Vector Identities

These are from the cover of Jackson:

$$
\begin{align*}
& \vec{A} \cdot(\vec{B} \times \vec{C})=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \tag{1}\\
& \vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C} \tag{2}\\
&(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}) \tag{3}\\
& \vec{\nabla} \times(\vec{\nabla} \Phi)=0 \tag{4}\\
& \vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0 \tag{5}\\
& \vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} A \tag{6}\\
& \vec{\nabla} \cdot(\Phi \vec{A})=\vec{A} \cdot \vec{\nabla} \Phi+\Phi \vec{\nabla} \cdot \vec{A} \tag{7}\\
& \vec{\nabla} \times(\Phi \vec{A})=\vec{\nabla} \Phi \times \vec{A}+\Phi \vec{\nabla} \times \vec{A} \tag{8}\\
& \vec{\nabla}(\vec{A} \cdot \vec{B})=(\vec{A} \cdot \vec{\nabla}) \vec{B}+(\vec{B} \cdot \vec{\nabla}) \vec{A} \tag{9}\\
& \quad+\vec{A} \times(\vec{\nabla} \times \vec{B})+\vec{B} \times(\vec{\nabla} \times \vec{A}) \\
& \vec{\nabla} \cdot(\vec{A} \times \vec{B})=(\vec{\nabla} \times \vec{A}) \cdot \vec{B}-\vec{A} \cdot(\vec{\nabla} \times \vec{B}) \tag{10}\\
& \vec{\nabla} \times(\vec{A} \times \vec{B})=+\vec{A}(\vec{\nabla} \cdot \vec{B})-\vec{B}(\vec{\nabla} \cdot \vec{A}) \tag{11}
\end{align*}
$$

With the position vector \vec{x} with $r=|\vec{x}|, \hat{r}=\vec{r} / r$,

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{x}=3 \tag{12}\\
\vec{\nabla} \cdot[\hat{r} f(r)]=\frac{2}{r} f+\frac{\partial f}{\partial r} \tag{13}\\
\left.(\vec{A} \cdot \vec{\nabla}) \hat{r} f(r)=\frac{f(r)}{r}[\vec{A}-\hat{r}(\vec{A} \cdot \hat{r})]+\hat{r} f(r)\right]=0 \tag{14}\\
\vec{\nabla}(\vec{x} \cdot \hat{r} \cdot \vec{A}) \frac{\partial f}{\partial r} \tag{15}\\
\vec{A}+\vec{x}(\vec{\nabla} \cdot \vec{A})+i(\vec{L} \times \vec{A}) \tag{16}\\
\vec{L}=-i(\vec{x} \times \vec{\nabla})
\end{gather*}
$$

These are some more identities

$$
\begin{gathered}
\vec{\nabla} \times(\vec{r} \times \vec{\nabla})=\vec{r} \nabla^{2}-\vec{\nabla}\left(1+r \frac{\partial}{\partial r}\right) \\
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}} L^{2}
\end{gathered}
$$

