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Physics 613 Lecture 23 April 24, 2014

Higgs Mechanism
Copyright c©2014 by Joel A. Shapiro

Last time we discussed spontaneous symmetry breaking, where a theory
with a multiplet of scalar fields φ transforming as a unitary irreducible rep-
resentation of a symmetry group G. The Lagrangian was invariant under G,
but possibly the lowest energy state (vacuum), about which we do perturba-
tion theory, was not invariant. The vacuum expectation value φ0 may be left
invariant under a subgroup K ⊂ G, and the dimensions in the Lie Algebra G

of G which do not leave φ0 invariant (G/K, generators of the cosets of G/K)
give rise to massless scalar particles known as Goldstone Bosons.

In the previous two lectures we considered theories with multiplets, whether
scalar fields φ or fermions ψ, which transform as unitary irreducible multi-
plets under a symmetry group G which we made local by replacing ordinary
partial derivatives by covariant derivatives, depending on new gauge fields
taking values in G. We saw that this necessitated introducing massless vec-
tor particles in the adjoint representation of the group. Had we had more
time, we would have discussed the problems of ensuring that the propagator
doesn’t give rise to unphysical states, which for Abelian theory was assured
by the Ward identity. This requires the gauge particles to be massless, and
when we considered the photon propagator, we argued that radiative correc-
tions would not give the photons a mass because there are no massless scalar
particles which could give a pole in Π(q2) at q2 = 0.

But today we will combine our two ideas, and as the Goldstone bosons are
scalar particles with mass zero, we may find a very interesting effect called
the Higgs mechanism. This is the way we now understand the electroweak
interactions, which, together with the color gauge theory of QCD, the strong
interactions, forms the basis of the standard model of elementary particle
physics.

The Abelian Higgs Model

Our first example will be a simple U(1) theory with a complex scalar φ. As
with electromagnetism, this means we have one gauge field Aν and a local
phase symmetry1 φ→ e−iα(x)φ, Aν → Aν + 1

q
∂να(x). We take the lagrangian

1Eq. 19.41 is wrong.
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density to be

L = (Dνφ)†Dνφ− 1

4
FνρF

νρ + µ2φ†φ− λ

4
(φ†φ)2. (1)

Were it not for the mass term having the wrong sign, this would be simply a
theory of a charged scalar interacting with photons. There would be the two
scalar degrees of freedom from φ, and the two transverse polarizations of the
photon, for a total of four. But note that the mass term does have the wrong
sign, so we will have spontaneous symmetry breaking. The classical minimum
of the potential has φ†φ = 2µ2

λ
, so we choose our vacuum to be at φ = v/

√
2

where v is real2 and v = 2µ/
√
λ > 0. We need to reexpress the two φ degrees

of freedom. In the book, rather than doing this with cartesian coordinates,
they write φ in terms of a radial coordinate coordinate |φ| = v + h(x) and
an angular coordinate or phase angle θ/v. Thus

√
2φ̂(x) =

(

v + ĥ(x)
)

e−iθ̂(x)/v.

This has the effect of introducing a term linear in the field θ̂ into the electro-
magnetic current, which means there is a quadratic term in Aνj

ν . There is
also one from the −2q2Aφ†φ which comes from the usual (Dνφ)†Dνφ term.
Though this is cubic in unbroken fields, the vacuum expectation value leaves
it with a linear piece −q2v2A. These mean the quadratic part of the La-
grangian that determines the A propagator has additional A dependent terms
which modify the propagator.

’t Hooft Gauge

There is another way to view this effect. Let us choose a different approach,
using cartesian coordinates,

√
2φ(x) = v + χ1(x) + iχ2(x), so 2φ†φ = (v +

χ1)
2 + χ2

2, and, replacing µ2 by v2λ/4, we have

V (φ) = −v
2λ

8

[

v2 + 2vχ1 + χ2
1 + χ2

2

]

+
λ

16

[

v2 + 2vχ1 + χ2
1 + χ2

2

]2

= −v
4λ

16
+ (−1+1)

v3λ

4
χ1 + (−4 + 6)

v2λ

16
χ2

1 + (−1 + 1)
v2λ

8
χ2

2 + O(φ3)

= −v
4λ

16
+
v2λ

8
χ2

1 + O(φ3)

2The funny
√

2 factors are because we define
√

2φ = φ1 − iφ2, so φj,0 = (v, 0).
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Note the constant term −v4λ/16 is irrelevant, the χ1 term develops a mass
m2 = v2λ/4 = µ2, and χ2 becomes massless.

