory, which look less complicated. Electromagnetism is a
gauge field, but one with a very simple gauge group, that of rotations about a
single fixed axis8. The group consists of G = {eiθL1} and the Lie algebra has
only one generator, L1, and is therefore isomorphic to the real line R, and the
single structure constant c 1

11 is zero (a counterexample to assuming that the
Killing form can always be set to 2×1I). The rotations act on charged fields,
which are usually represented by complex fields Φ but in our treatment here
are represented by a doublet of real fields, (φ1, φ2) = ( Re Φ, Im Φ). The
transformation

φ→ φ′ =
(

Re Φ′

Im Φ′

)

=
(

cos θ − sin θ
sin θ cos θ

)(

Re Φ
Im Φ

)

gives Φ′ = eiθΦ, so the gauge transformations are local changes in phase of
the charged fields. The gauge transformations of fields themselves is vastly
simplified by the fact that all the terms commute, so

A′
µ = eiλ

(

Aµ +
i

g
∂µ

)

e−iλ = Aµ + g−1∂µλ.

But this simplicity only holds for an Abelian group, one where all the gen-
erators commute, which is not enough when we wish to consider the gauge
theories of the electroweak and strong interactions.

Pure Gauge Terms in L

We now know how the kinetic terms for charged fields are modified by the
presence of an external gauge field, with ∂µ → Dµ, but we have not yet

8These are not rotations in real space, but in some abstract space of field configurations.
For QED that abstract space was represented by complex numbers, and the rotation is
simply multiplication by eiθ for a real phase θ.
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discussed the terms which propagate the gauge fields themselves. We need
these terms in the Lagrangian to be invariant under gauge
transformations. In particular this means that they can-
not depend only on a single link, because we can always
make a gauge transformation G1 = Ga which resets the
group element for a single link to 1, so there would be no

a1 2

2a G  G  Ga 1
−1

G

dependence on the field. In fact, the simplest
way to get rid of the gauge dependance of
Ga = eiagAx(xa) on G2 = eiλ(x2) is to premulti-
ply it by Gb,

GbGa → G3GbG
−1
2 G2GaG

−1
1 = G3GbGaG

−1
1 .

There is still a gauge dependence on the end-
points of the path, however, so the best thing
to do is close the path. To do so, we are tra-

1 2

3

a

b

a
G  G  G  G  G  G

b 3 b a

−1

1

versing some links backwards from the way
they were defined, but from that definition
in terms of parallel transport it is clear that
the group element associated with taking
a link backwards is the inverse of the ele-
ment taken going forwards. So the group

1 2

34 4 3

21a

b

c

d

a

b

c’

d’

element associated with the closed path on the right (which is called a plaque-
tte) is GP = G−1

d G−1
c GbGa, which transforms under gauge transformations

as

GP → G′

P =
(

G4GdG
−1
1

)−1 (

G3GcG
−1
4

)−1
G3GbG

−1
2 G2GaG

−1
1

= G1G
−1
d G−1

4 G4G
−1
c G−1

3 G3GbG
−1
2 G2GaG

−1
1

= G1G
−1
d G−1

c GbGaG
−1
1

= G1GPG
−1
1 .

So the plaquette group element is not invariant but it does have a simpler
and more restricted variation. In the continuum limit we expect each link’s
group element to be near the identity and also to have Gc differ from Ga by
something proportional to the lattice spacing, so GP should be close to the
identity, the difference considered a generator in the Lie algebra. The Killing
form acting on that generator will provide us with an invariant. Let us define
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Fµν = −ia−2g−1(GP − 1) to be the field-strength tensor, where µ and ν are
the directions of links a and b respectively. Let us take x in the center of the
placquette. Expanding each link to order O(a2)

Ga ≈ 1 + iagAµ(x −
1

2
a∆ν) −

1

2
a2g2A2

µ(x −
1

2
a∆ν)

≈ 1 + iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)

G−1
c ≈ 1 − iagAµ(x +

1

2
a∆ν) −

1

2
a2g2A2

µ(x +
1

2
a∆ν)

≈ 1 − iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x),

a 21

c

d

4 3

b

µ

νx

we have, to second order in a9,

GP =
(

1 − iagAν(x) +
1

2
ia2g∂µAν(x) −

1

2
a2g2A2

ν(x)
)

(

1 − iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)
)

(

1 + iagAν(x) +
1

2
ia2g∂µAν(x) −

1

2
a2g2A2

ν(x)
)

(

1 + iagAµ(x) −
1

2
ia2g∂νAµ(x) −

1

2
a2g2A2

µ(x)
)

= 1 + a2g {g [Aµ(x),Aν(x)] + i∂µAν(x) − i∂νAµ(x)}

Thus
Fµν(x) = ∂µAν(x) − ∂νAµ(x) − ig [Aµ(x),Aν(x)] .

