Physics 615Fall, 2013Homework #2Due: 3 PM, Sept. 20

These problems are all examples of symmetries treated by Noether's theorem. In evaluating $\delta \mathcal{L}$ it is often easier to use the expression

$$\delta \mathcal{L} = \left(\partial_{\mu} \delta x^{\mu}\right) \mathcal{L} + \delta \phi_{i} \frac{\partial \mathcal{L}}{\partial \phi_{i}} + \left(\delta \partial_{\mu} \phi_{i}\right) \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{i}} + \delta x^{\mu} \frac{\delta \mathcal{L}}{\delta x^{\mu}},$$

in the notation of Lecture 4, rather than the expression involving $\mathbf{b}\phi_i$ and $\frac{\partial \mathcal{L}}{\partial \mathcal{L}}$.

- $\overline{\partial x^{\mu}}$
- **1.)** Consider the Lagrangian for a set of free real scalar fields ϕ_i , i = 1...N,

$$\mathcal{L} = \frac{1}{2} \sum_{i} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - \frac{1}{2} m^2 \phi^2, \qquad (1)$$

where $\phi^2 := \sum_i \phi_i^2$. Consider the internal symmetry transformation

$$\delta x^{\mu} = 0, \qquad \delta \phi_i = \epsilon A_{ij} \phi_j,$$

where A_{ij} is an antisymmetric real matrix and we are assuming the summation convention that repeated indices are summed over. Show that this is a symmetry by calculating $\delta \mathcal{L}$, and find the conserved current J^{μ} and the charge Q corresponding to a given infinitesimal ϵA_{ij} . This is a global SO(N)symmetry.

- 2.) For the case N = 2 above, there is only one symmetry generator in SO(2), with $A_{12} = 1 = -A_{21}, A_{11} = A_{22} = 0$. Define ϕ without an index to be the complex field $\phi = (\phi_1 + i\phi_2)/\sqrt{2}$, as we did on homework #1. Express $\delta\phi$ and $\delta\phi^{\dagger}$ in terms of ϵ , ϕ , and ϕ^{\dagger} , and what the form of the finite symmetry transformation $\phi \to \phi'$ should be. Express the current and the conserved charge in terms of ϕ and ϕ^{\dagger} .
- **3.)** Consider the Lagrangian (1) of problem 1, but now consider symmetry under translations,

$$\delta x^{\mu} = \epsilon a^{\mu} (\text{constant}), \qquad \delta \phi_i = 0$$

Show this is a symmetry, and find the conserved current $J^{\mu} = a_{\nu}T^{\nu\mu}$, which gives you the energy momentum, or stress-energy, tensor $T^{\nu\mu}$. Write $T^{\nu\mu}$, \vec{P} , and H in terms of the fields ϕ_i .

- 4.) Again consider the Lagrangian (1) of problem 1, but now for a Lorentz transformation $\delta x^{\mu} = \epsilon L^{\mu}{}_{\nu}x^{\nu}$, with $L_{\mu\nu} = -L_{\nu\mu}$ as befits the generator of a Lorentz transformation. The current is then¹ $J^{\mu} = \frac{1}{2}L_{\nu\rho}\mathcal{M}^{\mu\nu\rho}$. Find the expression for $\mathcal{M}^{\mu\nu\rho}$ in terms of the stress-energy tensor. Impose an appropriate permutation symmetry on the indices of \mathcal{M} .
- 5.) Once again consider the Lagrangian (1) of problem 1, but now for a dilation $\delta x^{\mu} = \epsilon x^{\mu}$. Can you find a symmetry of this form in general or for some particular *m*? If so, find the appropriate $\delta \phi$, the current and the charge.

¹The one-half is inserted because the summation convention includes both L_{12} and L_{21} , though these are equivalent, with only the $L_{\mu\nu}$ with $\mu < \nu$ independent. We therefore also require $\mathcal{M}^{\mu\nu\rho} = -\mathcal{M}^{\mu\rho\nu}$.