Physics 615 Homework #1

Fall, 2013

Due: Sept. 13 at 3:00 P.M.

In these problems, treat the fields, lagrangians and equations of motion classically.

1 Consider the Lagrangian for two free real scalar fields ϕ_j with equal masses, with

$$\mathcal{L} = \frac{1}{2} \sum_{j=1}^{2} \partial_{\mu} \phi_{j} \partial^{\mu} \phi_{j} - \frac{1}{2} m^{2} \sum_{j=1}^{2} \phi_{j}^{2}. \tag{1}$$

Define ϕ without an index to be the complex field

$$\phi = \frac{\phi_1 + i\phi_2}{\sqrt{2}},$$

and rewrite the Lagrangian in terms of ϕ and ϕ^{\dagger} , its complex conjugate. [Generally we use † for Hermitean conjugate, which is more appropriate if we consider ϕ as an operator, but here Hermitean and complex conjugate are synonymous.] Find the equations of motion for ϕ_j , and show that one gets the same results if we treat $\mathcal{L}(\phi,\phi^{\dagger})$ as if ϕ and ϕ^{\dagger} were independent real fields. Also find the Hamiltonian density both in terms of ϕ_i and by treating ϕ and ϕ^{\dagger} as if they were independent, and compare.

2 Maxwell's theory of electromagnetism can be expressed in terms of a 4-vector field A_{μ} , with a Lagrangian density given by

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu},$$

where the field strength tensor is defined by

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

and with the identification with usual Maxwell fields given by $E^i = F^{i0}$, $\epsilon_{ijk}B^k = -F^{ij}$. Note that the degrees of freedom are A_{μ} , not $F_{\mu\nu}$.

(a) Derive the equations of motion for A_{μ} , and reexpress them in terms of the electric and magnetic fields.

(b) Find the canonical momenta Π_{μ} conjugate to A^{μ} , and give their constitutive equations $\Pi_{\mu} = \Pi_{\mu}(A^{\nu}, \dot{A}^{\nu})$ and reexpress in terms of electromagnetic fields. Can these be inverted to solve for \dot{A}^{μ} as functions of A^{ν} and Π^{ν} ?

[Note: Π^{μ} are not the generalizations π^{μ} which we defined with the $\bar{\delta}$ for each field. Here the index μ refers to which field, A^{μ} , we are finding the conjugate to.]

3 The last Problem described a free electromagnetic field in the absence of charges and currents. To include such sources, add a term $-A_{\mu}j^{\mu}$ to the lagranian density, so

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - A_{\mu}j^{\mu},$$

where $j^0 = \rho$ is the charge density, and $j^i = \vec{j}$ is the current density, in Heaviside units.

- (a) Derive the new equations of motion for A_{μ} , and reexpress them in terms of the electric and magnetic fields.
- (b) Show that the equations of motion are only consistent if the source satisfies

$$\partial_{\mu}j^{\mu}=0.$$