Note that Fµν is

• a Lie-algebra valued field, Fµν(x) =
∑

b F
(b)
µν (x)Lb, because [, ] is closed

in a Lie algebra.

• An antisymmetric tensor, Fµν(x) = −Fνµ(x).

• Because the Lie algebra is defined in terms of the structure constants,
c d
ab by

[La, Lb] = ic d
ab Ld,

9Note that the terms in A2
µ(x) cancel, and only the commutator, not the product, of

La’s is left.
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the field-strength tensor may also be written

F (d)
µν = ∂µA

(d)
ν − ∂νA

(d)
µ + gc d

ab A
(a)
µ A(b)

ν .

Before we turn to the Lagrangian, let me point out a crucial relation-
ship between the covariant derivatives and the field-strength. If we take the
commutator of covariant derivatives

Dµ = ∂µ − igA(b)
µ Lb

at the same point but in different directions,

[Dµ, Dν ] = [∂µ − igAµ, ∂ν − igAν] = −ig∂µAν − g2AµAν − (µ ↔ ν)

= −g2 [Aµ,Aν] − ig∂µAν + ig∂νAµ

= −igFµν .

Notice that although the covariant derivative is in part a differential operator,
the commutator has neither first or second derivatives left over to act on
whatever appears to the right. It does need to be interpreted, however, as
specifying a representation matrix that will act on whatever is to the right.

Now consider adding to the Lagrangian a term proportional to the Killing
form evaluated on F , twice, β(Fµν,F

µν) = 2
∑

b F
(b)
µν F

(b) µν . I have assumed
the generators La have been normalized so that the Killing form β(La, Lb) =
2δab, and the stucture constants are totally antisymmetric10. We know that
under a gauge transformation Fµν → eiλFµνe

−iλ. If λ is infinitesimal, Fµν →

Fµν + i[λ,Fµν ] =
{

F (d)
µν − λ(a)F (b)

µν c
d

ab

}

Ld, so

δβ(Fµν,F
µν) = 2β(δFµν,F

µν) = 2 × (−2)λ(a)F (b)
µν c

d
ab F

(d) µν = 0

where the expression vanishes because c d
ab is antisymmetric under inter-

change of b and d but F (b)
µν F

(d) µν is symmetric under the same interchange
(and we are summing on b and d). As β(Fµν ,F

µν) doesn’t change to first
order under infinitesimal transformations, it also doesn’t change under the
finite transformations they generate.

10See groups.pdf and adjnote.pdf on the Lecture and Supplementary Notes page of
the course website.
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Equations of Motion for the Gauge Fields

We choose the normalization of the A fields so that the pure gauge term in
the Lagrangian density is −1

4
F (b)

µν F
(b) µν . Suppose we also have Dirac matter

fields transforming under a representation tbij = Mij(Lb) of the group, and
perhaps some scalar fields as well, transforming under a (possibly) different
representation t̄bij = M̄ij(Lb), where the bars here only represent a different
representation, not any kind of conjugation. The gauge fields come into the
matter terms in the Lagrangian because, in order to maintain local gauge
invariance, all derivatives need to be replaced by covariant derivatives. Thus
the potential terms for matter fields in L will not be involved in the equations
of motion of the gauge fields, and we need only look at

L = −
1

4
F (b)

µν F
(b) µν + iψ̄γµ

(

∂µ − igA(b)
µ tb

)

ψ

+
1

2

[(

∂µ − igA(b)
µ t̄b

)

φ
]T [(

∂µ − igA(b) µt̄b
)

φ
]

.

Let us analyze the classical mechanics of the gauge fields. First we find the
canonical momentum conjugate to A(b)

µ (x), which is

π(b) µ(x) =
δL

δȦ
(b)
µ

(x) = −
1

2
F (b) ρν

δF (b)
ρν

δȦ
(b)
µ

= −F (b) 0µ(x).

Notice that

• The matter field terms do not contribute to the canonical momenta,
because they depend on Aµ but not its time derivative.

• The momentum conjugate to A0 is identically zero.

