
Last Latexed: April 13, 2014 at 11:16 1

Physics 613 Lecture 19 April 10, 2014

Chiral Symmetry; Non-Abelian Gauge Symmetry
Copyright c©2014 by Joel A. Shapiro

The isospin or flavor SU(3) symmetry we are discussing deal with degrees
of freedom that have nothing to do with spacetime, but describe a sort of
rotation in a completely independent space, and the particle fields at each
point in space-time transform identically, so a quark field ψj,a(x) with flavor
index j, spinor index a and space-time point xµ transforms by ψj,a(x) →

Mjk(g)ψk,a(x) where the representation matrix M is completely independent
of a and xµ. I will call this an internal symmetry.

Chiral Symmetry

We have seen that for charged fields, the lagrangian is invariant under a global
phase transformation ψa(x) → eiαψa(x), for real constant α, so this is a form
of internal symmetry, and results in a conserved current (which turns out to
be the electric current) due to Noether’s theorem. We see that the standard
free Dirac Lagrangian density L = iψ̄ 6 ∂ψ − mψ̄ψ is invariant, because
ψ̄ = ψ†γ0 → e−iαψ̄ = ψ̄e−iα. Let us consider a similar transformation
which rotates the two helicity states of the particle in opposite directions,
ψa(x) → eiαγ5ψa(x). We still have ψ† → ψ†e−iαγ5 , as γ5 is hermitean, but
as γ5 anticommutes with γ0, ψ̄ → ψ̄e+iαγ5 , and ψ̄ψ is not invariant. γ5 does
commute with γ0 6 ∂, so the first term in L is invariant under this chiral

transformation. So if we have a massless free dirac particle, we have chiral
symmetry and a conserved current and conserved quantity Q5, which is the
number of right-handed fermions minus the number of left-handed ones. As
a consequence, Q5 anticommutes with the parity operator.

Note that if our massless dirac particle interacts with the electromagnetic
field in the usual way, with LI = qψ̄γµψA

µ, this will be invariant under chiral
transformations provided Aµ is unchanged.

Do we have any massless fermions to apply this to? Perhaps not in the
spectrum of particles we observe, although neutrinos come close. In high
energy electron scattering we can often consider the mass of the electron to
be negligible, and the consequence of the approximate chiral symmetry is
that the helicity of the electron is nearly always conserved, with helicity-flip
amplitudes going away at high energy/momentum.

613: Lecture 19 Last Latexed: April 13, 2014 at 11:16 2

We have also come to consider the u and d quark to be very light. Early
quark models thought their masses would be roughly mN/3, with mN the
mass of the nucleon, proton or neutron, but these constituent masses are now
not considered to be essential, and one considers current quark masses which
are 4-10 MeV, quite a bit smaller that the masses of objects which contain
them.

Of course we also have the (approximate) isotopic spin symmetry q →

q′ = e−i~α·~τ/2q. Noether tells us we have conserved currents

Ĵµ
j =

1

2
q̄τj γ

µq, with conserved isocharges

Q̂j = T̂
1

2

j =
∫

Ĵ0
j d

3x =
∫

q†(x)
τj
2
q(x)

As these conserved isocharges generate the isorotations, they have SU(2)
commutation relations,

[Q̂j , Q̂k] = iǫjkℓQ̂ℓ. (1)

If our quarks are massless, we can combine isospin and chiral symmetry
and consider

q → e−i~α·~τ γ5/2 q.

This is not quite an internal symmetry, because the γ5 acts on the spinor
indices and converts one quark into another with a possibly different spin. If
this were a symmetry of our theory, its conserved current would be

Ĵµ
j,5 =

1

2
q̄τj γ

µγ5q, with conserved charge

Q̂j,5 = T̂
1

2

j,5 =
∫

Ĵ0
j,5d

3x =
∫

q†(x)γ5
τj
2
q(x)

The operator q̄γ5~τq is a pseudoscalar, isotopic spin 1 object, and if we
let it operate on the vacuum it would create a quark-antiquark pair suitable
for a pion. If we dotted this into a pion field, it would provide a suitable
coupling of a quark with a pion. As it is not chiral invariant, we need the
pion field to change under chiral transformations.

We will see later, if we have time, that the low mass of the pion can be
connected to the breaking of the chiral symmetry of the u and d quarks.

Just as something recognizable from things we have seen earlier, and as
a foretaste of discussions in Chapter 18, note that the Q̂j and Q̂j,5 form a
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six-dimensional Lie algebra with commutation relations (1) together with

[Q̂j , Q̂k,5] = iǫjkℓQ̂ℓ,5, (2)

[Q̂j,5, Q̂k,5] = iǫjkℓQ̂ℓ. (3)

This should look rather familiar, from a discussion of ~J and ~K from the
Lorentz group, except there the [K,K] commutator had a negative sign. That
required complexifying J±iK to find finite dimensional representations of the
Lorentz group, but here things are simpler. If we define Q̂j,± = 1

2

(

Q̂j ± Q̂j,5

)

,

and rename Q̂j,+ → Q̂j,R and Q̂j,− → Q̂j,L, we have right and left handed
SU(2) algebras which commute with each other, and furthermore are given
by

Q̂j,± =
∫

d3x q†(x)
1 ± γ5

2

τj
2
q(x) =

∫

d3x q†±(x)
τj
2
q±(x),

where q± =
1 ± γ5

2
q are the right and left handed helicity components of the

quark field.
The idea that we might have separate symmetries on the left and right

handed components will prove central to our standard model, but the internal
symmetry group will not be hadronic isospin but weak isospin. Which brings
us to:

Non-Abelian Gauge Theories

Yang and Mills (1954) thought it inconsistent that we should have a global
isotopic spin symmetry which asserted that protonness and neutronness were
just arbitrary directions chosen in isotopic spin space, which one could choose
arbitrarily at one point, but not independently at other space-time points.
Relativity, after all, tells us that all physics is local. So they asked the
question of whether it would be possible to have a theory for an isospin
doublet ψ(x) invariant under local isospin transformations

ψ(x) → ψ′(x) = eig~α(x)·~τ/2 ψ(x).