But we are not done examining the quadratic pieces of the Lagrangian,
because

(Dνφ)†Dνφ = [(∂ν + iqAν)φ]†(∂ν + iqAν)φ

=
1

2
(∂νχ1)

2 +
1

2
(∂νχ2)

2 + qvAν∂νχ2 +
1

2
q2v2AνAν

+terms cubic and higher order in the fields.

The last term gives a mass m2
A = q2v2 to the space components ~A.

But what about the Ward identity, or alternately, what about the time
component, for which the mass term seems to have the wrong sign? If we
treat the mass as an interaction im2

Ag
µν we might worry about the first

diagram, but there is another diagram in which the photon interacts with
the χ2 particle with a vertex mAk

µ, two of which, together with the massless
χ2 propagator, gives for the second diagram (mAk

µ) i
k2 (−mAk

ν), so the two
diagrams combine to give

im2
A

(

gµν − kµkν

k2

)

,

which kills the component in the kµ direction, or, in the rest frame, the time
component of the spin.

Because we know that this theory has a local gauge invariance under
phase transformations, given any field configuration, we may choose our
gauge transform so as to undo the phase of φ, setting θ = 0. This does
away with the degree of freedom associated with the massless χ2. But this
degree of freedom has not disappeared, because it has been consumed by the
A field, which has become massive and now has three degrees of freedom as
a massive spin one particle should.

We have worked this out for the simple case of one Abelian gauge field,
but we should note that the gauge fields that might pick up mass and the
Goldstone bosons that can be eaten by them share a common feature —
they are both associated with directions in the Lie algebra. The original
multiplet of scalars was in a representation of the algebra but not necessarily
the adjoint, but the Goldstone bosons are directly coupled to the Lie algebra
generators which are broken by the vacuum.
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Broken Non-Abelian Gauge Theory

Let us consider the simplest non-Abelian example, with the group G =SU(2).
This has a three-dimensional Lie algebra and so we begin with three gauge
particles Aa

µ. Our scalar particles will need to transform under some rep-
resentation of SU(2). First let’s consider the isospin 1/2 representation, a
complex doublet φ. The algebra is represented by Ta = σa/2, so the covariant
derivative is

Dµφ = (∂µ − iqAa
µTa)φ.

With the φ in (1) now refering to this complex doublet, we still see the
minimum of the potential requires 2φ†φ = v, but now we choose φ0 not only
to be real but to have zero upper component,

φ0 =
1√
2

(

0
v

)

.

Then the |Dµφ|2 term quadratic in A is

g2

2
(0, v)TaTb

(

0
v

)

Aa
µA

b µ =
g2v2

8
Aa

µA
a µ,

where the symmetry of Aa
µA

b µ under a ↔ b enabled us to replace TaTb

by 1
2
{Ta, Tb} = 1

8
{σa, σb} = δab/4. Thus each of the three gauge particles

develops a mass mA = gv/2, and there are no massless vectors left. We
will have one remaining massive real scalar left, coming from the oscillations
around v/

√
2 of the real part of the lower component of the doublet. The

other degrees of freedom have been eaten, fixed to be zero by choice of gauge
(called unitary gauge).

Now we might have chosen φ to transform differently. For example, we
might have chosen an isospin 1 real field, with three real components. This
transforms under the adjoint representation of SU(2), so now

(Dµφ)a = ∂µφa + gǫabcA
b
µφc,

and the A2 term in the lagrangian comes from 1
2
(Dµφ)2 = g2

2
(ǫabcA

b
µφ0 c)

2.
The theory has spherical symmetry, so if the V (φ) term takes its minimum
value for |φ| = v 6= 0, it can be anywhere on a sphere of radius v, and we can
choose that to be along the third axis, so φ0 = (0, 0, v), and (ǫabcA

b
µφ0 c)

2 =
v2ǫab3A

b
µǫac3A

c µ = v2[(A1
µ)

2 +(A2
µ)2]. Thus two of the gauge particles develop
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masses, m1 = m2 = gv, but the third remains massless. And φ3 becomes the
sole surviving massive real scalar.

In both of these examples, any point that could be the minimum of V (φ)
was equivalent to any other under the symmetry, but that is not always the
case. One example3 is an SU(3) gauge group with an octet scalar. If φ0

is in the λ8 direction, the SU(3) is broken into SU(2)×U(1), so those four
gauge particles remain massless, while the other four develop equal positive
masses. But if φ0 is in the λ3 direction, only A3 and A8 remain massless,
the symmetry is broken to U(1)×U(1), and four of the other vector particles
develop a mass M and the other two a mass 2M .