Momenta are not supposed to be identically zero in ordinary classical mechan-
ics, they are supposed to be substitutes for velocities, i.e. time derivatives
of the coordinates. The N coordinates and N momenta of an N degrees-
of-freedom problem are supposed to span a 2N dimensional phase space.
π0 = 0 is not an equation of motion, it is a constraint. To properly handle
such a situation we would need either to eliminate the constrained degrees
of freedom or use some fancy techniques not usually discussed in classical
mechanics courses. The canonical form of quantum mechanics would seem
to require zero to not commute with A0, which is too strange to contem-
plate even in quantum mechanics. But it turns out that this situation can
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be handled somewhat straightforwardly in the path integral formulation of
quantum mechanics.

In the classical mechanics of a field theory we generally define a general-
ization of the momentum,

Πν
i (x) =

δL

δ∂νφi

, Π0
i (x) = πi(x)

for each field φi. The ν = 0 component is the conjugate momentum, but all
components enter the Euler-Lagrange equations

∂νΠ
ν =

δL

δφ
.

Here our fields are not scalars but have additional indices b and µ because A
is both Lie-algebra-valued and a vector. So the Euler-Lagrange equation is

∂νΠ
(b) µ;ν =

δL

δA
(b)
µ

,

where

Π(b) µ;ν =
δL

δ
(

∂νA
(b)
µ

) = −F (b) νµ.

Let’s turn to evaluating the right-hand side of the Euler-Lagrange equa-
tion, δL/δA(b)

µ . Recall that the derivative intended here is to look for terms

depending directly on A(b)
µ considering the derivatives fixed. We will need to

differentiate the field-strength

F (c)
µν = ∂µA

(c)
ν − ∂νA

(c)
µ + gc c

ab A
(a)
µ A(b)

ν ,

but only the last term depends on undifferentiated gauge fields, so

δF (c)
µν

δA
(b)
ρ

= gc c
ab

(

A(a)
µ δρ

ν −A(a)
ν δρ

µ

)

,

and thus
δ

δA
(b)
ρ

[

−
1

4
F (c)

µν F
(c) µν

]

= −gc c
ab F

(c) µρA(a)
µ .

The contributions to δL/δA(b)
ρ from the matter terms are more straight-

forward — each Dρ will contribute a −igtb or equivalent, so

δ

δA
(b)
ρ

{

+iψ̄γµDµψ +
1

2
[Dµφ]T Dµφ]

}

= gψ̄γρtbψ + igφT t̄bDρφ,

615: Gauge Theory Last Latexed: November 26, 2013 at 10:41 14

where I have used the fact that the representations of the generators t̄ for
real unitary representations are antisymmetric imaginary matrices.

Define the current

ja
ν = ψ̄γνt

aψ + iφT t̄aDνφ,

so that we have found

∂νF
(b) νµ − gc c

ab F
(c) νµA(a)

ν + gjbµ = 0. (3)

The appearence of the first two terms is reminiscent of a covariant deriva-
tive, but we have not explicitly defined the covariant derivative acting on
Lie-algebra valued fields, because we have not explicitly explored their repre-
sentation under the group. While the local gauge transformation of the gauge
field is more complicated than can be described by a representation of the
gauge group, under a global gauge transformation it or any other Lie-algebra
valued field transforms as

eiλcLc : A → eiλcLcAe−iλcLc = Madj
ab

(

eiλcLc

)

AbLa,

which is the adjoint representation. Differentiating wrt λc and setting λ to
zero gives

[Lc, A
bLb] = Madj

ab (Lc)A
bLa = ic a

cb A
bLa,

so the appropriate representation for the covariant derivative of a Lie-algebra
valued field is

Madj
ab (Lc) = ic a

cb .

Madj
ab (Lc) is called the adjoint representation, and is always of the same

dimension as the Lie algebra itself.
As discussed above11 we have normalized our generators Lb so that the

structure constants are totally antisymmetric, and we can substitute

iMadj
ab (Lc) = −c a

cb = c c
ab

in the expression (3), giving

∂ρF
(a) ρµ − igA(c)

ρ Madj
ab (Lc)F

(b) ρµ + gjaµ = DρF
(a) ρµ + gja µ = 0.

11And more extensively in my notes on “Adjoint Representation, Killing forms and the
antisymmetry of c

k
ij ”, in the Supplementary Notes on the course website.
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Now that we have defined the covariant derivative of a Lie algebra valued
field,

Dµλ
(b) = ∂µλ

(b) − igA(c)
µ Madj

bd (Lc)λ
(d),

we may note that for an infinitesimal gauge transformation,

A(b)
µ → A′(b)

µ = A(b)
µ + iλdA(c)

µ (ic b
dc ) +

1

g
∂µλ

(b) = A(b)
µ +

1

g
(Dµλ)(b) .

The theory we have just defined, the gauge theory based on a non-Abelian
Lie group, is known as Yang-Mills theory.