We have scaled the parameters ~α by a coupling constant g in the same way as
we have θ with the electric charge in gauge invariance for electromagnetism.
For terms in the lagrangian that do not have derivatives, global invariance
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and local invariance are indistinguishable. But for

iψ̄ 6∂ψ → iψ̄e−ig~α(x)·~τ/2γµ∂µ

(

eig~α(x)·~τ/2 ψ
)

= iψ̄e−ig~α(x)·~τ/2γµ
(

∂µe
ig~α(x)·~τ/2

)

ψ + iψ̄ 6∂ψ,

we get a change
iψ̄

[

e−ig~α(x)·~τ/2∂µe
ig~α(x)·~τ/2

]

γµψ,

which does not vanish if α(x) has a nonzero derivative. For an Abelian theory,
the derivative of the exponential is just 1

2
i~τ ·∂µ~α times the exponential, which

cancels the one from ψ̄, and the change is just 1
2
ig(∂µ~α) · ψ̄γµ~τψ, which is

compensated in gauge transformations by

Aµ → Aµ − ig∂µχ.

If we want to do the same for our SU(2) isospin group, we need a gauge field
with components which correspond to all the components of ~α. As these
multiply the generators of the group, the Lie algebra, we need a gauge field
which takes on not real values, but instead values in the Lie algebra,

Aµ =
∑

j

AjT̂j = ~Aµ · ~τ/2.

This suggests using a covariant derivative

Dµ(A) := ∂µ + igAµ

in place of ∂µ in the kinetic term of the dirac particle. We want that

ψ̄γµDµ(A)ψ → ψ̄′γµDµ(A′)ψ′ = ψ̄e−ig~α(x)·~τ/2γµDµ(A
′)

(

eig~α(x)·~τ/2 ψ
)

= ψ̄e−ig~α(x)·~τ/2γµ
[

Dµ(A), eig~α(x)·~τ/2
]

ψ

+igψ̄e−ig~α(x)·~τ/2γµ(A′ −A)eig~α(x)·~τ/2 ψ

+ψ̄γµDµ(A)ψ

The last term is what we want, so the other two must cancel, which it will if
we set

ig(A′ −A)eig~α(x)·~τ/2 = −
[

Dµ(A), eig~α(x)·~τ/2
]

or

A′ =
1

ig
eig~α(x)·~τ/2Dµ(A)e−ig~α(x)·~τ/2.
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For an infinitesimal gauge transformation α, this gives

A′ = A− ∂µ~α(x) · ~τ/2 + ig[~α(x) · ~τ/2,Aµ],

or A′
ℓ,µ = Aℓ,µ − ∂µαℓ − gfjkℓαjAk

.

The Field Strength

So we have found how to make a lagrangian with matter fields that transform
under a symmetry group independently at each point in space-time, but at
the expense of having to introduce a vector field which takes values in the
Lie algebra of the group. But the new field needs to have its part of the
lagrangian too, in particular the kinetic energy term.

For electromagnetism we know that term is −1
4
F µνFµν , where Fµν =

∂µAν − ∂νAµ. The best way to see how to generalize this is to note that the
covariant derivative is analogous to that of general relativity, where it tells
you how to parallel transport a vector, and the curvature tensor, which is the
commutator of two covariant derivatives, when integrated around a closed
path, tells how much a parallel-transported vector has rotated when it comes
back to where it started.

We note that for the electromagnetic field, we could also write

Fµν =
−i

g
[Dµ, Dν ] (4)

which will also turn out to be the correct expression for the non-Abelian
theory, with

Fµν =
−i

g
[∂µ + igAµ, ∂ν + igAν] = ∂µAν − ∂νAµ + ig[Aµ,Aν ] (5)

or, in terms of components in the Lie algebra space,

Fj,µν = ∂µAj,ν − ∂νAj,µ − gfkℓjAk,µAℓ,ν .

We need to have a term similar to the −1
4
F µνFµν of electromagnetism,

but we must insure that it is invariant under the gauge symmetry. Observe
that the way we have defined the action of the gauge transformation on Aµ,
we have Dµ → eig~α(x)·~τ/2Dµe

−ig~α(x)·~τ/2, so

Fµν = eig~α(x)·~τ/2Fµνe
−ig~α(x)·~τ/2.
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As the gauge fields and their field strengths live in the vector space of sym-
metry generators, the scale of the component fields Fj,µν is determined by

some means of normalizing the basis vectors of this space, the T̂j. For SU(2)
the convention is ~τ/2, where the τ ’s are the Pauli vectors renamed only
to remind us that this is in isospin space rather than real space. The
mathematicians have given us what we need to extract an invariant, by
defining the Killing form β(T̂j , T̂k) which gives the first Casimir operator
∑

jk β(T̂j, T̂k)T̂jT̂k. For most of the algebras we care about, the T̂j can be

chosen so that β(T̂j, T̂k) = 2δjk, which we will do. This is familiar from
rotations, where we get

∑

j L
2
j as the Casimir operator invariant under rota-

tions. Now, because the exponentials commute with the Casimir operator,
β (Fµν ,Fµν) = 2

∑

j F
µν
j Fj,µν is an invariant, so we take

L = −
1

4

∑

j

F µν
j Fj,µν + iψ̄γµDµψ −mψ̄ψ

to be our lagrangian density.