A Side Comment on g

We saw in homework 10 that if the Killing form is positive definite, it pre-
sented a natural way to normalize the basis vectors of the Lie algebra. This
gives a natural metric in group space, and such groups are compact sets, so
they have a natural size. But the symmetries act linearly on the scalar or
spinor fields, so there is no natural strength by which a gauge field should
act on a matter field, so we have a parameter, a kind of charge, g, which we
have always seen in our covariant derivatives of matter fields. The strengths
by which the different gauge fields act on the matter fields is, however, de-
termined by the matter-field representation, if it is irreducible.

If, however, the gauge group is a direct product of two groups, the covari-
ant derivative will be a sum over gauge fields from the two different groups,
and the strength with which each couples will not be constrained. So there
will be separate coupling constants for the two components.

SU(2)×U(1) Gauge Theory with Isodoublet Higgs

Now let us consider the group which will give us the Glashow-Salam-Weinberg
model of the electroweak interactions, which is a major component of the
standard model. The group is SU(2)×U(1). The gauge particles are three
~Wµ’s for SU(2) and one Bµ for U(1). The field strength for the W ’s will be
called F

~Fµν = ∂µ
~Wν − ∂ν

~Wµ − g ~Wµ × ~Wν ,

3Peskin and Schroeder, pp. 696-697.
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and that for B will be called G,

~Bµν = ∂µBν − ∂νBµ.

All of the particle fields we know about, quarks and leptons, will be included,
but we concentrate for now on a doublet of complex scalars φ which will
spontaneously break the symmetry. Acting on φ, the covariant derivative is

Dµ = ∂µ + i
g

2
~σ · ~Wµ + i

g′

2
Bµ.

We are looking to have vector fields with charge, so the doublet needs to
have different charges for its two components, and we want the one that

develops a vacuum expectation value to be neutral, so we write φ =
(

φ+

φ0

)

and φ0 =
(

0
v/

√
2

)

. The general field configuration for φ can now be written

as √
2 φ̂ = e−i~θ·~σ/2v

(

0
v + ĥ(x)

)

,

but we will immediately go to the unitary gauge, which undoes the exponen-
tial factor, leaving from φ̂ only the real scalar Higgs field h(x) with a mass√

2µ = v
√

λ/2. But the |Dµφ|2 term now gives us a term

1

8
(0, v)[g~σ · ~Wµ + g′Bµ]2

(

0
v

)

=
v2

8

[

g2(Ŵ 2
1 + Ŵ 2

2 ) + (gW3 − g′B)2
]

.

We see that mW1
= mW2

= gv/2, but the mass matrix is not diagonalized
by our choice of basis vectors for the other two gauge fields, and we need to
choose a new basis by rotating in the W3−B plane,

Ẑµ = cos θW Ŵ
µ
3 − sin θW B̂

µ

Âµ = sin θW Ŵ
µ
3 + cos θW B̂

µ

where

cos θW =
g√

g2 + g′ 2
, sin θW =

g′√
g2 + g′ 2

.

Then the gauge field mass terms are 1
2
MW (W µ

1 W1 µ +W µ
2 W2 µ)+ 1

2
MZZ

µZµ,
with MW = gv/2, Mz = 1

2
v
√
g2 + g′ 2 = MW/ cos θW . We see that the A field

does not pick up any mass, so we identify it as the photon field.
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Now look at the covariant derivative in terms of the new basis:

Dµφ = ∂µφ+
[

i
g

2
σ+W

− + i
g

2
σ−W

+

+i
g

2
(σ3(cos θWZ + sin θWA)

+i
g

2

sin θW

cos θW
(cos θWA− sin θWZ))

]

φ

= ∂µφ+
[

i
g

2
σ+W

−
µ + i

g

2
σ−W

+
µ + ig sin θW

1 + σ3

2
Aµ

+i
g

2 cos θW
(σ3 − (1 + σ3) sin2 θW )Zµ

]

φ

We see that the photon field Aµ couples only to the upper component of φ,
and with a charge e = g sin θW , which is therefore the unit of electromagnetic
charge e, that of a positron.

This constitutes the standard electroweak theory of the standard model
except that so far we haven’t introduced any of the particles that have elec-
troweak interactions! Next time we will introduce the leptons and quarks
into this model.


